
1

An EHR based methodology gy
for Concurrency management
Arvind (with Asif Khan)
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technologygy

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-1

Guarded Atomic Actions (GAA):
Execution model

Repeatedly:Repeatedly:
Select a rule to execute
Compute the state updates
Make the state updates

Highly non-
deterministic

I l t ti S h d l

User
annotations
can help in
rule selection

Implementation concern: Schedule
multiple rules concurrently without
violating one-rule-at-a-time semantics

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-2

2

Language issue
BSV with registers only in not expressive
enough to capture the desired degree of g p g
parallelism in designs
BSV extended with wires, reconfig regs, etc. is
used commonly and can express all types of
parallelism but it
 destroys one-rule-at-time semantics; it is essential

to take scheduling as done by the current compiler
into account to argue about functional correctness

 is fragile – even textual reordering of rules can break
programs

 allows too many latent bugs which show up later
when program fragments are used in slightly
different contexts

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-3

Other solutions
performance guarantees [Rosenband 2005]:
Compiled using EHRs. Clean semantics but not p g
so good for modularity and synthesis
boundaries; difficult to implement manually
sequential connective [Dave 2011]: compiling is
well understood. Clean semantics but not so
good for modularity and synthesis boundaries.
Not easy to retrofit in the current BSV compilery p
single rule [Khan, Muralidharan]: Express the
whole design as a single rule. Tight control over
scheduling, minimal use of wires but modularity
is destroyed

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-4

3

A new methodology based on
programming with EHRs

Preserves one-rule-at-time semantics
Provides predictable concurrent schedulingProvides predictable concurrent scheduling
Formalizes scheduling semantics of interfaces
Allows us to express all types of concurrent
designs
Acceptable by the current compiler
May require some adjustment in how the

l l dcurrent compiler treats implicit guards

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-5

Rules versus Methods
We can consider rules one at time and
understand their semantics but this is not
possible for methods
Methods of a module may be called
concurrently either from a single rule or from
multiple rules or methods that are
scheduled/called concurrently
 Interface semantics must specify whether concurrent

calls for two given methods are permitted, and if
they are permitted than if there is any functional
(combinational) dependence between them.

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-6

4

Interface properties
Conflicting (m1,m2): m1 and m2 cannot be
called together, i.e., g , ,
 if they are called from the same method or rule than

that method or rule is invalid
 if they are called from two different rules than those

rules cannot be scheduled concurrently
CF (m1,m2): m1 and m2 are conflict free and
can be called together, however, no effect of

1 b b 2 i th t l m1 can be seen by m2 in the current cycle or
vise versa
m1 < m2: m1 and m2 can be called together,
but m1 may affect m2 in the current cycle
(similarly for m2 < m1)

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-7

Scheduling constraints on
rules

l 1/ rule2/

module A

Scheduling constraints on the methods of
modules A and B induce scheduling constraints
on rules and methods calling them

rule1/
method1

rule2/
method2

module B

on rules and methods calling them
Such scheduling constraints can be
determined and enforced by the compiler
bottoms’ up

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-8

5

Register interface
BSV primitive

write.data
write.en D Q0

1 read
write.data

methods can be called concurrently but read
does not see the effect of write

read < write

read
write.en

implementation

 read < write
these methods have no guard, i.e., they are
always “ready”
the write method is an action method and
therefore has an “enable” signal

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-9

Ephemeral History Register (EHR)
BSV primitive Dan Rosenband [MEMOCODE’04]

0
0 data r0D Q

w0.data
w0.en

1
w0.data
w0.en

0

1
w1.data

w1.en

D Q

r1
implementation

r0
r1

w1.data
w1.en

methods can be called concurrentlymethods can be called concurrently
 r0 < w0 < r1 < w1
 r1 can see w0 and w1 takes precedence over w0

methods have no guards
Primitive register is a special case of EHR

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-10

6

Using EHRs to express the
desired concurrency

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-11

One-Element FIFO
No concurrent enq / deq
module mkFIFO1 (FIFO#(t));

Reg#(t) data <- mkReg();
R #(B l) f ll kR (F l)Reg#(Bool) full <- mkReg(False);

method Action deq() if (full);
full <= False;

endmethod

method Action enq(t x) if (!full);
full <= True; data <= x;
d h dendmethod

method t first() if (full);
return data;

endmethod
endmodule

May 9, 2012 http://csg.csail.mit.edu/6.S078

deq and enq cannot be enabled together

L23-12

7

One-Element Pipelined FIFO
module mkFIFO1 (FIFO#(t));

Reg#(t) data <- mkReg();
EHR#(2 B l) f ll kEHR(F l)EHR#(2,Bool) full <- mkEHR(False);
method Action deq() if (full.r0);
full.w0(False);

endmethod

method Action enq(t x) if (!full.r1);
full.w1(True); data <= x;

endmethod

method t first() if (full.r0);
return data;

endmethod
endmodule

first < deq < enq

Notice enq on full is allowed if deq is being done concurrently
May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-13

One-Element Bypass FIFO
using EHRs
module mkFIFO1 (FIFO#(t));

EHR#(2,t) data <- mkEHRU();
EHR#(2 B l) f ll kEHR(F l)EHR#(2,Bool) full <- mkEHR(False);

method Action enq(t x) if (!full.r0);
full.w0(True); data.r0(x);

endmethod

method Action deq() if (full.r1);
full.w1(False);
d h dendmethod

method t first() if (full.r1);
return data.r1;

endmethod
endmodule

enq < first < deq

Notice deq on empty is allowed if enq is being done concurrently
May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-14

8

module mkFIFO (FIFO#(t));
EHR#(t) da <- mkEHRU();

#

Two-Element FIFO
db da

EHR#(Bool) va <- mkEHR(False);
EHR#(t) db <- mkEHRU();
EHR#(Bool) vb <- mkEHR(False);

rule canonicalize (vb.r1 & !va.r1);
da.w1(db.r1); va.w1(True); vb.w1(False);

endrule

Assume, if there is only
one element in the FIFO
it resides in da

method Action enq(t x) if (!vb.r0);
db.w0(x); vb.w0(True); endmethod

method Action deq() if (va.r0);
va.w0(False); endmethod

method t first() if (va.r0);
return da.r0; endmethod

endmodule

enq CF (first < deq)

All methods and rule canonicalize
can be done concurrently

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-15

Register File
normal and bypass

Normal rf: {rd1, rd2} < wr; the effect of a
register update can only be seen a cycle later, g p y y ,
consequently, reads and writes are conflict-free

Bypass rf: wr < {rd1, rd2}; in case of concurrent
reads and write, check if rd1==wr or rd2==wr
then pass the new value as the result and update
the register file, otherwise the old value in the rf
is read

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-16

9

Normal Register File
module mkRFile(RFile);
Vector#(32,Reg#(Data)) rfile <- replicateM(mkReg(0));

method Action wr(Rindx rindx, Data data);
if(rindx!=0) rfile[rindx] <= data;

endmethod
method Data rd1(Rindx rindx) = rfile[rindx];
method Data rd2(Rindx rindx) = rfile[rindx];

endmodule

{rd1, rd2} < wr

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-17

Bypass Register File
module mkBypassRFile(RFile);
Vector#(32,EHR#(2, Data)) rfile <-

replicateM(mkEHR(0));

method Action wr(Rindx rindx, Data data);
if(rindex!==0) rfile[rindex].r0(data);

endmethod
method Data rd1(Rindx rindx) = rfile[rindx].r1;
method Data rd2(Rindx rindx) = rfile[rindx].r1;

endmodule

wr < {rd1, rd2}

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-18

10

Blocking Cache Interface
req

R

interface Cache;
method Action req(MemReq r);

cacheresp

mReq

mResp

Processor DRAM

hitQ

mReqQ

mRespQ

missReq

respDeq

method Action req(MemReq r);
method MemResp resp;
method Action respDeq;

method ActionValue#(MemReq) mReq;
method Action mResp(MemResp r);

endinterface

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-19

Blocking I-Cache
processor-side methods
method Action req(MemReq r) if (status==Rdy);

Index idx = truncate(r.addr>>2);
Tag tag = truncateLSB(r.addr);Tag tag truncateLSB(r.addr);
Bool valid = vArray[idx];
Bool tagMatch = tagArray[idx]==tag;
if(valid && tagMatch)
hitQ.enq(r);

else begin
missReq <= r; status <= FillReq; end

endmethod
method MemResp resp;

hitQ is a bypass FIFO

let r = hitQ.first;
Index idx = truncate(r.addr>>2);
return dataArray[idx];

endmethod
method respDeq;

hitQ.deq;
endmethod

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-20

11

Multi-Stage SMIPS

R i Fil

PC Decode

Register File

Executeir

Epoch

critr er

Next
Addr
Pred

fr
mr

Inst
Memory

Data
Memoryscoreboard

insert bypass FIFO’s to deal with
(0,n) cycle memory response

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-21

Fetch rules
rule doFetch1 (fr.notFull);
iCache.req(TypeMemReq{op:Ld, addr:pc.r1, data:?});
let ppc = bpred prediction(pc r1);let ppc = bpred.prediction(pc.r1);
fr.enq(TypeFecth2Fetch{pc:pc.r1, ppc:ppc,

epoch:epoch.r1});
pc.w1(ppc);

endrule

rule doFetch2 (fr.notEmpty && ir.notFull);
let frpc = fr.first.pc;
let frppc = fr.first.ppc;
let frepoch = fr.first.epoch;
let inst = iCache.resp; iCache.respDeq;
ir.enq(TypeFetch2Decode{pc:frpc, ppc:frppc,

epoch:frepoch, inst:inst});
fr.deq;

endrule
May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-22

12

Different architectures
require different scheduling

Reg File
wrrd1,rd2

if ir is a pipelined FIFO (deq<enq) then reg file
has to be a bypass register file (wr < {rd1,rd2})

Fetch Execute
ir

if ir is normal FIFO (deq CF enq) then reg file
can be either ordinary or bypass register file

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-23

We can build the interfaces we
want using EHRs and achieve want using EHRs and achieve
the desired concurrency in a
systematic way

next lecture - non-blocking g
caches

May 9, 2012 http://csg.csail.mit.edu/6.S078 L23-24

