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1 Introduction

Bluespec SystemVerilog (BSV) is aimed at hardware designers who are using or expect to use
Verilog [IEE01], VHDL [IEE02], or SystemVerilog [Acc04] to design ASICs or FPGAs. BSV is
based on a synthesizable subset of SystemVerilog, including SystemVerilog types, modules, module
instantiation, interfaces, interface instantiation, parameterization, static elaboration, and “generate”
elaboration. BSV can significantly improve the hardware designer’s productivity with some key
innovations:

• It expresses synthesizable behavior with Rules instead of synchronous always blocks. Rules
are powerful concepts for achieving correct concurrency and eliminating race conditions. Each
rule can be viewed as a declarative assertion expressing a potential atomic state transition.
Although rules are expressed in a modular fashion, a rule may span multiple modules, i.e., it
can test and affect the state in multiple modules. Rules need not be disjoint, i.e., two rules
can read and write common state elements. The BSV compiler produces efficient RTL code
that manages all the potential interactions between rules by inserting appropriate arbitration
and scheduling logic, logic that would otherwise have to be designed and coded manually. The
atomicity of rules gives a scalable way to avoid unwanted concurrency (races) in large designs.

• It enables more powerful generate-like elaboration. This is made possible because in BSV,
actions, rules, modules, interfaces and functions are all first-class objects. BSV also has more
general type parameterization (polymorphism). These enable the designer to “compute with
design fragments,” i.e., to reuse designs and to glue them together in much more flexible ways.
This leads to much greater succinctness and correctness.

• It provides formal semantics, enabling formal verification and formal design-by-refinement.
BSV rules are based on Term Rewriting Systems, a clean formalism supported by decades
of theoretical research in the computer science community [Ter03]. This, together with a
judicious choice of a design subset of SystemVerilog, makes programs in BSV amenable to
formal reasoning.

This manual is meant to be a stand-alone reference for BSV, i.e., it fully describes the subset of
Verilog and SystemVerilog used in BSV. It is not intended to be a tutorial for the beginner. A reader
with a working knowledge of Verilog 1995 or Verilog 2001 should be able to read this manual easily.
Prior knowledge of SystemVerilog is not required.

1.1 Meta notation

The grammar in this document is given using an extended BNF (Backus-Naur Form). Grammar
alternatives are separated by a vertical bar (“|”). Items enclosed in square brackets (“[ ]”) are
optional. Items enclosed in curly braces (“{ }”) can be repeated zero or more times.

Another BNF extension is parameterization. For example, a moduleStmt can be a moduleIf, and an
actionStmt can be an actionIf. A moduleIf and an actionIf are almost identical; the only difference
is that the former can contain (recursively) moduleStmts whereas the latter can contain actionStmts.
Instead of tediously repeating the grammar for moduleIf and actionIf, we parameterize it by giving
a single grammar for <ctxt>If, where <ctxt> is either module or action. In the productions for
<ctxt>If, we call for <ctxt>Stmt which, therefore, either represents a moduleStmt or an actionStmt,
depending on the context in which it is used.

2 Lexical elements

BSV has the same basic lexical elements as Verilog.
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2.1 Whitespace and comments

Spaces, tabs, newlines, formfeeds, and carriage returns all constitute whitespace. They may be used
freely between all lexical tokens.

A comment is treated as whitespace (it can only occur between, and never within, any lexical token).
A one-line comment starts with // and ends with a newline. A block comment begins with /* and
ends with */ and may span any number of lines.

Comments do not nest. In a one-line comment, the character sequences //, /* and */ have no special
significance. In a block comment, the character sequences // and /* have no special significance.

2.2 Identifiers and keywords

An identifier in BSV consists of any sequence of letters, digits, dollar signs $ and underscore char-
acters (_). Identifiers are case-sensitive: glurph, gluRph and Glurph are three distinct identifiers.
The first character cannot be a digit.

BSV currently requires a certain capitalization convention for the first letter in an identifier. Identi-
fiers used for package names, type names, enumeration labels, union members and type classes must
begin with a capital letter. In the syntax, we use the non-terminal Identifier to refer to these. Other
identifiers (including names of variables, modules, interfaces, etc.) must begin with a lowercase letter
and, in the syntax, we use the non-terminal identifier to refer to these.

As in Verilog, identifiers whose first character is $ are reserved for so-called system tasks and functions
(see Section 12.8).

If the first character of an instance name is an underscore, (_), the compiler will not generate this
instance in the Verilog hierarchy name. This can be useful for removing sub-modules from the
hierarchical naming.

There are a number of keywords that are essentially reserved identifiers, i.e., they cannot be used by
the programmer as identifiers. Keywords generally do not use uppercase letters (the only exception
is the keyword valueOf). BSV includes all keywords in SystemVerilog. All keywords are listed in
Appendix A.

The types Action and ActionValue are special, and cannot be redefined.

2.3 Integer literals

Integer literals are written with the usual Verilog and C notations:

intLiteral ::= ’0 | ’1
| sizedIntLiteral
| unsizedIntLiteral

sizedIntLiteral ::= bitWidth baseLiteral

unsizedIntLiteral ::= [ sign ] baseLiteral
| [ sign ] decNum

baseLiteral ::= (’d | ’D) decDigitsUnderscore
| (’h | ’H) hexDigitsUnderscore
| (’o | ’O) octDigitsUnderscore
| (’b | ’B) binDigitsUnderscore

decNum ::= decDigits [ decDigitsUnderscore ]
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bitWidth ::= decDigits

sign ::= + | -

decDigits ::= { 0...9 }
decDigitsUnderscore ::= { 0...9, _ }
hexDigitsUnderscore ::= { 0...9, a...f, A...F, _ }
octDigitsUnderscore ::= { 0...7, _ }
binDigitsUnderscore ::= { 0,1, _ }

An integer literal is a sized integer literal if a specific bitWidth is given (e.g., 8’o255). There is no
leading sign (+ or -) in the syntax for sized integer literals; instead we provide unary prefix + or
- operators that can be used in front of any integer expression, including literals (see Section 9).
An optional sign (+ or -) is part of the syntax for unsized literals so that it is possible to construct
negative constants whose negation is not in the range of the type being constructed (e.g. Int#(4)
x = -8; since 8 is not a valid Int#(4), but -8 is).

Examples:

125
-16
’h48454a
32’h48454a
8’o255
12’b101010
32’h_FF_FF_FF_FF

2.3.1 Type conversion of integer literals

Integer literals can be used to specify values for various integer types and even for user-defined
types. BSV uses its systematic overloading resolution mechanism to perform these type conversions.
Overloading resolution is described in more detail in Section 14.1.

An integer literal is a sized literal if a specific bitWidth is given (e.g., 8’o255), in which case
the literal is assumed to have type bit [w − 1:0]. The compiler implicitly applies the function
fromSizedInteger to the literal to convert it to the type required by the context. Thus, sized
literals can be used for any type on which the overloaded function fromSizedInteger is defined,
i.e., for the types Bit, UInt and Int. The function fromSizedInteger is part of the SizedLiteral
typeclass, defined in Section B.1.5.

If the literal is an unsized integer literal (a specific bitWidth is not given), the literal is assumed
to have type Integer. The compiler implicitly applies the overloaded function fromInteger to the
literal to convert it to the type required by the context. Thus, unsized literals can be used for any
type on which the overloaded function fromInteger is defined. The function fromInteger is part
of the Literal typeclass, defined in Section B.1.3.

The literal ’0 just stands for 0. The literal ’1 stands for a value in which all bits are 1 (the width
depends on the context).

2.4 Real literals

Real number literals are written with the usual Verilog notation:

realLiteral ::= decNum[ .decDigitsUnderscore ] exp [ sign ] decDigitsUnderscore
| decNum.decDigitsUnderscore
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sign ::= + | -

exp ::= e | E

decNum ::= decDigits [ decDigitsUnderscore ]

decDigits ::= { 0...9 }
decDigitsUnderscore ::= { 0...9, _ }

There is no leading sign (+ or -) in the syntax for real literals. Instead, we provide the unary prefix
+ and - operators that can be used in front of any expression, including real literals (Section 9).

If the real literal contains a decimal point, there must be digits following the decimal point. An
exponent can start with either an E or an e, followed by an optional sign (+ or -), followed by digits.
There cannot be an exponent or a sign without any digits. Any of the numeric components may
include an underscore, but an underscore cannot be the first digit of the real literal.

Unlike integer literals, real literals are of limited precision. They are represented as IEEE floating
point numbers of 64 bit length, as defined by the IEEE standard.

Examples:

1.2
0.6
2.4E10 // exponent can be e or E
5e-3
325.761_452_e-10 // underscores are ignored
9.2e+4

2.4.1 Type conversion of real literals

Real literals can be used to specify values for real types. By default, real literals are assumed to
have the type Real. BSV uses its systematic overloading resolution mechanism to perform these type
conversions. Overloading resolution is described in more detail in Section 14.1. There are additional
functions defined for Real types, provided in the Real package (Section C.5.1).

The function fromReal (Section B.1.4) converts a value of type Real into a value of another datatype.
Whenever you write a real literal in BSV (such as 3.14), there is an implied fromReal applied to it,
which turns the real into the specified type. By defining an instance of RealLiteral for a datatype,
you can create values of that type from real literals.

The type FixedPoint, defined in the FixedPoint package, defines a type for representing fixed
point numbers. The FixedPoint type has an instance of RealLiteral defined for it and contains
functions for operating on fixed-point real numbers.

2.5 String literals

String literals are written enclosed in double quotes "· · ·" and must be contained on a single source
line.

stringLiteral ::= " · · · string characters · · · "

Special characters may be inserted in string literals with the following backslash escape sequences:

\n newline
\t tab
\\ backslash
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\" double quote
\v vertical tab
\f form feed
\a bell
\OOO exactly 3 octal digits (8-bit character code)
\xHH exactly 2 hexadecimal digits (8-bit character code)

Example - printing characters using form feed.

module mkPrinter (Empty);
String display_value;

display_value = "a\nb\nc"; //prints a
// b
// c repeatedly

rule every;
$display(display_value);

endrule
endmodule

2.6 Don’t-care values

A lone question mark ? is treated as a special don’t-care value. For example, one may return ?
from an arm of a case statement that is known to be unreachable.

Example - Using ? as a don’t-care value

module mkExample (Empty);
Reg#(Bit#(8)) r <- mkReg(?); // don’t-care is used for the
rule every; // reset value of the Reg

$display("value is %h", r); // the value of r is displayed
endrule

endmodule

2.7 Compiler directives

The following compiler directives permit file inclusion, macro definition and substitution, and condi-
tional compilation. They follow the specifications given in the Verilog 2001 LRM plus the extensions
given in the SystemVerilog 3.1a LRM.

In general, these compiler directives can appear anywhere in the source text. In particular, they do
not need to be on lines by themselves, and they need not begin in the first column. Of course, they
should not be inside strings or comments, where the text remains uninterpreted.

2.7.1 File inclusion: ‘include and ‘line

compilerDirective ::= ‘include "filename"
| ‘include <filename>
| ‘include macroInvocation

In an ‘include directive, the contents of the named file are inserted in place of this line. The
included files may themselves contain compiler directives. Currently there is no difference between
the "..." and <...> forms. A macroInvocation should expand to one of the other two forms. The
file name may be absolute, or relative to the current directory.
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compilerDirective ::= ‘line lineNumber "filename" level
lineNumber ::= decLiteral
level ::= 0 | 1 | 2

A ‘line directive is terminated by a newline, i.e., it cannot have any other source text after the level.
The compiler automatically keeps track of the source file name and line number for every line of
source text (including from included source files), so that error messages can be properly correlated to
the source. This directive effectively overrides the compiler’s internal tracking mechanism, forcing
it to regard the next line onwards as coming from the given source file and line number. It is
generally not necessary to use this directive explicitly; it is mainly intended to be generated by other
preprocessors that may themselves need to alter the source files before passing them through the
BSV compiler; this mechanism allows proper references to the original source.

The level specifier is either 0, 1 or 2:

• 1 indicates that an include file has just been entered

• 2 indicates that an include file has just been exited

• 0 is used in all other cases

2.7.2 Macro definition and substitution: ‘define and related directives

compilerDirective ::= ‘define macroName [ ( macroFormals ) ] macroText

macroName ::= identifier

macroFormals ::= identifier { , identifier }

The ‘define directive is terminated by a bare newline. A backslash (\) just before a newline
continues the directive into the next line. When the macro text is substituted, each such continuation
backslash-newline is replaced by a newline.

The macroName is an identifier and may be followed by formal arguments, which are a list of
comma-separated identifiers in parentheses. For both the macro name and the formals, lower and
upper case are acceptable (but case is distinguished). The macroName cannot be any of the compiler
directives (such as include, define, ...).

The scope of the formal arguments extends to the end of the macroText.

The macroText represents almost arbitrary text that is to be substituted in place of invocations of
this macro. The macroText can be empty.

One-line comments (i.e., beginning with //) may appear in the macroText ; these are not considered
part of the substitutable text and are removed during substitution. A one-line comment that is not
on the last line of a ‘define directive is terminated by a backslash-newline instead of a newline.

A block comment (/*...*/) is removed during substitution and replaced by a single space.

The macroText can also contain the following special escape sequences:

• ‘" Indicates that a double-quote (") should be placed in the expanded text.

• ‘\‘" Indicates that a backslash and a double-quote (\") should be placed in the expanded
text.

• ‘‘ Indicates that there should be no whitespace between the preceding and following
text. This allows construction of identifiers from the macro arguments.
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A minimal amount of lexical analysis of macroText is done to identify comments, string literals,
identifiers representing macro formals, and macro invocations. As described earlier, one-line com-
ments are removed. The text inside string literals is not interpreted except for the usual string
escape sequences described in Section 2.5.

There are two define macros in the define environment initially; ‘bluespec and ‘BLUESPEC.

Once defined, a macro can be invoked anywhere in the source text (including within other macro
definitions) using the following syntax.

compilerDirective ::= macroInvocation

macroInvocation ::= ‘macroName [ ( macroActuals ) ]

macroActuals ::= substText { , substText }

The macroName must refer to a macro definition available at expansion time. The macroActuals,
if present, consist of substitution text substText that is arbitrary text, possibly spread over multiple
lines, excluding commas. A minimal amount of parsing of this substitution text is done, so that
commas that are not at the top level are not interpreted as the commas separating macroActuals.
Examples of such “inner” uninterpreted commas are those within strings and within comments.

compilerDirective ::= ‘undef macroName
| ‘resetall

The ‘undef directive’s effect is that the specified macro (with or without formal arguments) is no
longer defined for the subsequent source text. Of course, it can be defined again with ‘define in the
subsequent text. The ‘resetall directive has the effect of undefining all currently defined macros,
i.e., there are no macros defined in the subsequent source text.

2.7.3 Conditional compilation: ‘ifdef and related directives

compilerDirective ::= ‘ifdef macroName
| ‘ifndef macroName
| ‘elsif macroName
| ‘else
| ‘endif

These directives are used together in either an ‘ifdef-endif sequence or an ifndef-endif sequence.
In either case, the sequence can contain zero or more elsif directives followed by zero or one else
directives. These sequences can be nested, i.e., each ‘ifdef or ifndef introduces a new, nested
sequence until a corresponding endif.

In an ‘ifdef sequence, if the macroName is currently defined, the subsequent text is processed until
the next corresponding elsif, else or endif. All text from that next corresponding elsif or else
is ignored until the endif.

If the macroName is currently not defined, the subsequent text is ignored until the next corresponding
‘elsif, ‘else or ‘endif. If the next corresponding directive is an ‘elsif, it is treated just as if it
were an ‘ifdef at that point.

If the ‘ifdef and all its corresponding ‘elsifs fail (macros were not defined), and there is an ‘else
present, then the text between the ‘else and ‘endif is processed.

An ‘ifndef sequence is just like an ‘ifdef sequence, except that the sense of the first test is
inverted, i.e., its following text is processes if the macroName is not defined, and its ‘elsif and
‘else arms are considered only if the macro is defined.

Example using ‘ifdef to determine the size of a register:

19



Reference Guide Bluespec SystemVerilog

‘ifdef USE_16_BITS
Reg#(Bit#(16)) a_reg <- mkReg(0);

‘else
Reg#(Bit#(8)) a_reg <- mkReg(0);

‘endif

3 Packages and the outermost structure of a BSV design

A BSV program consists of one or more outermost constructs called packages. All BSV code is
assumed to be inside a package. Further, the BSV compiler and other tools assume that there is
one package per file, and they use the package name to derive the file name. For example, a package
called Foo is assumed to be located in a file Foo.bsv.

A BSV package is purely a linguistic namespace-management mechanism and is particularly useful
for programming in the large, so that the author of a package can choose identifiers for the package
components freely without worrying about choices made by authors of other packages. Package
structure is usually uncorrelated with hardware structure, which is specified by the module construct.

A package contains a collection of top-level statements that include specifications of what it imports
from other packages, what it exports to other packages, and its definitions of types, interfaces,
functions, variables, and modules. BSV tools ensure that when a package is compiled, all the
packages that it imports have already been compiled.

package ::= package packageIde ;
{ exportDecl }
{ importDecl }
{ packageStmt }
endpackage [ : packageIde ]

exportDecl ::= export exportItem { , exportItem } ;
exportItem ::= identifier [ (..) ]

| Identifier [ (..) ]
| packageIde :: *

importDecl ::= import importItem { , importItem } ;
importItem ::= packageIde :: *

packageStmt ::= [ attributeInstances ] moduleDef
| interfaceDecl
| typeDef
| varDecl | varAssign
| [ attributeInstances ] functionDef
| typeclassDef
| typeclassInstanceDef
| externModuleImport

packageIde ::= Identifier

The name of the package is the identifier following the package keyword. This name can optionally
be repeated after the endpackage keyword (and a colon). We recommend using an uppercase first
letter in package names. In fact, the package and endpackage lines are optional: if they are absent,
BSV derives the assumed package name from the filename.

An export item can specify an identifier defined elsewhere within the package, making the identifier
accessible oustside the package. An export item can also specify an identifier from an imported
package. In that case, the imported identifier is re-exported from this package, so that it is accessible
by importing this package (without requiring the import of its source package). It is also possible
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to re-export all of the identifiers from an imported package by using the following syntax: export
packageIde::*.

If there are any export statements in a package, then only those items are exported. If there are
no export statements, by default all identifiers defined in this package (and no identifiers from any
imported packages) are exported. To export all identifiers defined in a package and all identifiers
from imported packages, export the package itself.

If the exported identifier is the name of a struct (structure) or union type definition, then the
members of that type will be visible only if (..) is used. By omitting the (..) suffix, only the
type, but not its members, are visible outside the package. This is a way to define abstract data
types, i.e., types whose internal structure is hidden. When the exported identifier is not a structure
or union type definition, the (..) has no effect on the exported identifier.

Each import item specifies a package from which to import identifiers, i.e., to make them visible
locally within this package. For each imported package, all identifiers exported from that package
are made locally visible.

Example:

package Foo;
export x;
export y;

import Bar::*;

... top level definition ...

... top level definition ...

... top level definition ...

endpackage: Foo

Here, Foo is the name of this package. The identifiers x and y, which must be defined by the top-level
definitions in this package are names exported from this package. From package Bar we import all
its definitions. To export all identifiers from packages Foo and Bar, add the statement: export Foo
::*

3.1 Scopes, name clashes and qualified identifiers

BSV uses standard static scoping (also known as lexical scoping). Many constructs introduce new
scopes nested inside their surrounding scopes. Identifiers can be declared inside nested scopes. Any
use of an identifier refers to its declaration in the nearest textually surrounding scope. Thus, an
identifier x declared in a nested scope“shadows”, or hides, any declaration of x in surrounding scopes.
We recommend, however, that the programmer avoids such shadowing, because it often makes code
more difficult to read.

Packages form the the outermost scopes. Examples of nested scopes include modules, interfaces,
functions, methods, rules, action and actionvalue blocks, begin-end statements and expressions,
bodies of for and while loops, and seq and par blocks.

When used in any scope, an identifier must have an unambiguous meaning. If there is name clash
for an identifier x because it is defined in the current package and/or it is available from one or more
imported packages, then the ambiguity can be resolved by using a qualified name of the form P :: x
to refer to the version of x contained in package P .
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3.2 The Standard Prelude package

The Standard Prelude is a predefined package that is imported implicitly into every BSV package,
i.e., it does not need an explicit import statement. It contains a number of useful predefined entities
(types, values, functions, modules, etc.). The Standard Prelude package is described in more detail
in appendix B. Reusing the name of Prelude entity when defining other entities, which would require
the entity’s name to be qualified with the package name, is strongly discouraged.

3.3 AzureIPTM Foundation Libraries

Section C describes the collection of AzureIP Foundation library packages. To use any of the
constructs or components of these packages you must explicitly import the library package using an
import clause. Many common constructs, such as FIFOs and Vectors are provided in the library.

4 Types

Bluespec provides a strong, static type-checking environment; every variable and every expression
in BSV has a type. Variables must be assigned values which have compatible types. Type checking,
which occurs before program elaboration or execution, ensures that object types are compatible and
applied functions are valid for the context and type.

Data types in BSV are case sensitive. The first character of a type is almost always uppercase, the
only exceptions being the types int and bit for compatibility with Verilog.

The syntax of types (type expressions) is given below:

type ::= typePrimary
| typePrimary ( type { , type } ) Function type

typePrimary ::= typeIde [ # ( type { , type } ) ]
| typeNat
| bit [ typeNat : typeNat ]

typeIde ::= Identifier
typeNat ::= decDigits

The Prelude package defines many common datatypes (Section B.2). Other types are defined in the
Foundation library packages (Section C) and users can define new types (Section 7). The following
tables list some of the more commonly used types. Refer to the Prelude and Foundation library
packages for additional types.

Common Bit Types Defined in Prelude(B.2)
Bit types are synthesizable

Type Description Section
Bit#(n) Polymorphic data type containing n bits B.2.1
UInt#(n) Unsigned fixed-width representation of an integer

value of n bits
B.2.2

Int#(n) Signed fixed-width representation of an integer
value of n bit

B.2.3

Bool Type which can have two values, True or False B.2.5
Maybe Used to tag values as Valid or Invalid, where

valid values contain data
B.2.10

Tuples Predefined structures which group a samll number
of values together

B.2.12
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Common Non-Bit Types Defined in Prelude(B.2)
Type Description Section
Integer Non-synthesizable data type used for integer val-

ues and functions
B.2.4

Real Non-synthesizable data type which can represent
numbers with a fractional component

B.2.6, C.5.1

String Data type representing string literals B.2.7
Fmt Representation of arguments to the $display fam-

ily of tasks
B.2.8

Common Interface Types Defined in Prelude and Foundation Library Packages
Type Description Section
Reg Register interface B.4.1
FIFO FIFO interfaces C.2.2
Clock Abstract type with a oscillator and a gate B.2.13, C.9
Reset Abstract type for a reset B.2.14, C.9
Inout Type used to pass Verilog inouts through a BSV

module
B.2.15

Types Used by the Compiler
Type Description Section
Action An expression intended to act on the state of the

circuit
B.2.16

ActionValue An expression intended to act on the state of the
circuit

B.2.16

Rules Used to represent one or more rules as a first class
type

B.2.17

Examples of simple types:

Integer // Unbounded signed integers, for static elaboration only
int // 32-bit signed integers
Bool
String
Action

Type expressions of the form X#(t1,· · ·,tN) are called parameterized types. X is called a type
constructor and the types t1,· · ·,tN are the parameters of X. Examples:

Tuple2#(int,Bool) // pair of items, an int and a Bool
Tuple3#(int,Bool,String) // triple of items, an int, a Bool and a String
List#(Bool) // list containing booleans
List#(List#(Bool)) // list containing lists of booleans
RegFile#(Integer, String) // a register file (array) indexed by integers, containing strings

Type parameters can be natural numbers (also known as numeric types). These usually indicate
some aspect of the size of the type, such as a bit-width or a table capacity. Examples:

Bit#(16) // 16-bit wide bit-vector (16 is a numeric type)
bit [15:0] // synonym for Bit#(16)
UInt#(32) // unsigned integers, 32 bits wide
Int#(29) // signed integers, 29 bits wide
Vector#(16,Int#(29) // Vector of size 16 containing Int#(29)’s
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Currently the second index n in a bit[m:n] type must be 0. The type bit[m:0] represents the
type of bit vectors, with bits indexed from m (msb/left) down through 0 (lsb/right), for m ≥ 0.

4.1 Polymorphism

A type can be polymorphic. This is indicated by using type variables as parameters. Examples:

List#(a) // lists containing items of some type a
List#(List#(b)) // lists containing lists of items of some type a
RegFile#(i, List#(x)) // arrays indexed by some type i, containing

// lists that contain items of some type x

The type variables represent unknown (but specific) types. In other words, List#(a) represents
the type of a list containing items all of which have some type a. It does not mean that different
elements of a list can have different types.

4.2 Provisos (brief intro)

Provisos are described in detail in Section 14.1.1, and the general facility of type classes (overload-
ing groups), of which provisos form a part, is described in Section 14.1. Here we provide a brief
description, which is adequate for most uses and for continuity in a serial reading of this manual.

A proviso is a static condition attached to certain constructs, to impose certain restrictions on the
types involved in the construct. The restrictions are of two kinds:

• Require instance of a type class (overloading group): this kind of proviso states that certain
types must be instances of certain type classes, i.e., that certain overloaded functions are
defined on this type.

• Require size relationships: this kind of proviso expresses certain constraints between the sizes
of certain types.

The most common overloading provisos are:

Bits#(t,n) // Type class (overloading group) Bits
// Meaning: overloaded operators pack/unpack are defined
// on type t to convert to/from Bit#(n)

Eq#(t) // Type class (overloading group) Eq
// Meaning: overloaded operators == and != are defined on type t

Literal#(t) // Type class (overloading group) Literal
// Meaning: Overloaded function fromInteger() defined on type t
// to convert an integer literal to type t. Also overloaded
// function inLiteralRange to determine if an Integer
// is in the range of the target type t.

Ord#(t) // Type class (overloading group) Ord
// Meaning: Overloaded order-comparison operators <, <=,
// > and >= are defined on type t

Bounded#(t) // Type class (overloading group) Bounded
// Meaning: Overloaded identifiers minBound and maxBound
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// are defined for type t

Bitwise#(t) // Type class (overloading group) Bitwise
// Meaning: Overloaded operators &, |, ^, ~^, ^~, ~, << and >>
// and overloaded function invert are defined on type t

BitReduction#(t)// Type class (overloading group) BitReduction
// Meaning: Overloaded prefix operators &, |, ^,
// ~&, ~|, ~^, and ^~ are defined on type t

BitExtend#(t) // Type class (overloading group) BitExtend
// Meaning: Overloaded functions extend, zeroExtend, signExtend
// and truncate are defined on type t

Arith#(t) // Type class (overloading group) Arith
// Meaning: Overloaded operators +, -, and *, and overloaded
// prefix operator - (same as function negate), and
// overloaded function negate are defined on type t

The size relationship provisos are:

Add#(n1,n2,n3) // Meaning: assert n1 + n2 = n3

Mul#(n1,n2,n3) // Meaning: assert n1 * n2 = n3

Div#(n1,n2,n3) // Meaning: assert ceiling n1 / n2 = n3

Max#(n1,n2,n3) // Meaning: assert max(n1,n2) = n3

Log#(n1,n2) // Meaning: assert ceiling(log(n1)) = n2
// The logarithm is base 2

Example:

module mkExample (ProvideCurrent#(a))
provisos(Bits#(a, sa), Arith#(a));

Reg#(a) value_reg <- mkReg(?); // requires that type "a" be in the Bits typeclass.
rule every;

value_reg <= value_reg + 1; // requires that type "a" be in the Arith typeclass.
endrule

Example:

function Bit#(m) pad0101 (Bit#(n) x)
provisos (Add#(n,4,m)); // m is 4 bits longer than n
pad0101 = { x, 0b0101 };

endfunction: pad0101

This defines a function pad0101 that takes a bit vector x and pads it to the right with the four bits
“0101” using the standard bit-concatenation notation. The types and proviso express the idea that
the function takes a bit vector of length n and returns a bit vector of length m, where n + 4 = m.
These provisos permit the BSV compiler to statically verify that entities (values, variables, registers,
memories, FIFOs, and so on) have the correct bit-width.
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4.2.1 The pseudo-function valueof (or valueOf)

To get the value that corresponds to a size type, there is a special pseudo-function, valueof, that
takes a size type and gives the corresponding Integer value. The pseudo-function is also sometimes
written as valueOf; both are considered correct.

exprPrimary ::= valueof ( type )
| valueOf ( type )

In other words, it converts from a numeric type expression into an ordinary value. These mechanisms
can be used to do arithmetic to derive dependent sizes. Example:

function ... foo (Vector#(n,int) xs) provisos (Log#(n,k));
Integer maxindex = valueof(n) - 1;
Int#(k) index;
index = fromInteger(maxindex);
...

endfunction

This function takes a vector of length n as an argument. The proviso fixes k to be the (ceiling of
the) logarithm of n. The variable index has bit-width k, which will be adequate to hold an index
into the list. The variable is initialized to the maximum index.

Note that the function foo may be invoked in multiple contexts, each with a different vector length.
The compiler will statically verify that each use is correct (e.g., the index has the correct width).

The pseudo-function valueof, which converts a numeric type to a value, should not be confused
with the pseudo-function SizeOf, described in Section 14.1.5, which converts a type to a numeric
type.

4.3 A brief introduction to deriving clauses

The deriving clause is a part of the general facility of type classes (overloading groups), which is
described in detail in Section 14.1. Here we provide a brief description, which is adequate for most
uses and for continuity in a serial reading of this manual.

It is possible to attach a deriving clause to a type definition (Section 7), thereby directing the
compiler to define automatically certain overloaded functions for that type. The most common
forms of these clauses are:

deriving(Eq) // Meaning: automatically define == and !=
// for equality and inequality comparisons

deriving(Bits) // Meaning: automatically define pack and unpack
// for converting to/from bits

deriving(Bounded) // Meaning: automatically define minBound and maxBound

Example:

typedef enum {LOW, NORMAL, URGENT} Severity deriving(Eq, Bits);
// == and != are defined for variables of type Severity
// pack and unpack are defined for variables of type Severity

module mkSeverityProcessor (SeverityProcessor);
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method Action process(Severity value);
// value is a variable of type Severity
if (value == URGENT) $display("WARNING: Urgent severity encountered.");
// Since value is of the type Severity, == is defined

endmethod
endmodule

5 Modules and interfaces, and their instances

Modules and interfaces form the heart of BSV. Modules and interfaces turn into actual hardware.
An interface for a module m mediates between m and other, external modules that use the facilities
of m. We often refer to these other modules as clients of m.

In SystemVerilog and BSV we separate the declaration of an interface from module definitions.
There was no such separation in Verilog 1995 and Verilog 2001, where a module’s interface was
represented by its port list, which was part of the module definition itself. By separating the
interface declaration, we can express the idea of a common interface that may be offered by several
modules, without having to repeat that declaration in each of the implementation modules.

As in Verilog and SystemVerilog, it is important to distinguish between a module definition and
a module instantiation. A module definition can be regarded as specifying a scheme that can be
instantiated multiple times. For example, we may have a single module definition for a FIFO, and
a particular design may instantiate it multiple times for all the FIFOs it contains.

Similarly, we also distinguish interface declarations and instances, i.e., a design will contain interface
declarations, and each of these may have multiple instances. For example an interface declaration
I may have one instance i1 for communication between module instances a1 and b1, and another
instance i2 for communication between module instances a2 and b2.

Module instances form a pure hierarchy. Inside a module definition mkM , one can specify instantia-
tions of other modules. When mkM is used to instantiate a module m, it creates the specified inner
module instances. Thus, every module instance other than the top of the hierarchy unambiguously
has a single parent module instance. We refer to the top of the hierarchy as the root module. Every
module instance has a unique set, possibly empty, of child module instances. If there are no children,
we refer to it as a leaf module.

A module consists of three things: state, rules that operate on that state, and the module’s interface
to the outside world (surrounding hierarchy). The state conceptually consists of all state in the
sub-hierarchy headed by this module; ultimately, it consists of all the lower leaf module instances
(see next section on state and module instantiation). Rules are the fundamental means to express
behavior in BSV (instead of the always blocks used in traditional Verilog). In BSV, an interface
consists of methods that encapsulate the possible transactions that clients can perform, i.e., the
micro-protocols with which clients interact with the module. When compiled into RTL, an interface
becomes a collection of wires.

5.1 Explicit state via module instantiation, not variables

In Verilog and SystemVerilog RTL, one simply declares variables, and a synthesis tool “infers” how
these variables actually map into state elements in hardware using, for example, their lifetimes
relative to events. A variable may map into a bus, a latch, a flip-flop, or even nothing at all. This
ambiguity is acknowledged in the Verilog 2001 and SystemVerilog LRMs.1

1In the Verilog 2001 LRM, Section 3.2.2, Variable declarations, says: “A variable is an abstraction of a data storage
element.· · ·NOTE In previous versions of the Verilog standard, the term register was used to encompass both the reg,
integer, time, real and realtime types; but that term is no longer used as a Verilog data type.”

In the SystemVerilog LRM, Section 5.1 says: “Since the keyword reg no longer describes the user’s intent in many
cases,· · ·Verilog-2001 has already deprecated the use of the term register in favor of variable.”
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BSV removes this ambiguity and places control over state instantiation explicitly in the hands of
the designer. From the smallest state elements (such as registers) to the largest (such as memories),
all state instances are specified explicitly using module instantiation.

Conversely, an ordinary declared variable in BSV never implies state, i.e., it never holds a value
over time. Ordinary declared variables are always just convenient names for intermediate values in
a computation. Ordinary declared variables include variables declared in blocks, formal parameters,
pattern variables, loop iterators, and so on. Another way to think about this is that ordinary
variables play a role only in static elaboration, not in the dynamic semantics. This is one of the
aspects of BSV style that may initially appear unusual to the Verilog or SystemVerilog programmer.

Example:

module mkExample (Empty);
// Hardware registers are created here
Reg#(Bit#(8)) value_reg <- mkReg(0);

FIFO#(Bit#(8)) fifo <- mkFIFO;

rule pop;
let value = fifo.first(); // value is a ordinary declared variable

// no state is implied or created
value_reg <= fifo.first(); // value_reg is state variable
fifo.deq();

endrule
endmodule

5.2 Interface declaration

In BSV an interface contains members that are called methods (an interface may also contain subin-
terfaces, which are described in Section 5.2.1). To first order, a method can be regarded exactly
like a function, i.e., it is a procedure that takes zero or more arguments and returns a result. Thus,
method declarations inside interface declarations look just like function prototypes, the only differ-
ence being the use of the keyword method instead of the keyword function. Each method represents
one kind of transaction between a module and its clients. When translated into RTL, each method
becomes a bundle of wires.

The fundamental difference between a method and a function is that a method also carries with it a
so-called implicit condition. These will be described later along with method definitions and rules.

An interface declaration also looks similar to a struct declaration. One can think of an interface
declaration as declaring a new type similar to a struct type (Section 7), where the members all
happen to be method prototypes. A method prototype is essentially the header of a method definition
(Section 5.5).

interfaceDecl ::= [ attributeInstances ]
interface typeDefType ;
{ interfaceMemberDecl }

endinterface [ : typeIde ]

typeDefType ::= typeIde [ typeFormals ]

typeFormals ::= # ( typeFormal { , typeFormal })

typeFormal ::= [ numeric ] type typeIde

interfaceMemberDecl ::= methodProto | subinterfaceDecl
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methodProto ::= [ attributeInstances ]
method type identifier ( [ methodProtoFormals ] ) ;

methodProtoFormals ::= methodProtoFormal { , methodProtoFormal }
methodProtoFormal ::= [ attributeInstances ] type identifier

Example: a stack of integers:

interface IntStack;
method Action push (int x);
method Action pop;
method int top;

endinterface: IntStack

This describes an interface to a circuit that implements a stack (LIFO) of integers. The push method
takes an int argument, the item to be pushed onto the stack. Its output type is Action, namely it
returns an enable wire which, when asserted, will carry out the pushing action.2 The pop method
takes no arguments, and simply returns an enable wire which, when asserted, will discard the element
from the top of the stack. The top method takes no arguments, and returns a value of type int,
i.e., the element at the top of the stack.

What if the stack is empty? In that state, it should be illegal to use the pop and top methods.
This is exactly where the difference between methods and functions arises. Each method has an
implicit ready wire, which governs when it is legal to use it, and these wires for the pop and top
methods will presumably be de-asserted if the stack is empty. Exactly how this is accomplished is
an internal detail of the module, and is therefore not visible as part of the interface declaration. (We
can similarly discuss the case where the stack has a fixed, finite depth; in this situation, it should
be illegal to use the push method when the stack is full.)

One of the major advantages of BSV is that the compiler automatically generates all the control
circuitry needed to ensure that a method (transaction) is only used when it is legal to use it.

Interface types can be polymorphic, i.e., parameterized by other types. For example, the following
declaration describes an interface for a stack containing an arbitrary but fixed type:

interface Stack#(type a);
method Action push (a x);
method Action pop;
method a top;

endinterface: Stack

We have replaced the previous specific type int with a type variable a. By “arbitrary but fixed” we
mean that a particular stack will specify a particular type for a, and all items in that stack will have
that type. It does not mean that a particular stack can contain items of different types.

For example, using this more general definition, we can also define the IntStack type as follows:

typedef Stack#(int) IntStack;

i.e., we simply specialize the more general type with the particular type int. All items in a stack of
this type will have the int type.

Usually there is information within the interface declaration which indicates whether a polymorphic
interface type is numeric or nonnumeric. The optional numeric is required before the type when
the interface type is polymorphic and must be numeric but there is no information in the interface
declaration which would indicate that the type is numeric.

For example, in the following polymorphic interface, count_size must be numeric because it is
defined as a parameter to Bit#().

2 The type Action is discussed in more detail in Section 9.6.
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interface Counter#(type count_size);
method Action increment();
method Bit#(count_size) read();

endinterface

From this use, it can be deduced that Counter’s parameter count_size must be numeric. However,
sometimes you might want to encode a size in an interface type which isn’t visible in the methods,
but is used by the module implementing the interface. For instance:

interface SizedBuffer#(numeric type buffer_size, type element_type);
method Action enq(element_type e);
method ActionValue#(element_type) deq();

endinterface

In this interface, the depth of the buffer is encoded in the type. For instance, SizedBuffer#(8,
Bool) would be a buffer of depth 8 with elements of type Bool. The depth is not visible in the
interface, but is used by the module to know how much storage to instantiate.

Because the parameter is not mentioned anywhere else in the interface, there is no information
to determine whether the parameter is a numeric type or a non-numeric type. In this situation,
the default is to assume that the parameter is non-numeric. The user can override this default by
specifying numeric in the interface declaration.

The Standard Prelude defines a standard interface called Empty which contains no methods, i.e., its
definition is:

interface Empty;
endinterface

This is often used for top-level modules that integrate a testbench and a design-under-test, and for
modules like mkConnection(C.7.2) that just take interface arguments and do not themselves offer
any interesting interface.

5.2.1 Subinterfaces

Note: this is an advanced topic that may be skipped on first reading.

Interfaces can also be declared hierarchically, using subinterfaces.

subinterfaceDecl ::= [ attributeInstances ]
interface typeDefType;

where typeDefType is another interface type available in the current scope. Example:

interface ILookup;
interface Server#( RequestType, ResponseType ) mif;
interface RAMclient#( AddrType, DataType ) ram;
method Bool initialized;

endinterface: ILookup

This declares an interface ILookup module that consists of three members: a Server subinterface
called mif, a RAMClient subinterface called ram, and a boolean method called initialized (the
Server and RAMClient interface types are defined in the libraries, see Appendix C). Methods of
subinterfaces are accessed using dot notation to select the desired component, e.g.,

ilookup.mif.request.put(...);
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Since Clock and Reset are both interface types, they can be used in interface declarations. Example:

interface ClockTickIfc ;
method Action tick() ;
interface Clock new_clk ;

endinterface

5.3 Module definition

A module definition begins with a module header containing the module keyword, the module name,
parameters, arguments, interface type and provisos. The header is followed by zero or more module
statements. Finally we have the closing endmodule keyword, optionally labelled again with the
module name.

moduleDef ::= moduleProto
{ moduleStmt }

endmodule [ : identifier ]

moduleProto ::= module [ [ type ] ] identifier
[ moduleFormalParams ] ( [ moduleFormalArgs ] ) [ provisos ];

moduleFormalParams ::= # (moduleFormalParam { , moduleFormalParam })

moduleFormalParam ::= [ parameter ] type identifier

moduleFormalArgs ::= type
| type identifier { , type identifier }

As a stylistic convention, many BSV examples use module names like mkFoo, i.e., beginning with
the letters mk, suggesting the word make. This serves as a reminder that a module definition is not
a module instance. When the module is instantiated, one invokes mkFoo to actually create a module
instance.

The optional moduleFormalParams are exactly as in Verilog and SystemVerilog, i.e., they represent
module parameters that must be supplied at each instantiation of this module, and are resolved at
elaboration time. The optional keyword parameter specifies a Verilog parameter is to be generated;
without the keyword a Verilog port is generated. A Verilog parameter requires that the value is a
constant at elaboration. When the module is instantiated, the actual expression provided for the
parameter must be something that can be computed using normal Verilog elaboration rules. The
bluespec compiler will check for this. The parameter keyword is only relevant when the module is
marked with the synthesize attribute.

Inside the module, the parameter keyword can be used for a parameter n that is used, for example,
for constants in expressions, register initialization values, and so on. However, n cannot be used
for structural variations in the module, such as declaring an array of n registers. Such structural
decisions (generate decisions) are taken by the Bluespec compiler, and cannot currently be postponed
into the Verilog.

The optional moduleFormalArgs represent the interfaces used by the module, such as clocks or wires.
The final argument is a single interface provided by the module instead of Verilog’s port list. The
interpretation is that this module will define and offer an interface of that type to its clients. If
the only argument is the interface, only the interface type is required. If there are other arguments,
both a type and an identifier must be specified for consistency, but the final interface name will not
be used in the body. Omitting the interface type completely is equivalent to using the pre-defined
Empty interface type, which is a trivial interface containing no methods.

The arguments and parameters may be enclosed in a single set of parentheses, in which case the #
would be omitted.
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Provisos, which are optional, come next. These are part of an advanced feature called type classes
(overloading groups), and are discussed in more detail in Section 14.1.

Examples

A module with parameters and an interface.

module mkFifo#(Int#(8) a) (Fifo);
...
endmodule

A module with arguments and an interface, but no parameters

module mkSyncPulse (Clock sClkIn, Reset sRstIn,
Clock dClkIn,
SyncPulseIfc ifc);

...
endmodule

A module definition with parameters, arguments, and provisos

module mkSyncReg#(a_type initValue)
(Clock sClkIn, Reset sRstIn,
Clock dClkIn,
Reg#(a_type) ifc)

provisos (Bits#(a_type, sa));
...
endmodule

The above module definition may also be written with the arguments and parameters combined in
a single set of parentheses.

module mkSyncReg (a_type initValue,
Clock sClkIn, Reset sRstIn,
Clock dClkIn,
Reg#(a_type) ifc)

provisos (Bits#(a_type, sa));
...
endmodule

The body of the module consists of a sequence of moduleStmts:

moduleStmt ::= moduleInst
| methodDef
| subinterfaceDef
| rule
| <module>If | <module>Case
| <module>BeginEndStmt
| <module>For
| <module>While
| varDecl | varAssign
| varDo | varDeclDo
| functionDef
| functionStmt
| systemTaskStmt

32



Bluespec SystemVerilog Reference Guide

| ( expression )
| returnStmt

Most of these are discussed elsewhere since they can also occur in other contexts (e.g., in packages,
function bodies, and method bodies). Below, we focus solely on those statements that are found
only in module bodies or are treated specially in module bodies.

5.4 Module and interface instantiation

Module instances form a hierarchy. A module definition can contain specifications for instantiating
other modules, and in the process, instantiating their interfaces. A single module definition may be
instantiated multiple times within a module.

5.4.1 Short form instantiation

There is a one-line shorthand for instantiating a module and its interfaces.

moduleInst ::= type identifier <- moduleApp ;

moduleApp ::= identifier
( [ moduleActualParamArg { , moduleActualParamArg } ] )

moduleActualParamArg::= expression
| clocked_by expression
| reset_by expression

The statement first declares an identifier with an interface type. After the <- symbol, we have a
module application, consisting of a module identifier optionally followed by a list of parameters and
arguments, if the module is defined to have parameters and arguments. Note that the parameters
and the arguments are within a single set of parentheses, the parameters listed first, and there is no
# before the list.

Each module has an implicit clock and reset. These defaults can be changed by explicitly specifying
a clocked_by or reset_by argument in the module instantiation.

The following skeleton illustrates the structure and relationships between interface and module
definition and instantiation.

interface ArithIO#(type a); //interface type called ArithIO
method Action input (a x, a y); //parameterized by type a
method a output; //contains 2 methods, input and output

endinterface: ArithIO

module mkGCD#(int n) (ArithIO#(bit [31:0]));
... //module definition for mkGCD
... //one parameter, an integer n

endmodule: mkGCD //presents interface of type ArithIO#(bit{31:0])

//declare the interface instance gcdIFC, instantiate the module mkGCD, set n=5
module mkTest ();

...
ArithIO#(bit [31:0]) gcdIfc <- mkGCD (5, clocked_by dClkIn);
...

endmodule: mkTest

The following example shows an module instantiation using a clocked by statement.
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interface Design_IFC;
method Action start(Bit#(3) in_data1, Bit#(3) in_data2, Bool select);
interface Clock clk_out;
method Bit#(4) out_data();

endinterface : Design_IFC

module mkDesign(Clock prim_clk, Clock sec_clk, Design_IFC ifc);
...
RWire#(Bool) select <- mkRWire (select, clocked_by sec_clk);
...

endmodule:mkDesign

5.4.2 Long form instantiation

A module instantiation can also be written in its full form on two consecutive lines, as typical
in SystemVerilog. The full form specifies names for both the interface instance and the module
instance. In the shorthand described above, there is no name provided for the module instance
and the compiler infers one based on the interface name. This is often acceptable because module
instance names are only used occasionally in debugging and in hierarchical names.

moduleInst ::= type identifier ( ) ;
moduleApp2 identifier( [ moduleActualArgs ] ) ;

moduleApp2 ::= identifier [ # ( moduleActualParam { , moduleActualParam } ) ]

moduleActualParam ::= expression

moduleActualArgs ::= moduleActualArg { , moduleActualArg }

moduleActualArg ::= expression
| clocked_by expression
| reset_by expression

The first line declares an identifier with an interface type. The second line actually instantiates
the module and defines the interface. The moduleApp2 is the module (definition) identifier, and
it must be applied to actual parameters (in #(..)) if it had been defined to have parameters.
After the moduleApp, the first identifier names the new module instance. This may be followed
by one or more moduleActualArg which define the arguments being used by the module. The
last identifier (in parentheses) of the moduleActualArg must be the same as the interface identifier
declared immediately above. It may be followed by a clocked_by or reset_by statement.

The following examples show the complete form of the module instantiations of the examples shown
above.

module mkTest (); //declares a module mkTest
... //
ArithIO#(bit [31:0]) gcdIfc(); //declares the interface instance
mkGCD#(5) a_GCD (gcdIfc); //instantiates module mkGCD
... //sets N=5, names module instance a_GCD

endmodule: mkTest //and interface instance gcdIfc

module mkDesign(Clock prim_clk, Clock sec_clk, Design_IFC ifc);
...
RWire#(Bool) select();
mkRWire t_select(select, clocked_by sec_clk);
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...
endmodule:mkDesign

5.5 Interface definition (definition of methods)

A module definition contains a definition of its interface. Typically this takes the form of a collection
of definitions, one for each method in its interface. Each method definition begins with the keyword
method, followed optionally by the return-type of the method, then the method name, its formal
parameters, and an optional implicit condition. After this comes the method body which is exactly
like a function body. It ends with the keyword endmethod, optionally labelled again with the method
name.

moduleStmt ::= methodDef

methodDef ::= method [ type ] identifier ( methodFormals ) [ implicitCond ] ;
functionBody

endmethod [ : identifier ]

methodFormals ::= methodFormal { , methodFormal }

methodFormal ::= [ type ] identifier

implicitCond ::= if ( condPredicate )
condPredicate ::= exprOrCondPattern { &&& exprOrCondPattern }
exprOrCondPattern ::= expression

| expression matches pattern

The method name must be one of the methods in the interface whose type is specified in the module
header. Each of the module’s interface methods must be defined exactly once in the module body.

The compiler will issue a warning if a method is not defined within the body of the module.

The return type of the method and the types of its formal arguments are optional, and are present
for readability and documentation purposes only. The compiler knows these types from the method
prototypes in the interface declaration. If specified here, they must exactly match the corresponding
types in the method prototype.

The implicit condition, if present, may be a boolean expression, or it may be a pattern-match
(pattern matching is described in Section 10). Expressions in the implicit condition can use any of
the variables in scope surrounding the method definition, i.e., visible in the module body, but they
cannot use the formal parameters of the method itself. If the implicit condition is a pattern-match,
any variables bound in the pattern are available in the method body. Omitting the implicit condition
is equivalent to saying if (True). The semantics of implicit conditions are discussed in Section 9.13,
on rules.

Every method is ultimately invoked from a rule (a method m1 may be invoked from another method
m2 which, in turn, may be invoked from another method m3, and so on, but if you follow the chain,
it will end in a method invocation inside a rule). A method’s implicit condition controls whether
the invoking rule is enabled. Using implicit conditions, it is possible to write client code that is not
cluttered with conditionals that test whether the method is applicable. For example, a client of a
FIFO module can just call the enqueue or the dequeue method without having explicitly to test
whether the FIFO is full or empty, respectively; those predicates are usually specified as implicit
conditions attached to the FIFO methods.

Please note carefully that the implicit condition precedes the semicolon that terminates the method
definition header. There is a very big semantic difference between the following:
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method ... foo (...) if (expr);
...

endmethod

and

method ... foo (...); if (expr)
...

endmethod

The only syntactic difference is the position of the semicolon. In the first case, if (expr) is an
implicit condition on the method. In the second case the method has no implicit condition, and if
(expr) starts a conditional statement inside the method. In the first case, if the expression is false,
any rule that invokes this method cannot fire, i.e., no action in the rule or the rest of this method
is performed. In the second case, the method does not prevent an invoking rule from firing, and if
the rule does fire, the conditional statement is not executed but other actions in the rule and the
method may be performed.

The method body is exactly like a function body, which is discussed in Section 8.8 on function
definitions.

See also Section 9.12 for the more general concepts of interface expressions and expressions as first-
class objects.

Example:

interface GrabAndGive; // interface is declared
method Action grab(Bit#(8) value); // method grab is declared
method Bit#(8) give(); // method give is declared

endinterface

module mkExample (GrabAndGive);
Reg#(Bit#(8)) value_reg <- mkReg(?);
Reg#(Bool) not_yet <- mkReg(True);

// method grab is defined
method Action grab(Bit#(8) value) if (not_yet);

value_reg <= value;
not_yet <= False;

endmethod

//method give is defined
method Bit#(8) give() if (!not_yet);

return value_reg;
endmethod

endmodule

5.5.1 Shorthands for Action and ActionValue method definitions

If a method has type Action, then the following shorthand syntax may be used. Section 9.6 describes
action blocks in more detail.

methodDef ::= method Action identifier ( methodFormals ) [ implicitCond ] ;
{ actionStmt }

endmethod [ : identifier ]
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i.e., if the type Action is used after the method keyword, then the method body can directly contain
a sequence of actionStmts without the enclosing action and endaction keywords.

Similarly, if a method has type ActionValue(t) (Section 9.7), the following shorthand syntax may
be used:

methodDef ::= method ActionValue #( type ) identifier ( methodFormals )
[ implicitCond ; ]

{ actionValueStmt }
endmethod [ : identifier ]

i.e., if the type ActionValue(t) is used after the method keyword, then the method body can
directly contain a sequence of actionStmts without the enclosing actionvalue and endactionvalue
keywords.

Example: The long form definition of an Action method:

method grab(Bit#(8) value);
action

last_value <= value;
endaction

endmethod

can be replaced by the following shorthand definition:

method Action grab(Bit#(8) value);
last_value <= value;

endmethod

5.5.2 Definition of subinterfaces

Note: this is an advanced topic and can be skipped on first reading.

Declaration of subinterfaces (hierarchical interfaces) was described in Section 5.2.1. A subinterface
member of an interface can be defined using the following syntax.

moduleStmt ::= subinterfaceDef

subinterfaceDef ::= interface Identifier identifier ;
{ subinterfaceDefStmt }

endinterface [ : identifier ]

subinterfaceDefStmt ::= methodDef | subinterfaceDef

The subinterface member is defined within interface-endinterface brackets. The first Identifier
must be the name of the subinterface member’s type (an interface type), without any parame-
ters. The second identifier (and the optional identifier following the endinterface must be the
subinterface member name. The subinterfaceDefStmts then define the methods or further nested
subinterfaces of this member. Example (please refer to the ILookup interface defined in Section
5.2.1):

module ...
...
...
interface Server mif;

interface Put request;
method put(...);

...
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endmethod: put
endinterface: request

interface Get response;
method get();

...
endmethod: get

endinterface: response

endinterface: mif
...

endmodule

5.5.3 Definition of methods and subinterfaces by assignment

Note: this is an advanced topic and can be skipped on first reading.

A method can also be defined using the following syntax.

methodDef ::= method [ type ] identifier ( methodFormals ) [ implicitCond ]
= expression ;

The part up to and including the implicitCond is the same as the standard syntax shown in Section
5.5. Then, instead of a semicolon, we have an assignment to an expression that represents the
method body. The expression can of course use the method’s formal arguments, and it must have
the same type as the return type of the method. See Sections 9.6 and 9.7 for how to construct
expressions of Action type and ActionValue type, respectively.

A subinterface member can also be defined using the following syntax.

subinterfaceDef ::= interface [ type ] identifier = expression ;

The identifier is just the subinterface member name. The expression is an interface expression
(described in Section 9.12) of the appropriate interface type.

For example, in the following module the subinterface Put is defined by assignment.

//in this module, there is an instanciated FIFO, and the Put interface
//of the "mkSameInterface" module is the same interface as the fifo’s:

interface IFC1 ;
interface Put#(int) in0 ;

endinterface

(*synthesize*)
module mkSameInterface (IFC1);

FIFO#(int) myFifo <- mkFIFO;
interface Put in0 = fifoToPut(myFifo);

endmodule

5.6 Rules in module definitions

The internal behavior of a module is described using zero or more rules.

moduleStmt ::= rule

rule ::= [ attributeInstances ]
rule identifier [ ruleCond ] ;
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ruleBody
endrule [ : identifier ]

ruleCond ::= ( condPredicate )
condPredicate ::= exprOrCondPattern { &&& exprOrCondPattern }
exprOrCondPattern ::= expression

| expression matches pattern

ruleBody ::= { actionStmt }

A rule is optionally preceded by an attributeInstances; these are described in Section 13.3. Every
rule must have a name (the identifier). If the closing endrule is labelled with an identifier, it must
be the same name. Rule names must be unique within a module.

The ruleCond, if present, may be a boolean expression, or it may be a pattern-match (pattern
matching is described in Section 10). It can use any identifiers from the scope surrounding the rule,
i.e., visible in the module body. If it is a pattern-match, any variables bound in the pattern are
available in the rule body.

The ruleBody must be of type Action, using a sequence of zero or more actionStmts. We discuss
actionStmts in Section 9.6, but here we make a key observation. Actions include updates to state
elements (including register writes). There are no restrictions on different rules updating the same
state elements. The BSV compiler will generate all the control logic necessary for such shared
update, including multiplexing, arbitration, and resource control. The generated control logic will
ensure rule atomicity, discussed briefly in the next paragraphs.

A more detailed discussion of rule semantics is given in Section 6.2, Dynamic Semantics, but we
outline the key point briefly here. The ruleCond is called the explicit condition of the rule. Within
the ruleCond and ruleBody, there may be calls to various methods of various interfaces. Each such
method call has an associated implicit condition. The rule is enabled when its explicit condition and
all its implicit conditions are true. A rule can fire, i.e., execute the actions in its ruleBody, when the
rule is enabled and when the actions cannot “interfere” with the actions in the bodies of other rules.
Non-interference is described more precisely in Section 6.2 but, roughly speaking, it means that the
rule execution can be viewed as an atomic state transition, i.e., there cannot be any race conditions
between this rule and other rules.

This atomicity and the automatic generation of control logic to guarantee atomicity is a key benefit of
BSV. Note that because of method calls in the rule and, transitively, method calls in those methods,
a rule can touch (read/write) state that is distributed in several modules. Thus, a rule can express
a major state change in the design. The fact that it has atomic semantics guarantees the absence of
a whole class of race conditions that might otherwise bedevil the designer. Further, changes in the
design, whether in this module or in other modules, cannot introduce races, because the compiler
will verify atomicity.

See also Section 9.13 for a discussion of the more general concepts of rule expressions and rules as
first-class objects.

5.7 Examples

A register is primitive module with the following predefined interface:

interface Reg#(type a);
method Action _write (a x1);
method a _read ();

endinterface: Reg

It is polymorphic, i.e., it can contain values of any type a. It has two methods. The _write()
method takes an argument x1 of type a and returns an Action, i.e., an enable-wire that, when
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asserted, will deposit the value into the register. The _read() method takes no arguments and
returns the value that is in the register.

The principal predefined module definition for a register has the following header:

// takes an initial value for the register
module mkReg#(a v) (Reg#(a)) provisos (Bits#(a, sa));

The module parameter v of type a is specified when instantiating the module (creating the register),
and represents the initial value of the register. The module defines an interface of type Reg #(a).
The proviso specifies that the type a must be convertible into an sa-bit value. Provisos are discussed
in more detail in Sections 4.2 and 14.1.

Here is a module to compute the GCD (greatest common divisor) of two numbers using Euclid’s
algorithm.

interface ArithIO#(type a);
method Action start (a x, a y);
method a result;

endinterface: ArithIO

module mkGCD(ArithIO#(Bit#(size_t)));

Reg#(Bit#(size_t)) x(); // x is the interface to the register
mkRegU reg_1(x); // reg_1 is the register instance

Reg #(Bit#(size_t)) y(); // y is the interface to the register
mkRegU reg_2(y); // reg_2 is the register instance

rule flip (x > y && y != 0);
x <= y;
y <= x;

endrule

rule sub (x <= y && y != 0);
y <= y - x;

endrule

method Action start(Bit#(size_t) num1, Bit#(size_t) num2) if (y == 0);
action

x <= num1;
y <= num2;

endaction
endmethod: start

method Bit#(size_t) result() if (y == 0);
result = x;

endmethod: result

endmodule: mkGCD

The interface type is called ArithIO because it expresses the interactions of modules that do any kind
of two-input, one-output arithmetic. Computing the GCD is just one example of such arithmetic.
We could define other modules with the same interface that do other kinds of arithmetic.
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The module contains two rules, flip and sub, which implement Euclid’s algorithm. In other words,
assuming the registers x and y have been initialized with the input values, the rules repeatedly
update the registers with transformed values, terminating when the register y contains zero. At that
point, the rules stop firing, and the GCD result is in register x. Rule flip uses standard Verilog
non-blocking assignments to express an exchange of values between the two registers. As in Verilog,
the symbol <= is used both for non-blocking assignment as well as for the less-than-or-equal operator
(e.g., in rule sub’s explicit condition), and as usual these are disambiguated by context.

The start method takes two arguments num1 and num2 representing the numbers whose GCD is
sought, and loads them into the registers x and y, respectively. The result method returns the
result value from the x register. Both methods have an implicit condition (y == 0) that prevents
them from being used while the module is busy computing a GCD result.

A test bench for this module might look like this:

module mkTest ();
ArithIO#(Bit#(32)) gcd; // declare ArithIO interface gcd
mkGCD the_gcd (gcd); // instantiate gcd module the_gcd

rule getInputs;
... read next num1 and num2 from file ...
the_gcd.start (num1, num2); // start the GCD computation

endrule

rule putOutput;
$display("Output is %d", the_gcd.result()); // print result

endrule
endmodule: mkTest

The first two lines instantiate a GCD module. The getInputs rule gets the next two inputs from
a file, and then initiates the GCD computation by calling the start method. The putOutput rule
prints the result. Note that because of the semantics of implicit conditions and enabling of rules,
the getInputs rule will not fire until the GCD module is ready to accept input. Similarly, the
putOutput rule will not fire until the output method is ready to deliver a result.3

The mkGCD module is trivial in that the rule conditions ((x > y) and (x <= y)) are mutually
exclusive, so they can never fire together. Nevertheless, since they both write to register y, the
compiler will insert the appropriate multiplexers and multiplexer control logic.

Similarly, the rule getInputs, which calls the start method, can never fire together with the mkGCD
rules because the implicit condition of getInputs, i.e., (y == 0) is mutually exclusive with the
explicit condition (y != 0) in flip and sub. Nevertheless, since getInputs writes into the_gcd’s
registers via the start method, the compiler will insert the appropriate multiplexers and multiplexer
control logic.

In general, many rules may be enabled simultaneously, and subsets of rules that are simultaneously
enabled may both read and write common state. The BSV compiler will insert appropriate schedul-
ing, datapath multiplexing, and control to ensure that when rules fire in parallel, the net state change
is consistent with the atomic semantics of rules.

5.8 Synthesizing Modules

In order to generate code for a BSV design (for either Verilog or Bluesim), it is necessary to indicate
to the complier which module(s) are to be synthesized. A BSV module that is marked for code

3The astute reader will recognize that in this small example, since the result method is initially ready, the test
bench will first output a result of 0 before initiating the first computation. Let us overlook this by imagining that
Euclid is clearing his throat before launching into his discourse.
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generation is said to be a synthesized module.

In order to be synthesizable, a module must meet the following characteristics:

• The module must be of type Module and not of any other module type that can be defined
with ModuleCollect;

• Its interface must be fully specified; there can be no polymorphic types in the interface;

• Its interface is a type whose methods and subinterfaces are all convertible to wires (see Section
5.8.2).

• All other inputs to the module must be convertible to Bits (see Section 5.8.2).

A module can be marked for synthesis in one of two ways.

1. A module can be annotated with the synthesize attribute (see section 13.1.1). The appro-
priate syntax is shown below.

(* synthesize *)
module mkFoo (FooIfc);
...
endmodule

2. Alternatively, the -g compiler flag can be used on the bsc command line to indicate which
module is to be synthesized. In order to have the same effect as the attribute syntax shown
above, the flag would be used with the format -g mkFoo (the appropriate module name follows
the -g flag).

Note that multiple modules may be selected for code generation (by using multiple synthesize
attributes, multiple -g compiler flags, or a combination of the two).

Separate synthesis of a module can affect scheduling. This is because input wires to the module, such
as method arguments, now become a fixed resource that must be shared, whereas without separate
synthesis, module inlining allows them to be bypassed (effectively replicated). Consider a module
representing a register file containing 32 registers, with a method read(j) that reads the value of the
j’th register. Inside the module, this just indexes an array of registers. When separately synthesized,
the argument j becomes a 5-bit wide input port, which can only be driven with one value in any
given clock. Thus, two rules that invoke read(3) and read(11), for example, will conflict and then
they cannot fire in the same clock. If, however, the module is not separately synthesized, the module
and the read() method are inlined, and then each rule can directly read its target register, so the
rules can fire together in the same clock. Thus, in general, the addition of a synthesis boundary can
restrict behaviors.

5.8.1 Type Polymorphism

As discussed in section 4.1, BSV supports polymorphic types, including interfaces (which are them-
selves types). Thus, a single BSV module definition, which provides a polymorphic interface, in effect
defines a family of different modules with different characteristics based on the specific parameter(s)
of the polymorphic interface. Consider the module definition presented in section 5.7.

module mkGCD (ArithIO#(Bit#(size_t)));
...
endmodule
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Based on the specific type parameter given to the ArithIO interface, the code required to implement
mkGCD will differ. Since the Bluespec compiler does not create ”parameterized” Verilog, in order for
a module to be synthesizable, the associated interface must be fully specified (i.e not polymorphic).
If the mkGCD module is annotated for code generation as is

(* synthesize *)
module mkGCD (ArithIO#(Bit#(size_t)));
...
endmodule

and we then run the compiler, we get the following error message.

Error: "GCD.bsv", line 7, column 8: (T0043)
"Cannot synthesize ‘mkGCD’: Its interface is polymorphic"

If however we instead re-write the definition of mkGCD such that all the references to the type
parameter size_t are replaced by a specific value, in other words if we write something like,

(* synthesize *)
module mkGCD32 (ArithIO#(Bit#(32)));

Reg#(Bit#(32)) x(); // x is the interface to the register
mkRegU reg_1(x); // reg_1 is the register instance

...

endmodule

then the compiler will complete successfully and provide code for a 32-bit version of the module
(called mkGCD32). Equivalently, we can leave the code for mkGCD unchanged and instantiate it inside
another synthesized module which fully specifies the provided interface.

(* synthesize *)
module mkGCD32(ArithIO#(Bit#(32)));

let ifc();
mkGCD _temp(ifc);
return (ifc);

endmodule

5.8.2 Module Interfaces and Arguments

As mentioned above, a module is synthesizable if its interface is convertible to wires.

• An interface is convertible to wires if all methods and subinterfaces are convertible to wires.

• A method is convertible to wires if

– all arguments are convertible to bits;

– it is an Action method or it is an ActionValue or value method where the return value
is convertible to bits.

• Clock, Reset, and Inout subinterfaces are convertible to wires.
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• A Vector interface can be synthesized as long as the type inside the Vector is of type Clock,
Reset, Inout or a type which is convertible to bits.

To be convertible to bits, a type must be in the Bits typeclass.

For a module to be synthesizable its arguments must be of type Clock, Reset, Inout, or a type
convertible to bits. Vectors of the preceeding types are also synthesizable. If a module has one or
more arguments which are not one of the above types, the module is not synthesizable. For example,
if an argument is a datatype, such as Integer, which is not in the Bits typeclass, then the module
cannot be separately synthesized.

6 Static and dynamic semantics

What is a legal BSV source text, and what are its legal behaviors? These questions are addressed by
the static and dynamic semantics of BSV. The BSV compiler checks that the design is legal according
to the static semantics, and produces RTL hardware that exhibits legal behaviors according to the
dynamic semantics.

Conceptually, there are three phases in processing a BSV design, just like in Verilog and SystemVer-
ilog:

• Static checking: this includes syntactic correctness, type checking and proviso checking.

• Static elaboration: actual instantiation of the design and propagation of parameters, producing
the module instance hierarchy.

• Execution: execution of the design, either in a simulator or as real hardware.

We refer to the first two as the static phase (i.e., pre-execution), and to the third as the dynamic
phase. Dynamic semantics are about the temporal behavior of the statically elaborated design,
that is, they describe the dynamic execution of rules and methods and their mapping into clocked
synchronous hardware.

A BSV program can also contain assertions; assertion checking can occur in all three phases, de-
pending on the kind of assertion.

6.1 Static semantics

The static semantics of BSV are about syntactic correctness, type checking, proviso checking, static
elaboration and static assertion checking. Syntactic correctness of a BSV design is checked by the
parser in the BSV compiler, according to the grammar described throughout this document.

6.1.1 Type checking

BSV is statically typed, just like Verilog, SystemVerilog, C, C++, and Java. This means the usual
things: every variable and every expression has a type; variables must be assigned values that have
compatible types; actual and formal parameters/arguments must have compatible types, etc. All
this checking is done on the original source code, before any elaboration or execution.

BSV uses SystemVerilog’s new tagged union mechanism instead of the older ordinary unions, thereby
closing off a certain kind of type loophole. BSV also allows more type parameterization (polymor-
phism), without compromising full static type checking.
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6.1.2 Proviso checking and bit-width constraints

In BSV, overloading constraints and bit-width constraints are expressed using provisos (Sections 4.2
and 14.1.1). Overloading constraints provide an extensible mechanism for overloading.

BSV is stricter about bit-width constraints than Verilog and SystemVerilog in that it avoids implicit
zero-extension, sign-extension and truncation of bit-vectors. These operations must be performed
consciously by the designer, using library functions, thereby avoiding another source of potential
errors.

6.1.3 Static elaboration

As in Verilog and SystemVerilog, static elaboration is the phase in which the design is instantiated,
starting with a top-level module instance, instantiating its immediate children, instantiating their
children, and so on to produce the complete instance hierarchy.

BSV has powerful generate-like facilities for succinctly expressing regular structures in designs. For
example, the structure of a linear pipeline may be expressed using a loop, and the structure of a
tree-structured reduction circuit may be expressed using a recursive function. All these are also
unfolded and instantiated during static elaboration. In fact, the BSV compiler unfolds all structural
loops and functions during static elaboration.

A fully elaborated BSV design consists of no more than the following components:

• A module instance hierarchy. There is a single top-level module instance, and each module
instance contains zero or more module instances as children.

• An interface instance. Each module instance presents an interface to its clients, and may itself
be a client of zero or more interfaces of other module instances.

• Method definitions. Each interface instance consists of zero or more method definitions.

A method’s body may contain zero or more invocations of methods in other interfaces.

Every method has an implicit condition, which can be regarded as a single output wire that
is asserted only when the method is ready to be invoked. The implicit condition may directly
test state internal to its module, and may indirectly test state of other modules by invoking
their interface methods.

• Rules. Each module instance contains zero or more rules, each of which contains a condition
and an action. The condition is a boolean expression. Both the condition and the action may
contain invocations of interface methods of other modules. Since those interface methods can
themselves contain invocations of other interface methods, the conditions and actions of a rule
may span many modules.

6.2 Dynamic semantics

The dynamic semantics of BSV specify the temporal behavior of rules and methods and their map-
ping into clocked synchronous hardware.

Every rule has a syntactically explicit condition and action. Both of these may contain invocations
of interface methods, each of which has an implicit condition. A rule’s composite condition consists
of its syntactically explicit condition ANDed with the implicit conditions of all the methods invoked
in the rule. A rule is said to be enabled if its composite condition is true.
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6.2.1 Reference semantics

The simplest way to understand the dynamic semantics is through a reference semantics, which is
completely sequential. However, please do not equate this with slow execution; the execution steps
described below are not the same as clocks; we will see in the next section that many steps can be
mapped into each clock. The execution of any BSV program can be understood using the following
very simple procedure:

Repeat forever:
Step: Pick any one enabled rule, and perform its action.
(We say that the rule is fired or executed.)

Note that after each step, a different set of rules may be enabled, since the current rule’s action will
typically update some state elements in the system which, in turn, may change the value of rule
conditions and implicit conditions.

Also note that this sequential, reference semantics does not specify how to choose which rule to
execute at each step. Thus, it specifies a set of legal behaviors, not just a single unique behavior.
The principles that determine which rules in a BSV program will be chosen to fire (and, hence, more
precisely constrain its behavior) are described in section 6.2.3.

Nevertheless, this simple reference semantics makes it very easy for the designer to reason about
invariants (correctness conditions). Since only one rule is executed in each step, we only have to
look at the actions of each rule in isolation to check how it maintains or transforms invariants. In
particular, we do not have to consider interactions with other rules executing simultaneously.

Another way of saying this is: each rule execution can be viewed as an atomic state transition.4 Race
conditions, the bane of the hardware designer, can generally be explained as an atomicity violation;
BSV’s rules are a powerful way to avoid most races.

The reference semantics is based on Term Rewriting Systems (TRSs), a formalism supported by
decades of research in the computer science community [Ter03]. For this reason, we also refer to the
reference semantics as “the TRS semantics of BSV.”

6.2.2 Mapping into efficient parallel clocked synchronous hardware

A BSV design is mapped by the BSV compiler into efficient parallel clocked synchronous hardware.
In particular, the mapping permits multiple rules to be executed in each clock cycle. This is done
in a manner that is consistent with the reference TRS semantics, so that any correctness properties
ascertained using the TRS semantics continue to hold in the hardware.

Standard clocked synchronous hardware imposes the following restrictions:

• Persistent state is updated only once per clock cycle, at a clock edge. During a clock cycle,
values read from persistent state elements are the ones that were registered in the last cycle.

• Clock-speed requirements place a limit on the amount of combinational computation that can
be performed between state elements, because of propagation delay.

The composite condition of each rule is mapped into a combinational circuit whose inputs, possibly
many, sense the current state and whose 1-bit output specifies whether this rule is enabled or not.

The action of each rule is mapped into a combinational circuit that represents the state transition
function of the action. It can have multiple inputs and multiple outputs, the latter being the
computed next-state values.

4 We use the term atomic as it is used in concurrency theory (and in operating systems and databases), i.e., to
mean indivisible.
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Figure 1: A general scheme for mapping an N-rule system into clocked synchronous hardware.

Figure 1 illustrates a general scheme to compose rule components when mapping the design to clocked
synchronous hardware. The State box lumps together all the state elements in the BSV design (as
described earlier, state elements are explicitly specified in BSV). The BSV compiler produces a
rule-control circuit which conceptually takes all the enable (cond) signals and all the data (action)
outputs and controls which of the data outputs are actually captured at the next clock in the state
elements. The enable signals feed a scheduler circuit that decides which of the rules will actually
fire. The scheduler, in turn, controls data multiplexers that select which data outputs reach the
data inputs of state elements, and controls which state elements are enabled to capture the new
data values. Firing a rule simply means that the scheduler selects its data output and clocks it into
the next state.

At each clock, the scheduler selects a subset of rules to fire. Not all subsets are legal. A subset is
legal if and only if the rules in the subset can be ordered with the following properties:

• A hypothetical sequential execution of the ordered subset of rules is legal at this point, ac-
cording to the TRS semantics. In particular, the first rule in the ordered subset is currently
enabled, and each subsequent rule would indeed be enabled when execution reaches it in the
hypothetical sequence.

A special case is where all rules in the subset are already currently enabled, and no rule would
be disabled by execution of prior rules in the order.

• The hardware execution produces the same net effect on the state as the hypothetical sequential
execution, even though the hardware execution performs reads and writes in a different order
from the hypothetical sequential execution.

The BSV compiler performs a very sophisticated analysis of the rules in a design and synthesizes an
efficient hardware scheduler that controls execution in this manner.

Note that the scheme in Figure 1 is for illustrative purposes only. First, it lumps together all the
state, shows a single rule-control box, etc., whereas in the real hardware generated by the BSV
compiler these are distributed, localized and modular. Second, it is not the only way to map the
design into clocked synchronous hardware. For example, any two enabled rules can also be executed
in a single clock by feeding the action outputs of the first rule into the action inputs of the second
rule, or by synthesizing hardware for a composite circuit that computes the same function as the
composition of the two actions, and so on. In general, these alternative schemes may be more
complex to analyze, or may increase total propagation delay, but the compiler may use them in
special circumstances.
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In summary, the BSV compiler performs a detailed and sophisticated analysis of rules and their
interactions, and maps the design into very efficient, highly parallel, clocked synchronous hardware
including a dynamic scheduler that allows many rules to fire in parallel in each clock, but always
in a manner that is consistent with the reference TRS semantics. The designer can use the simple
reference semantics to reason about correctness properties and be confident that the synthesized
parallel hardware will preserve those properties. (See Section 13.3 for the “scheduling attributes”
mechanism using which the designer can guide the compiler in implementing the mapping.)

When coding in other HDLs, the designer must maintain atomicity manually. He must recognize
potential race conditions, and design the appropriate data paths, control and synchronization to
avoid them. Reasoning about race conditions can cross module boundaries, and can be introduced
late in the design cycle as the problem specification evolves. The BSV compiler automates all of this
and, further, is capable of producing RTL that is competitive with hand-coded RTL.

6.2.3 How rules are chosen to fire

The previous section described how an efficient circuit can be built whose behavior will be consis-
tent with sequential TRS semantics of BSV. However, as noted previously, the sequential reference
semantics can be consistent with a range of different behaviors. There are two rule scheduling prin-
ciples that guide the BSV compiler in choosing which rules to schedule in a clock cycle (and help
a designer build circuits with predictable behavior). Except when overridden by an explicit user
command or annotation, the BSV compiler schedules rules according to the following two principles:

1. Every rule enabled during a clock cycle will either be fired as part of that clock cycle or a
warning will be issued during compilation.

2. A rule will fire at most one time during a particular clock cycle.

The first principle comes into play when two (or more) rules conflict - either because they are
competing for a limited resource or because the result of their simultaneous execution is not consistent
with any sequential rule execution. In the absence of a user annotation, the compiler will arbitrarily
choose 5 which rule to prioritize, but must also issue a warning. This guarantees the designer is
aware of the ambiguity in the design and can correct it. It might be corrected by changing the rules
themselves (rearranging their predicates so they are never simultaneously applicable, for example)
or by adding an urgency annotation which tells the compiler which rule to prefer (see section 13.3.3).
When there are no scheduling warnings, it is guaranteed that the compiler is making no arbitrary
choices about which rules to execute.

The second principle ensures that continuously enabled rules (like a counter increment rule) will
not be executed an unpredictable number of times during a clock cycle. According to the first rule
scheduling principle, a rule that is always enabled will be executed at least once during a clock
cycle. However, since the rule remains enabled it theoretically could execute multiple times in a
clock cycle (since that behavior would be consistent with a sequential semantics). Since rules (even
simple things like a counter increment) consume limited resources (like register write ports) it is
pragmatically useful to restrict them to executing only once in a cycle (in the absence of specific
user instructions to the contrary). Executing a continuously enabled rule only once in a cycle is also
the more straightforward and intuitive behavior.

Together, these two principles allow a designer to completely determine the rules that will be chosen
to fire by the schedule (and, hence, the behavior of the resulting circuit).

5The compiler’s choice, while arbitrary, is deterministic. Given the same source and compiler version, the same
schedule (and, hence, the same hardware) will be produced. However, because it is an arbitrary choice, it can be
sensitive to otherwise irrelevant details of the program and is not guaranteed to remain the same if the source or
compiler version changes.
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6.2.4 Mapping specific hardware models

Annotations on the methods of a module are used by the BSV compiler to model the hardware
behavior into TRS semantics. For example, all reads from a register must be scheduled before any
writes to the same register. That is to say, any rule which reads from a register must be scheduled
earlier than any other rule which writes to it. More generally, there exist scheduling constraints for
specific hardware modules which describe how methods interact within the schedule. The scheduling
annotations describe the constraints enforced by the BSV compiler.

The meanings of the scheduling annotations are:

C conflicts
CF conflict-free
SB sequence before
SBR sequence before restricted (cannot be in the same rule)
SA sequence after
SAR sequence after restricted (cannot be in the same rule)

The annotations SA and SAR are provided for documentation purposes only; they are not supported
in the BSV language.

Below is an example of the scheduling annotations for a register:

Scheduling Annotations
Register

read write
read CF SB
write SA SBR

The table describes the following scheduling constraints:

• Two read methods would be conflict-free (CF), that is, you could have multiple methods that
read from the same register in the same rule, sequenced in any order.

• A write is sequenced after (SA) a read.

• A read is sequenced before (SB) a write.

• And finally, if you have two write methods, one must be sequenced before the other, and they
cannot be in the same rule, as indicated by the annotation SBR.

The scheduling annotations are specific to the TRS model desired and a single hardware component
can have multiple TRS models. For example, a register may be implemented using a mkReg module
or a mkConfigReg module, which are identical except for their scheduling annotations.

7 User-defined types (type definitions)

User-defined types must be defined at the top level of a package.

typeDef ::= typedefSynonym
| typedefEnum
| typedefStruct
| typedefTaggedUnion
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As a matter of style, BSV requires that all enumerations, structs and unions be declared only via
typedef, i.e., it is not possible directly to declare a variable, formal parameter or formal argument
as an enum, struct or union without first giving that type a name using a typedef.

Each typedef of an enum, struct or union introduces a new type that is different from all other types.
For example, even if two typedefs give names to struct types with exactly the same corresponding
member names and types, they define two distinct types.

Other typedefs, i.e., not involving an enum, struct or union, merely introduce type synonyms for
existing types.

7.1 Type synonyms

Type synonyms are just for convenience and readability, allowing one to define shorter or more
meaningful names for existing types. The new type and the original type can be used interchangeably
anywhere.

typedefSynonym ::= typedef type typeDefType ;

typeDefType ::= typeIde [ typeFormals ]

typeFormals ::= # ( typeFormal { , typeFormal })

typeFormal ::= [ numeric ] type typeIde

Examples. Defining names for bit vectors of certain lengths:

typedef bit [7:0] Byte;
typedef bit [31:0] Word;
typedef bit [63:0] LongWord;

Examples. Defining names for polymorphic data types.

typedef Tuple#3(a, a, a) Triple#(type a);

typdef Int#(n) MyInt#(type n);

The above example could also be written as:

typedef Int#(n) MyInt#(numeric type n);

The numeric is not required because the parameter to Int will always be numeric. numeric is only
required when the compiler can’t determine whether the parameter is a numeric or non-numeric
type. It will then default to assuming it is non-numeric. The user can override this default by
specifying numeric in the typedef statement.

A typedef statement can be used to define a synonym for an already defined synonym. Example:

typedef Triple#(Longword) TLW;

Since an Interface is a type, we can have nested types:

typedef Reg#(Vector#(8, UInt#(8))) ListReg;
typedef List#(List#(Bit#(4))) ArrayOf4Bits;
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The typedef statement must always be at the top level of a package, not within a module. To
introduce a local name within a module, use Alias or NumAlias (B.1.13). Since these introduce
new names which are type variables as opposed to types, the new names must begin with lower case
letters. NumAlias is used to give new names to numeric types, while Alias is used for types which
can be the types of variables. Example:

module mkMod(Ifc)
provisos (Alias#(Bit#(crc_size), crc));

module mkRAM(RAMIfc)
provisos (NumAlias#(addr_size, TLog#(buff_size)));

7.2 Enumerations

typedefEnum ::= typedef enum { typedefEnumElements } Identifier [ derives ] ;
typedefEnumElements ::= typedefEnumElement { , typedefEnumElement }
typedefEnumElement ::= Identifier [ = intLiteral ]

| Identifier[intLiteral] [ = intLiteral ]
| Identifier[intLiteral:intLiteral] [ = intLiteral ]

Enumerations (enums) provide a way to define a set of unique symbolic constants, also called labels or
member names. Each enum definition creates a new type different from all other types. Enum labels
may be repeated in different enum definitions. Enumeration labels must begin with an uppercase
letter.

The optional derives clause is discussed in more detail in Sections 4.3 and 14.1. One common form is
deriving (Bits), which tells the compiler to generate a bit-representation for this enum. Another
common form of the clause is deriving (Eq), which tells the compiler to pick a default equality
operation for these labels, so they can also be tested for equality and inequality. A third common
form is deriving (Bounded), which tells the compiler to define constants minBound and maxBound
for this type, equal in value to the first and last labels in the enumeration. These specifications can
be combined, e.g., deriving (Bits, Eq, Bounded). All these default choices for representation,
equality and bounds can be overridden (see Section 14.1). The form deriving (Ord) is not currently
supported for enums.

The declaration may specify the encoding used by deriving(Bits) by assigning numbers to tags.
When an assignment is omitted, the tag receives an encoding of the previous tag incremented by one;
when the encoding for the initial tag is omitted, it defaults to zero. Specifying the same encoding
for more than one tag results in an error.

Multiple tags may be declared by using the index (Tag [ntags ]) or range (Tag [start :end ]) no-
tation. In the former case, ntags tags will be generated, from Tag0 to Tagn-1 ; in the latter case,
|end − start |+ 1 tags, from Tagstart to Tagend .

Example. The boolean type can be defined in the language itself:

typedef enum { False, True } Bool deriving (Bits, Eq);

The compiler will pick a one-bit representation, with 1’b0 and 1’b1 as the representations for False
and True, respectively. It will define the == and != operators to also work on Bool values.

Example. Excerpts from the specification of a processor:

typedef enum { R0, R1, ..., R31 } RegName deriving (Bits);
typedef RegName Rdest;
typedef RegName Rsrc;
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The first line defines an enum type with 32 register names. The second and third lines define type
synonyms for RegName that may be more informative in certain contexts (“destination” and “source”
registers). Because of the deriving clause, the compiler will pick a five-bit representation, with
values 5’h00 through 5’h1F for R0 through R31.

Example. Tag encoding when deriving(Bits) can be specified manually:

typedef enum {
Add = 5,
Sub = 0,
Not,
Xor = 3,
...

} OpCode deriving (Bits);

The Add tag will be encoded to five, Sub to zero, Not to one, and Xor to three.

Example. A range of tags may be declared in a single clause:

typedef enum {
Foo[2],
Bar[5:7],
Quux[3:2]

} Glurph;

This is equivalent to the declaration

typedef enum {
Foo0,
Foo1,
Bar5,
Bar6,
Bar7,
Quux3,
Quux2

} Glurph;

7.3 Structs and tagged unions

A struct definition introduces a new record type.

SystemVerilog has ordinary unions as well as tagged unions, but in BSV we only use tagged unions,
for several reasons. The principal benefit is safety (verification). Ordinary unions open a serious
type-checking loophole, whereas tagged unions are completely type-safe. Other reasons are that,
in conjunction with pattern matching (Section 10), tagged unions yield much more succinct and
readable code, which also improves correctness. In the text below, we may simply say “union” for
brevity, but it always means “tagged union.”

typedefStruct ::= typedef struct {
{ structMember }

} typeDefType [ derives ] ;

typedefTaggedUnion ::= typedef union tagged {
{ unionMember }

} typeDefType [ derives ] ;
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structMember ::= type identifier ;
| subUnion identifier ;

unionMember ::= type Identifier ;
| subStruct Identifier ;
| subUnion Identifier ;
| void Identifier ;

subStruct ::= struct {
{ structMember }

}

subUnion ::= union tagged {
{ unionMember }

}

typeDefType ::= typeIde [ typeFormals ]

typeFormals ::= # ( typeFormal { , typeFormal })
typeFormal ::= [ numeric ] type typeIde

All types can of course be mutually nested if mediated by typedefs, but unions can also be mutually
nested directly, as described in the syntax above. Structs and unions contain members. A union
member (but not a struct member) can have the special void type (see the types MaybeInt and
Maybe in the examples below for uses of void). All the member names in a particular struct or
union must be unique, but the same names can be used in other structs and members; the compiler
will try to disambiguate based on type.

A struct value contains the first member and the second member and the third member, and so on.
A union value contains just the first member or just the second member or just the third member,
and so on. Struct member names must begin with a lowercase letter, whereas union member names
must begin with an uppercase letter.

In a tagged union, the member names are also called tags. Tags play a very important safety role.
Suppose we had the following:

typedef union tagged { int Tagi; OneHot Tagoh; } U deriving (Bits);
U x;

The variable x not only contains the bits corresponding to one of its member types int or OneHot,
but also some extra bits (in this case just one bit) that remember the tag, 0 for Tagi and 1 for
Tagoh. When the tag is Tagi, it is impossible to read it as a OneHot member, and when the tag is
Tagoh it is impossible to read it as an int member, i.e., the syntax and type checking ensure this.
Thus, it is impossible accidentally to misread what is in a union value.

The optional derives clause is discussed in more detail in Section 14.1. One common form is deriving
(Bits), which tells the compiler to pick a default bit-representation for the struct or union. For
structs it is simply a concatenation of the representations of the members. For unions, the repre-
sentation consists of t+m bits, where t is the minimum number of bits to code for the tags in this
union and m is the number of bits for the largest member. Every union value has a code in the t-bit
field that identifies the tag, concatenated with the bits of the corresponding member, right-justified
in the m-bit field. If the member needs fewer than m bits, the remaining bits (between the tag and
the member bits) are undefined.

Struct and union typedefs can define new, polymorphic types, signalled by the presence of type
parameters in #(...). Polymorphic types are discussed in section 4.1.

Section 9.11 on struct and union expressions describes how to construct struct and union values and
to access and update members. Section 10 on pattern-matching describes a more high-level way to
access members from structs and unions and to test union tags.

Example. Ordinary, traditional record structures:
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typedef struct { int x; int y; } Coord;
typedef struct { Addr pc; RegFile rf; Memory mem; } Proc;

Example. Encoding instruction operands in a processor:

typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {

bit [4:0] regAddr;
bit [4:0] regIndex;

} Indexed;
} InstrOperand;

An instruction operand is either a 5-bit register specifier, a 22-bit literal value, or an indexed memory
specifier, consisting of two 5-bit register specifiers.

Example. Encoding instructions in a processor:

typedef union tagged {
struct {

Op op; Reg rs; CPUReg rt; UInt16 imm;
} Immediate;

struct {
Op op; UInt26 target;

} Jump;
} Instruction
deriving (Bits);

An Instruction is either an Immediate or a Jump. In the former case, it contains a field, op,
containing a value of type Op; a field, rs, containing a value of type Reg; a field, rt, containing a
value of type CPUReg; and a field, imm, containing a value of type UInt16. In the latter case, it
contains a field, op, containing a value of type Op, and a field, target, containing a value of type
UInt26.

Example. Optional integers (an integer together with a valid bit):

typedef union tagged {
void Invalid;
int Valid;

} MaybeInt
deriving (Bits);

A MaybeInt is either invalid, or it contains an integer (Valid tag). The representation of this type
will be 33 bits— one bit to represent Invalid or Valid tag, plus 32 bits for an int. When it carries
an invalid value, the remaining 32 bits are undefined. It will be impossible to read/interpret those
32 bits when the tag bit says it is Invalid.

This MaybeInt type is very useful, and not just for integers. We generalize it to a polymorphic type:

typedef union tagged {
void Invalid;
a Valid;

} Maybe#(type a)
deriving (Bits);
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This Maybe type can be used with any type a. Consider a function that, given a key, looks up a
table and returns some value associated with that key. Such a function can return either an invalid
result (Invalid), if the table does not contain an entry for the given key, or a valid result Valid v
if v is associated with the key in the table. The type is polymorphic (type parameter a) because it
may be used with lookup functions for integer tables, string tables, IP address tables, etc. In other
words, we do not over-specify the type of the value v at which it may be used.

See Section 12.4 for an important, predefined set of struct types called Tuples for adhoc structs of
between two and eight members.

8 Variable declarations and statements

Statements can occur in various contexts: in packages, modules, function bodies, rule bodies, action
blocks and actionvalue blocks. Some kinds of statements have been described earlier because they
were specific to certain contexts: module definitions (moduleDef ) and instantiation (moduleInst),
interface declarations (interfaceDecl), type definitions (typeDef ), method definitions (methodDef )
inside modules, rules (rule) inside modules, and action blocks (actionBlock) inside modules.

Here we describe variable declarations, register assignments, variable assignments, loops, and func-
tion definitions. These can be used in all statement contexts.

8.1 Variable and array declaration and initialization

Variables in BSV are used to name intermediate values. Unlike Verilog and SystemVerilog, variables
never represent state, i.e., they do not hold values over time. Every variable’s type must be declared,
after which it can be bound to a value one or more times.

One or more variables can be declared by giving the type followed by a comma-separated list of
identifiers with optional initializations:

varDecl ::= type varInit { , varInit } ;

varInit ::= identifier [ arrayDims ] [ = expression ]

arrayDims ::= [ expression ] { [ expression ] }

The declared identifier can be an array (when arrayDims is present). The expressions in arrayDims
represent the array dimensions, and must be constant expressions (i.e., computable during static
elaboration). The array can be multidimensional.

Note that array variables are distinct from the RegFile (section C.1.1) and Vector (section C.3)
data types. Array variables are just a structuring mechanism for values, whereas the RegFile type
represents a particular hardware module, like a register file, with a limited number of read and write
ports. In many programs, array variables are used purely for static elaboration, e.g., an array of
registers is just a convenient way to refer to a collection of registers with a numeric index.

Each declared variable can optionally have an initialization.

Example. Declare two integer variables and initialize them:

Integer x = 16, y = 32;

Example. Declare two array identifiers a and b containing int values at each index:

int a[20], b[40];

Example. Declare an array of 3 Int#(5) values and initialize them:
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Int#(5) xs[3] = {14, 12, 9};

Example. Declare an array of 3 arrays of 4 Int#(5) values and initialize them:

Int#(5) xs[3][4] = {{1,2,3,4},
{5,6,7,8},
{9,10,11,12}};

Example. The array values can be polymorphic, but they must defined during elaboration:

Get #(a) gs[3] = {g0,g2, g2};

8.2 Variable assignment

A variable can be bound to a value using assignment:

varAssign ::= lValue = expression ;

lValue ::= identifier
| lValue . identifier
| lValue [ expression ]
| lValue [ expression : expression ]

The left-hand side (lValue) in its simplest form is a simple variable (identifier).

Example. Declare a variable wordSize to have type Integer and assign it the value 16:

Integer wordSize;
wordSize = 16;

Multiple assignments to the same variable are just a shorthand for a cascaded computation. Example:

int x;
x = 23;
// Here, x represents the value 23
x = ifc.meth (34);
// Here, x represents the value returned by the method call
x = x + 1;
// Here, x represents the value returned by the method call, plus 1

Note that these assignments are ordinary, zero-time assignments, i.e., they never represent a dynamic
assignment of a value to a register. These assignments only represent the convenient naming of an
intermediate value in some zero-time computation. Dynamic assignments are always written using
the non-blocking assignment operator <=, and are described in Section 8.4.

In general, the left-hand side (lValue) in an assignment statement can be a series of index- and field-
selections from an identifier representing a nesting of arrays, structs and unions. The array-indexing
expressions must be computable during static elaboration.

For bit vectors, the left-hand side (lValue) may also be a range between two indices. The indices must
be computable during static elaboration, and, if the indices are not literal constants, the right-hand
side of the assignment should have a defined bit width. The size of the updated range (determined
by the two literal indices or by the size of the right-hand side) must be less than or equal to the size
of the target bit vector.

Example. Update an array variable b:
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b[15] = foo.bar(x);

Example. Update bits 15 to 8 (inclusive) of a bit vector b:

b[15:8] = foo.bar(x);

Example. Update a struct variable (using the processor example from Section 7.3):

cpu.pc = cpu.pc + 4;

Semantically, this can be seen as an abbreviation for:

cpu = Proc { pc: cpu.pc + 4, rf: cpu.rf, mem: cpu.mem };

i.e., it reassigns the struct variable to contain a new struct value in which all members other than
the updated member have their old values. The right-hand side is a struct expression; these are
described in Section 9.11.

Update of tagged union variables is done using normal assignment notation, i.e., one replaces the
current value in a tagged union variable by an entirely new tagged union value. In a struct it makes
sense to update a single member and leave the others unchanged, but in a union, one member
replaces another. Example (extending the previous processor example):

typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {

bit [4:0] regAddr;
bit [4:0] regIndex;

} Indexed;
} InstrOperand;
...
InstrOperand orand;
...
orand = tagged Indexed { regAddr:3, regIndex:4 };
...
orand = tagged Register 23;

The right-hand sides of the assignments are tagged union expressions; these are described in Section
9.11.

8.3 Implicit declaration and initialization

The let statement is a shorthand way to declare and initialize a variable in a single statement. A
variable which has not been declared can be assigned an initial value and the compiler will infer the
type of the variable from the expression on the right hand side of the statement:

varDecl ::= let identifier = expression ;

Example:

let n = valueof(BuffSize);
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The pseudo-function valueof returns an Integer value, which will be assigned to n at compile time.
Thus the variable n is assumed to have the type of Integer.

If the expression is the value returned by an actionvalue method, the notation will be:

varAssign ::= let identifier <- expression ;

Note the difference between this statement:

let m1 = m1displayfifo.first;

and this statement:

let z1 <- rndm.get;

In the first example, m1displayfifo.first is a value method; m1 is assigned the value and type
returned by the value method. In the latter, rndm.get is an actionvalue method; z1 is assigned the
value and type returned by the actionvalue method.

8.4 Register reads and writes

Register writes occur primarily inside rules and methods.

regWrite ::= lValue <= expression
| ( expression ) <= expression

The left-hand side must contain a writeable interface type, such as Reg#(t) (for some type t that
has a representation in bits). It is either an lValue or a parenthesized expression (e.g., the register
interface could be selected from an array of register interfaces or returned from a function). The
right-hand side must have the same type as the left-hand side would have if it were typechecked
as an expression (including read desugaring, as described below). BSV allows only the so-called
non-blocking assignments of Verilog, i.e., the statement specifies that the register gets the new value
at the end of the current cycle, and is only available in the next cycle.

Following BSV’s principle that all state elements (including registers) are module instances, and all
interaction with a module happens through its interface, a simple register assignment r<=e is just a
convenient alternative notation for a method call:

r. write (e)

Similarly, if r is an expression of type Reg#(t), then mentioning r in an expression is just a convenient
alternative notation for different method call:

r. read ()

The implicit addition of the . read method call to variables of type Reg#(t) is the simplest example
of read desugaring.

Example. Instantiating a register interface and a register, and using it:

Reg#(int) r(); // create a register interface
mkReg#(0) the_r (r); // create a register the_r with interface r
...
...
rule ...

r <= r + 1; // Convenient notation for: r._write (r._read() + 1)
endrule
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8.4.1 Registers and square-bracket notation

Register writes can be combined with the square-bracket notation.

regWrite ::= lValue arrayIndexes <= expression

arrayIndexes ::= [ expression ] { [ expression ] }
There are two different ways to interpret this combination. First, it can mean to select a register
out of a collection of registers and write it.

Example. Updating a register in an array of registers:

List#(Reg#(int)) regs;
...
regs[3] <= regs[3] + 1; // increment the register at position 3

Note that when the square-bracket notation is used on the right-hand side, read desugaring is also
applied6. This allows the expression regs[3] to be interpreted as a register read without unnecessary
clutter.

The indexed register assignment notation can also be used for partial register updates, when the
register contains an array of elements of some type t (in a particular case, this could be an array
of bits). This interpretation is just a shorthand for a whole register update where only the selected
element is updated. In other words,

x[j] <= v;

can be a shorthand for:

x <= replace (x, j, v);

where replace is a pure function that takes the whole value from register x and produces a whole
new value with the j’th element replaced by v. The statement then assigns this new value to the
register x.

It is important to understand the tool infers the appropriate meaning for an indexed register write
based on the types available and the context:

Reg#(Bit#(32)) x;
x[3] <= e;
List#(Reg#(a)) x;
y[3] <= e;

In the former case, x is a register containing an array of items (in this example a bit vector), so the
statement updates the third item in this array (a single bit) and stores the updated bit vector in
the register. In the latter case, y is an array of registers, so register at position 3 in the array is
updated. In the former case, multiple writes to different indices in a single rule with non-exclusive
conditions are forbidden (because they would be multiple conflicting writes to the same register)7,
writing the final result back to the register. In the latter case, multiple writes to different indices
will be allowed, because they are writes to different registers (though multiple writes to the same
index, under non-exclusive conditions would not be allowed, of course).

It also is possible to mix these notations, i.e., writing a single statement to perform a partial update
of a register in an array of registers.

Example: Mixing types of square-bracket notation in a register write
6To suppress read desugaring use asReg or asIfc
7If multiple partial register writes are desired the best thing to do is to assign the register’s value to a variable and

then do cascaded variable assignments (as described in section 8.2)
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List#(Reg#(bit[3:0])) ys;
...
y[4][3] <= e; // Update bit 3 of the register at position 4

8.4.2 Registers and range notation

Just as there is a range notation for bit extraction and variable assignments, there is also a range
notation for register writes.

regWrite ::= lValue [ expression : expression ] <= expression

The index expressions in the range notation follow the same rules as the corresponding expressions
in variable assignment range updates (they must be static expressions and if they are not literal
constants the right-hand side should have a defined bit width). Just as the indexed, partial register
writes described in the previous subsection, multiple range-notation register writes cannot be mixed
in the same rule8.

Example: A range-notation register write

Reg#(Bit#(32)) r;

r[23:12] <= e; // Update a 12-bit range in the middle of r

8.4.3 Registers and struct member selection

regWrite ::= lValue . identifier <= expression

As with the square-bracket notation, a register update involving a field selection can mean one of
two things. First, for a register containing a structure, it means update the particular field of the
register value and write the result back to the register.

Example: Updating a register containing a structure

typedef struct { Bit#(32) a; Bit#(16) b; } Foo deriving(Bits);
...
Reg#(Foo) r;
...
r.a <= 17;

Second, it can mean to select the named field out of a compile-time structure that contains a register
and write that register.

Example: Writing a register contained in a structure

typedef struct { Reg#(Bit#(32)) c; Reg#(Bit#(16)) d; } Baz;
...
Baz b;
...
b.a <= 23;

In both cases, the same notation is used and the compiler infers which interpretation is appropriate.
As with square-bracket selection, struct member selection implies read desugaring, unless inhibited
by asReg or asIfc.

8As described in the preceding footnote, using variable assignment is the best way to achive this effect, if desired.
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8.5 Begin-end statements

A begin-end statement is a block that allows one to collect multiple statements into a single state-
ment, which can then be used in any context where a statement is required.

<ctxt>BeginEndStmt ::= begin [ : identifier ]
{ <ctxt>Stmt }

end [ : identifier ]

The optional identifier labels are currently used for documentation purposes only; in the future they
may be used for hierarchical references. The statements contained in the block can contain local
variable declarations and all the other kinds of statements. Example:

module mkBeginEnd#(Bit#(2) sel) ();
Reg#(Bit#(4)) a <- mkReg(0);
Reg#(Bool) done <- mkReg(False);

rule decode (!done);
case (sel)

2’b00: a <= 0;
2’b01: a <= 1;
2’b10: a <= 2;
2’b11: begin

a <= 3; //in the 2’b11 case we don’t want more than
done <= True; //one action done, therefore we add begin/end

end
endcase

endrule
endmodule

8.6 Conditional statements

Conditional statements include if statements and case statements. An if statement contains a
predicate, a statement representing the true arm and, optionally, the keyword else followed by a
statement representing the false arm.

<ctxt>If ::= if ( condPredicate )
<ctxt>Stmt

[ else
<ctxt>Stmt ]

condPredicate ::= exprOrCondPattern { &&& exprOrCondPattern }
exprOrCondPattern ::= expression

| expression matches pattern

If-statements have the usual semantics— the predicate is evaluated, and if true, the true arm is exe-
cuted, otherwise the false arm (if present) is executed. The predicate can be any boolean expression.
More generally, the predicate can include pattern matching, and this is described in Section 10, on
pattern matching.

There are two kinds of case statements: ordinary case statements and pattern-matching case state-
ments. Ordinary case statements have the following grammar:

<ctxt>Case ::= case ( expression )
{ <ctxt>CaseItem }
[ <ctxt>DefaultItem ]

endcase
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<ctxt>CaseItem ::= expression { , expression } : <ctxt>Stmt

<ctxt>DefaultItem ::= default [ : ] <ctxt>Stmt

Each case item contains a left-hand side and a right-hand side, separated by a colon. The left-
hand side contains a series of expressions, separated by commas. The case items may optionally be
followed, finally, by a default item (the colon after the default keyword is optional).

Case statements are equivalent to an expansion into a series of nested if-then-else statements. For
example:

case (e1)
e2, e3 : s2;
e4 : s4;
e5, e6, e7: s5;
default : s6;

endcase

is equivalent to:

x1 = e1; // where x1 is a new variable:
if (x1 == e2) s2;
else if (x1 == e3) s2;
else if (x1 == e4) s4;
else if (x1 == e5) s5;
else if (x1 == e6) s5;
else if (x1 == e7) s5;
else s6;

The case expression (e1) is evaluated once, and tested for equality in sequence against the value
of each of the left-hand side expressions. If any test succeeds, then the corresponding right-hand
side statement is executed. If no test succeeds, and there is a default item, then the default item’s
right-hand side is executed. If no test succeeds, and there is no default item, then no right-hand side
is executed.

Example:

module mkConditional#(Bit#(2) sel) ();
Reg#(Bit#(4)) a <- mkReg(0);
Reg#(Bool) done <- mkReg(False);

rule decode ;
case (sel)

2’b00: a <= 0;
2’b01: a <= 1;
2’b10: a <= 2;
2’b11: a <= 3;

endcase
endrule

rule finish ;
if (a == 3)

done <= True;
else

done <= False;
endrule

endmodule

Pattern-matching case statements are described in Section 10.
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8.7 Loop statements

BSV has for loops and while loops.

It is important to note that this use of loops does not express time-based behavior. Instead, they are
used purely as a means to express zero-time iterative computations, i.e., they are statically unrolled
and express the concatenation of multiple instances of the loop body statements. In particular, the
loop condition must be evaluable during static elaboration. For example, the loop condition can
never depend on a value in a register, or a value returned in a method call, which are only known
during execution and not during static elaboration.

See Section 11 on FSMs for an alternative use of loops to express time-based (temporal) behavior.

8.7.1 While loops

<ctxt>While ::= while ( expression )
<ctxt>Stmt

While loops have the usual semantics. The predicate expression is evaluated and, if true, the loop
body statement is executed, and then the while loop is repeated. Note that if the predicate initially
evaluates false, the loop body is not executed at all.

Example. Sum the values in an array:

int a[32];
int x = 0;
int j = 0;
...
while (j < 32)

x = x + a[j];

8.7.2 For loops

<ctxt>For ::= for ( forInit ; forTest ; forIncr )
<ctxt>Stmt

forInit ::= forOldInit | forNewInit
forOldInit ::= simpleVarAssign { , simpleVarAssign }
simpleVarAssign ::= identifier = expression
forNewInit ::= type identifier = expression { , simpleVarDeclAssign }
simpleVarDeclAssign ::= [ type ] identifier = expression

forTest ::= expression

forIncr ::= varIncr { , varIncr }
varIncr ::= identifier = expression

The forInit phrase can either initialize previously declared variables (forOldInit), or it can declare
and initialize new variables whose scope is just this loop (forNewInit). They differ in whether or
not the first thing after the open parenthesis is a type.

In forOldInit, the initializer is just a comma-separated list of variable assignments.

In forNewInit, the initializer is a comma-separated list of variable declarations and initializations.
After the first one, not every initializer in the list needs a type; if missing, the type is the nearest
type earlier in the list. The scope of each variable declared extends to subsequent initializers, the
rest of the for-loop header, and the loop body statement.

Example. Copy values from one array to another:
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int a[32], b[32];
...
...
for (int i = 0, j = i+offset; i < 32-offset; i = i+1, j = j+1)

a[i] = b[j];

8.8 Function definitions

A function definition is introduced by the function keyword. This is followed by the type of the
function return-value, the name of the function being defined, the formal arguments, and optional
provisos (provisos are discussed in more detail in Section 14.1). After this is the function body and,
finally, the endfunction keyword that is optionally labelled again with the function name. Each
formal argument declares an identifier and its type.

functionDef ::= functionProto
functionBody

endfunction [ : identifier ]

functionProto ::= function type identifier ( [ functionFormals ] ) [ provisos ] ;

functionFormals ::= functionFormal { , functionFormal }

functionFormal ::= type identifier

The function body can contain the usual repertoire of statements:

functionBody ::= actionBlock
| actionValueBlock
| { functionBodyStmt }

functionBodyStmt ::= <functionBody>If | <functionBody>Case
| <functionBody>BeginEndStmt
| <functionBody>For
| <functionBody>While
| varDecl | varAssign
| varDo | varDeclDo
| functionDef
| functionStmt
| systemTaskStmt
| ( expression )
| returnStmt

returnStmt ::= return expression ;

A value can be returned from a function in two ways, as in SystemVerilog. The first method is to
assign a value to the function name used as an ordinary variable. This “variable” can be assigned
multiple times in the function body, including in different arms of conditionals, in loop bodies, and
so on. The function body is viewed as a traditional sequential program, and value in the special
variable at the end of the body is the value returned. However, the “variable” cannot be used in
an expression (e.g., on the right-hand side of an assignment) because of ambiguity with recursive
function calls.

Alternatively, one can use a return statement anywhere in the function body to return a value
immediately without any further computation. If the value is not explicitly returned nor bound, the
returned value is undefined.

Example. The boolean negation function:
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function Bool notFn (Bool x);
if (x) notFn = False;
else notFn = True;

endfunction: notFn

Example. The boolean negation function, but using return instead:

function Bool notFn (Bool x);
if (x) return False;
else return True;

endfunction: notFn

Example. The factorial function, using a loop:

function int factorial (int n);
int f = 1, j = 0;
while (j < n)
begin
f = f * j;
j = j + 1;

end
factorial = f;

endfunction: factorial

Example. The factorial function, using recursion:

function int factorial (int n);
if (n <= 1) return (1);
else return (n * factorial (n - 1));

endfunction: factorial

8.8.1 Definition of functions by assignment

A function can also be defined using the following syntax.

functionProto ::= function type identifier ( [ functionFormals ] ) [ provisos ]
= expression ;

The part up to and including the provisos is the same as the standard syntax shown in Section 8.8.
Then, instead of a semicolon, we have an assignment to an expression that represents the function
body. The expression can of course use the function’s formal arguments, and it must have the same
type as the return type of the function.

Example 1. The factorial function, using recursion (from above:)

function int factorial (int n) = (n<=1 ? 1 : n * factorial(n-1));

Example 2. Turning a method into a function. The following function definition:

function int f1 (FIFO#(int) i);
return i.first();

endfunction

could be rewritten as:

function int f2(FIFO#(int) i) = i.first();
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8.8.2 Function types

The function type is required for functions defined at the top level of a package and for recursive
functions (such as the factorial examples above). You may choose to leave out the types within a
function definition at lower levels for non-recursive functions,

If not at the top level of a package, Example 2 from the previous section could be rewritten as:

function f1(i);
return i.first();

endfunction

or, if defining the function by assignment:

function f1 (i) = i.first();

Note that currently incomplete type information will be ignored. If, in the above example, partial
type information were provided, it would be the same as no type information being provided. This
may cause a type-checking error to be reported by the compiler.

function int f1(i) = i.first(); // The function type int is specified
// The argument type is not specified

9 Expressions

Expressions occur on the right-hand sides of variable assignments, on the left-hand and right-hand
side of register assignments, as actual parameters and arguments in module instantiation, function
calls, method calls, array indexing, and so on.

There are many kinds of primary expressions. Complex expressions are built using the conditional
expressions and unary and binary operators.

expression ::= condExpr
| operatorExpr
| exprPrimary

exprPrimary ::= identifier
| intLiteral
| realLiteral
| stringLiteral
| systemFunctionCall
| ( expression )
| · · · see other productions · · ·

9.1 Don’t-care expressions

When the value of an expression does not matter, a don’t-care expression can be used. It is written
with just a question mark and can be used at any type. The compiler will pick a suitable value.

exprPrimary ::= ?

A don’t-care expression is similar, but not identical to, the x value in Verilog, which represents an
unknown value. A don’t-care expression is unknown to the programmer, but represents a particular
fixed value chosen statically by the compiler.
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The programmer is encouraged to use don’t-care values where possible, both because it is useful
documentation and because the compiler can often choose values that lead to better circuits.

Example:

module mkDontCare ();

// instantiating registers where the initial value is "Dontcare"
Reg#(Bit#(4)) a <- mkReg(?);
Reg#(Bit#(4)) b <- mkReg(?);

Bool done = (a==b);
// defining a Variable with an initial value of "Dontcare"

Bool mybool = ?;
endmodule

9.2 Conditional expressions

Conditional expressions include the conditional operator and case expressions. The conditional
operator has the usual syntax:

condExpr ::= condPredicate ? expression : expression

condPredicate ::= exprOrCondPattern { &&& exprOrCondPattern }

exprOrCondPattern ::= expression
| expression matches pattern

Conditional expressions have the usual semantics. In an expression e1?e2:e3, e1 can be a boolean
expression. If it evaluates to True, then the value of e2 is returned; otherwise the value of e3 is
returned. More generally, e1 can include pattern matching, and this is described in Section 10, on
pattern matching

Example.

module mkCondExp ();

// instantiating registers
Reg#(Bit#(4)) a <- mkReg(0);
Reg#(Bit#(4)) b <- mkReg(0);

rule dostuff;
a <= (b>4) ? 2 : 10;

endrule
endmodule

Case expressions are described in Section 10, on pattern matching.

9.3 Unary and binary operators

operatorExpr ::= unop expression
| expression binop expression

Binary operator expressions are built using the unop and binop operators listed in the following
table, which are a subset of the operators in SystemVerilog. The operators are listed here in order
of decreasing precedence.
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Unary and Binary Operators in order of Precedence
Operator Associativity Comments

+ - ! ~ n/a Unary: plus, minus, logical not, bitwise invert
& n/a Unary: and bit reduction
~& n/a Unary: nand bit reduction
| n/a Unary: or bit reduction
~| n/a Unary: nor bit reduction
^ n/a Unary: xor bit reduction

^~ ~^ n/a Unary: xnor bit reduction
* / % Left multiplication, division, modulus
+ - Left addition, subtraction
<< >> Left left and right shift

<= >= < > Left comparison ops
== != Left equality, inequality

& Left bitwise and
^ Left bitwise xor

^~ ~^ Left bitwise equivalence (xnor)
| Left bitwise or
&& Left logical and
|| Left logical or

Constructs that do not have any closing token, such as conditional statements and expressions, have
lowest precedence so that, for example,

e1 ? e2 : e3 + e4

is parsed as follows:

e1 ? e2 : (e3 + e4)

and not as follows:

(e1 ? e2 : e3) + e4

9.4 Bit concatenation and selection

Bit concatenation and selection are expressed in the usual Verilog notation:

exprPrimary ::= bitConcat | bitSelect

bitConcat ::= { expression { , expression } }

bitSelect ::= exprPrimary [ expression [ : expression ] ]

In a bit concatenation, each component must have the type bit[m:0] (m≥0, width m + 1). The
result has type bit[n:0] where n+ 1 is the sum of the individual bit-widths (n≥0).

In a bit or part selection, the exprPrimary must have type bit[m:0] (m≥0), and the index expres-
sions must have an acceptable index type (e.g. Integer, Bit#(n), Int#(n), or UInt#(n)). With a
single index ([e]), a single bit is selected, and the output is of type bit[1:0]. With two indexes
([e1:e2]), e1 must be ≥ e2, and the indexes are inclusive, i.e., the bits selected go from the low
index to the high index, inclusively. The selection has type bit[k:0] where k + 1 is the width of
the selection and bit[0] is the least significant bit. Since the index expressions can in general be
dynamic values (e.g., read out of a register), the type-checker may not be able to figure out this
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type, in which case it may be necessary to use a type assertion to tell the compiler the desired result
type (see Section 9.10). The type specified by the type assertion need not agree with width specified
by the indexes— the system will truncate from the left (most-significant bits) or pad with zeros to
the left as necessary.

Example:

module mkBitConcatSelect ();

Bit#(3) a = 3’b010; //a = 010
Bit#(7) b = 7’h5e; //b = 1011110

Bit#(10) abconcat = {a,b}; // = 0101011110
Bit#(4) bselect = b[6:3]; // = 1011

endmodule

In BSV programs one will sometimes encounter the Bit#(0) type. One common idiomatic example
is the type Maybe#(Bit#(0)) (see the Maybe#() type in Section 7.3). Here, the type Bit#(0) is just
used as a place holder, when all the information is being carried by the Maybe structure.

9.5 Begin-end expressions

A begin-end expression is like an “inline” function, i.e., it allows one to express a computation using
local variables and multiple variable assignments and then finally to return a value. A begin-end
expression is analogous to a “let block” commonly found in functional programming languages. It
can be used in any context where an expression is required.

exprPrimary ::= beginEndExpr

beginEndExpr ::= begin [ : identifier ]
{ beginEndExprStmt }
expression

end [ : identifier ]

Optional identifier labels are currently used for documentation purposes only. The statements con-
tained in the block can contain local variable declarations and all the other kinds of statements.

beginEndExprStmt ::= varDecl | varAssign
| functionDef
| functionStmt
| systemTaskStmt
| ( expression )

Example:

int z;
z = (begin

int x2 = x * x; // x2 is local, x from surrounding scope
int y2 = y * y; // y2 is local, y from surrounding scope
(x2 + y2); // returned value (sum of squares)

end);

9.6 Actions and action blocks

Any expression that is intended to act on the state of the circuit (at circuit execution time) is called
an action and has type Action. The type Action is special, and cannot be redefined.
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Primitive actions are provided as methods in interfaces to predefined objects (such as registers or
arrays). For example, the predefined interface for registers includes a ._write() method of type
Action:

interface Reg#(type a);
method Action _write (a x);
method a _read ();

endinterface: Reg

Section 8.4 describes special syntax for register reads and writes using non-blocking assignment so
that most of the time one never needs to mention these methods explicitly.

The programmer can create new actions only by building on these primitives, or by using Verilog
modules. Actions are combined by using action blocks:

exprPrimary ::= actionBlock

actionBlock ::= action [ : identifier ]
{ actionStmt }

endaction [ : identifier ]

actionStmt ::= <action>If | <action>Case
| <action>BeginEndStmt
| <action>For
| <action>While
| regWrite
| varDecl | varAssign
| varDo | varDeclDo
| functionStmt
| systemTaskStmt
| ( expression )
| actionBlock

The action block can be labelled with an identifier, and the endaction keyword can optionally be
labelled again with this identifier. Currently this is just for documentation purposes.

Example:

Action a;
a = (action

x <= x+1;
y <= z;

endaction);

The Standard Prelude package defines the trivial action that does nothing:

Action noAction;

which is equivalent to the expression:

action
endaction

The Action type is actually a special case of the more general type ActionValue, described in the
next section:

typedef ActionValue#(void) Action;
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9.7 Actionvalue blocks

Note: this is an advanced topic and can be skipped on first reading.

Actionvalue blocks express the concept of performing an action and simultaneously returning a value.
For example, the pop() method of a stack interface may both pop a value from a stack (the action)
and return what was at the top of the stack (the value). ActionValue is a predefined abstract type:

ActionValue#(a)

The type parameter a represents the type of the returned value. The type ActionValue is special,
and cannot be redefined.

Actionvalues are created using actionvalue blocks. The statements in the block contain the actions
to be performed, and a return statement specifies the value to be returned.

exprPrimary ::= actionValueBlock

actionValueBlock ::= actionvalue [ : identifier ]
{ actionValueStmt }

endactionvalue [ : identifier ]

actionValueStmt ::= <actionValue>If | <actionValue>Case
| <actionValue>BeginEndStmt
| <actionValue>For
| <actionValue>While
| regWrite
| varDecl | varAssign
| varDo | varDeclDo
| functionStmt
| systemTaskStmt
| ( expression )
| returnStmt

Given an actionvalue av, we use a special notation to perform the action and yield the value:

varDeclDo ::= type identifier <- expression ;

varDo ::= identifier <- expression ;

The first rule above declares the identifier, performs the actionvalue represented by the expression,
and assigns the returned value to the identifier. The second rule is similar and just assumes the
identifier has previously been declared.

Example. A stack:

interface IntStack;
method Action push (int x);
method ActionValue#(int) pop();

endinterface: IntStack

...
IntStack s1;

...
IntStack s2;

...
action

int x <- s1.pop; -- A
s2.push (x+1); -- B

endaction
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In line A, we perform a pop action on stack s1, and the returned value is bound to x. If we wanted
to discard the returned value, we could have omitted the “x <-” part. In line B, we perform a push
action on s2.

Note the difference between this statement:

x <- s1.pop;

and this statement:

z = s1.pop;

In the former, x must be of type int; the statement performs the pop action and x is bound to the
returned value. In the latter, z must be a method of type (ActionValue#(int)) and z is simply
bound to the method s1.pop. Later, we could say:

x <- z;

to perform the action and assign the returned value to x. Thus, the = notation simply assigns the
left-hand side to the right-hand side. The <- notation, which is only used with actionvalue right-hand
sides, performs the action and assigns the returned value to the left-hand side.

Example: Using an actionvalue block to define a pop in a FIFO.

import FIFO :: *;

// Interface FifoWithPop combines first with deq
interface FifoWithPop#(type t);

method Action enq(t data);
method Action clear;
method ActionValue#(t) pop;

endinterface

// Data is an alias of Bit#(8)
typedef Bit#(8) Data;

// The next function makes a deq and first from a fifo and returns an actionvalue block
function ActionValue#(t) fifoPop(FIFO#(t) f) provisos(Bits#(t, st));

return(
actionvalue

f.deq;
return f.first;

endactionvalue
);

endfunction

// Module mkFifoWithPop
(* synthesize, always_ready = "clear" *)
module mkFifoWithPop(FifoWithPop#(Data));

// A fifo of depth 2
FIFO#(Data) fifo <- mkFIFO;

// methods
method enq = fifo.enq;
method clear = fifo.clear;
method pop = fifoPop(fifo);

endmodule
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9.8 Function calls

Function calls are expressed in the usual notation, i.e., a function applied to its arguments, listed in
parentheses. If a function does not have any arguments, the parentheses are optional.

exprPrimary ::= functionCall

functionCall ::= exprPrimary [ ( [ expression { , expression } ] ) ]

A function which has a result type of Action can be used as a statement when in the appropriate
context.

functionStmt ::= functionCall ;

Note that the function position is specified as exprPrimary, of which identifier is just one special
case. This is because in BSV functions are first-class objects, and so the function position can be
an expression that evaluates to a function value. Function values and higher-order functions are
described in Section 14.2.

Example:

module mkFunctionCalls ();

function Bit#(4) everyOtherBit(Bit#(8) a);
let result = {a[7], a[5], a[3], a[1]};
return result;

endfunction

function Bool isEven(Bit#(8) b);
return (b[0] == 0);

endfunction

Reg#(Bit#(8)) a <- mkReg(0);
Reg#(Bit#(4)) b <- mkReg(0);

rule doSomething (isEven(a)); // calling "isEven" in predicate: fire if a is an even number
b <= everyOtherBit(a); // calling a function in the rule body

endrule
endmodule

9.9 Method calls

Method calls are expressed by selecting a method from an interface using dot notation, and then
applying it to arguments, if any, listed in parentheses. If the method does not have any arguments
the parentheses are optional.

exprPrimary ::= methodCall

methodCall ::= exprPrimary . identifier [ ( [ expression { , expression } ] ) ]

The exprPrimary is any expression that represents an interface, of which identifier is just one special
case. This is because in BSV interfaces are first-class objects. The identifier must be a method in
the supplied interface. Example:

// consider the following stack interface

interface StackIFC #(type data_t);
method Action push(data_t data); // an Action method with an argument
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method ActionValue#(data_t) pop(); // an actionvalue method
method data_t first; // a value method

endinterface

// when instantiated in a top module
module mkTop ();
StackIFC#(int) stack <- mkStack; // instantiating a stack module
Reg#(int) counter <- mkReg(0);// a counter register
Reg#(int) result <- mkReg(0);// a result register

rule pushdata;
stack.push(counter); // calling an Action method

endrule

rule popdata;
let x <- stack.pop; // calling an ActionValue method
result <= x;

endrule

rule readValue;
let temp_val = stack.first; // calling a value method

endrule

rule inc_counter;
counter <= counter +1;

endrule

endmodule

9.10 Static type assertions

We can assert that an expression must have a given type by using Verilog’s “type cast” notation:

exprPrimary ::= typeAssertion

typeAssertion ::= type ’ bitConcat
| type ’ ( expression )

bitConcat ::= { expression { , expression } }

In most cases type assertions are used optionally just for documentation purposes. Type assertions
are necessary in a few places where the compiler cannot work out the type of the expression (an
example is a bit-selection with run-time indexes).

In BSV although type assertions use Verilog’s type cast notation, they are never used to change an
expression’s type. They are used either to supply a type that the compiler is unable to determine by
itself, or for documentation (to make the type of an expression apparent to the reader of the source
code).

9.11 Struct and union expressions

Section 7.3 describes how to define struct and union types. Section 8.1 describes how to declare
variables of such types. Section 8.2 describes how to update variables of such types.
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9.11.1 Struct expressions

To create a struct value, e.g., to assign it to a struct variable or to pass it an actual argument for a
struct formal argument, we use the following notation:

exprPrimary ::= structExpr

structExpr ::= Identifier { memberBind { , memberBind } }

memberBind ::= identifier : expression

The leading Identifier is the type name to which the struct type was typedefed. Each memberBind
specifies a member name (identifier) and the value (expression) it should be bound to. The members
need not be listed in the same order as in the original typedef. If any member name is missing, that
member’s value is undefined.

Semantically, a structExpr creates a struct value, which can then be bound to a variable, passed as
an argument, stored in a register, etc.

Example (using the processor example from Section 7.3):

typedef struct { Addr pc; RegFile rf; Memory mem; } Proc;
...
Proc cpu;

cpu = Proc { pc : 0, rf : ... };

In this example, the mem field is undefined since it is omitted from the struct expression.

9.11.2 Struct member selection

A member of a struct value can be selected with dot notation.

exprPrimary ::= exprPrimary . identifier

Example (using the processor example from Section 7.3):

cpu.pc

Since the same member name can occur in multiple types, the compiler uses type information to
resolve which member name you mean when you do a member selection. Occasionally, you may
need to add a type assertion to help the compiler resolve this.

Update of struct variables is described in Section 8.2.

9.11.3 Tagged union expressions

To create a tagged union value, e.g., to assign it to a tagged union variable or to pass it an actual
argument for a tagged union formal argument, we use the following notation:

exprPrimary ::= taggedUnionExpr

taggedUnionExpr ::= tagged Identifier { memberBind { , memberBind } }
| tagged Identifier exprPrimary

memberBind ::= identifier : expression

The leading Identifier is a member name of a union type, i.e., it specifies which variant of the union
is being constructed.
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The first form of taggedUnionExpr can be used when the corresponding member type is a struct.
In this case, one directly lists the struct member bindings, enclosed in braces. Each memberBind
specifies a member name (identifier) and the value (expression) it should be bound to. The members
do not need to be listed in the same order as in the original struct definition. If any member name
is missing, that member’s value is undefined.

Otherwise, one can use the second form of taggedUnionExpr , which is the more general notation,
where exprPrimary is directly an expression of the required member type.

Semantically, a taggedUnionExpr creates a tagged union value, which can then be bound to a variable,
passed as an argument, stored in a register, etc.

Example (extending the previous one-hot example):

typedef union tagged { int Tagi; OneHot Tagoh; } U deriving (Bits);
...
U x; // these lines are (e.g.) in a module body.
x = tagged Tagi 23;
...
x = tagged Tagoh (encodeOneHot (23));

Example (extending the previous processor example):

typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {

bit [4:0] regAddr;
bit [4:0] regIndex;

} Indexed;
} InstrOperand;
...
InstrOperand orand;
...
orand = tagged Indexed { regAddr:3, regIndex:4 };

9.11.4 Tagged union member selection

A tagged union member can be selected with the usual dot notation. If the tagged union value does
not have the tag corresponding to the member selection, the value is undefined. Example:

InstrOperand orand;
...
... orand.Indexed.regAddr ...

In this expression, if orand does not have the Indexed tag, the value is undefined. Otherwise, the
regAddr field of the contained struct is returned.

Selection of tagged union members is more often done with pattern matching, which is discussed in
Section 10.

Update of tagged union variables is described in Section 8.2.
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9.12 Interface expressions

Note: this is an advanced topic that may be skipped on first reading.

Section 5.2 described top-level interface declarations. Section 5.5 described definition of the interface
offered by a module, by defining each of the methods in the interface, using methodDef s. That is
the most common way of defining interfaces, but it is actually just a convenient alternative notation
for the more general mechanism described in this section. In particular, method definitions in a
module are a convenient alternative notation for a return statement that returns an interface value
specified by an interface expression.

moduleStmt ::= returnStmt

returnStmt ::= return expression ;

expression ::= · · · see other productions · · ·
| exprPrimary

exprPrimary ::= interfaceExpr

interfaceExpr ::= interface Identifier ;
{ interfaceStmt }

endinterface [ : Identifier ]

interfaceStmt ::= varDecl | varAssign
| methodDef

An interface expression defines a value of an interface type. The Identifier must be an interface type
in an existing interface type definition.

Example. Defining the interface for a stack of depth one (using a register for storage):

module mkStack#(type a) (Stack#(a));
Reg#(Maybe#(a)) r;
...
Stack#(a) stkIfc;
stkIfc = interface Stack;

method push (x) if (r matches tagged Invalid);
r <= tagged Valid x;

endmethod: push

method pop if (r matches tagged Valid .*);
r <= tagged Invalid

endmethod: pop

method top if (r matches tagged Valid .v);
return v

endmethod: top
endinterface: Stack

return stkIfc;
endmodule: mkStack

The Maybe type is described in Section 7.3. Note that an interface expression looks similar to an
interface declaration (Section 5.2) except that it does not list type parameters and it contains method
definitions instead of method prototypes.

Interface values are first-class objects. For example, this makes it possible to write interface trans-
formers that convert one form of interface into another. Example:
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interface FIFO#(type a); // define interface type FIFO
method Action enq (a x);
method Action deq;
method a first;

endinterface: FIFO

interface Get#(type a); // define interface type Get
method ActionValue#(a) get;

endinterface: Get

// Function to transform a FIFO interface into a Get interface

function Get#(a) fifoToGet (FIFO#(a) f);
return (interface Get

method get();
actionvalue

f.deq();
return f.first();

endactionvalue
endmethod: get

endinterface);
endfunction: fifoToGet

9.12.1 Differences between interfaces and structs

Interfaces are similar to structs in the sense that both contain a set of named items—members in
structs, methods in interfaces. Both are first-class values—structs are created with struct expressions,
and interfaces are created with interface expressions. A named item is selected from both using the
same notation—struct.member or interface.method.

However, they are different in the following ways:

• Structs cannot contain methods; interfaces can contain nothing but methods (and subinter-
faces).

• Struct members can be updated; interface methods cannot.

• Struct members can be selected; interface methods cannot be selected, they can only be invoked
(inside rules or other interface methods).

• Structs can be used in pattern matching; interfaces cannot.

9.13 Rule expressions

Note: This is an advanced topic that may be skipped on first reading.

Section 5.6 described definition of rules in a module. That is the most common way to define rules,
but it is actually just a convenient alternative notation for the more general mechanism described
in this section. In particular, rule definitions in a module are a convenient alternative notation for
a call to the built-in addRules() function passing it an argument value of type Rules. Such a value
is in general created using a rule expression. A rule expression has type Rules and consists of a
collection of individual rule constructs.

exprPrimary ::= rulesExpr
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rulesExpr ::= [ attributeInstances ]
rules [ : identifier ]

rulesStmt
endrules [ : identifier ]

rulesStmt ::= varDecl | varAssign
| rule

A rule expression is optionally preceded by an attributeInstances; these are described in Section 13.3.
A rule expression is a block, bracketed by rules and endrules keywords, and optionally labelled
with an identifier. Currently the identifier is used only for documentation. The individual rule
construct is described in Section 5.6.

Example. Executing a processor instruction:

rules
Word instr = mem[pc];

rule instrExec;
case (instr) matches

tagged Add { .r1, .r2, .r3 }: begin
pc <= pc+1;
rf[r1] <= rf[r2] + rf[r3];

end;
tagged Jz {.r1, .r2} : if (r1 == 0)

begin
pc <= r2;

end;
endcase

endrule
endrules

Example. Defining a counter:

// IfcCounter with read method
interface IfcCounter#(type t);
method t readCounter;

endinterface

// Definition of CounterType
typedef Bit#(16) CounterType;

// The next function returns the rule addOne
function Rules incReg(Reg#(CounterType) a);
return( rules
rule addOne;

a <= a + 1;
endrule

endrules);
endfunction

// Module counter using IfcCounter interface
(* synthesize,

79



Reference Guide Bluespec SystemVerilog

reset_prefix = "reset_b",
clock_prefix = "counter_clk",
always_ready, always_enabled *)

module counter (IfcCounter#(CounterType));

// Reg counter gets reset to 1 asynchronously with the RST signal
Reg#(CounterType) counter <- mkRegA(1);

// Add incReg rule to increment the counter
addRules(incReg(asReg(counter)));

// Next rule resets the counter to 1 when it reaches its limit
rule resetCounter (counter == ’1);
action
counter <= 0;

endaction
endrule

// Output the counters value
method CounterType readCounter;
return counter;

endmethod

endmodule

10 Pattern matching

Pattern matching provides a visual and succinct notation to compare a value against structs, tagged
unions and constants, and to access members of structs and tagged unions. Pattern matching can be
used in case statements, case expressions, if statements, conditional expressions, rule conditions,
and method conditions.

pattern ::= . identifier Pattern variable
| .* Wildcard
| constantPattern Constant
| taggedUnionPattern Tagged union
| structPattern Struct
| tuplePattern Tuple

constantPattern ::= intLiteral
| Identifier Enum label

taggedUnionPattern ::= tagged Identifier [ pattern ]

structPattern ::= tagged Identifier { identifier : pattern { , identifier : pattern } }

tuplePattern ::= { pattern { , pattern } }

A pattern is a nesting of tagged union and struct patterns with the leaves consisting of pattern
variables, constant expressions, and the wildcard pattern .*.

In a pattern .x, the variable x is declared at that point as a pattern variable, and is bound to the
corresponding component of the value being matched.

A constant pattern is an integer literal, or an enumeration label (such as True or False). Integer
literals can include the wildcard character ? (example: 4’b00??).
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A tagged union pattern consists of the tagged keyword followed by an identifier which is a union
member name. If that union member is not a void member, it must be followed by a pattern for
that member.

In a struct pattern, the Identifier following the tagged keyword is the type name of the struct as
given in its typedef declaration. Within the braces are listed, recursively, the member name and a
pattern for each member of the struct. The members can be listed in any order, and members can
be omitted.

A tuple pattern is enclosed in braces and lists, recursively, a pattern for each member of the tuple
(tuples are described in Section 12.4).

A pattern always occurs in a context of known type because it is matched against an expression of
known type. Recursively, its nested patterns also have known type. Thus a pattern can always be
statically type-checked.

Each pattern introduces a new scope; the extent of this scope is described separately for each of
the contexts in which pattern matching may be used. Each pattern variable is implicitly declared
as a new variable within the pattern’s scope. Its type is uniquely determined by its position in the
pattern. Pattern variables must be unique in the pattern, i.e., the same pattern variable cannot be
used in more than one position in a single pattern.

In pattern matching, the value V of an expression is matched against a pattern. Note that static
type checking ensures that V and the pattern have the same type. The result of a pattern match is:

• A boolean value, True, if the pattern match succeeds, or False, if the pattern match fails.

• If the match succeeds, the pattern variables are bound to the corresponding members from V ,
using ordinary assignment.

Each pattern is matched using the following simple recursive rule:

• A pattern variable always succeeds (matches any value), and the variable is bound to that
value (using ordinary procedural assignment).

• The wildcard pattern .* always succeeds.

• A constant pattern succeeds if V is equal to the value of the constant. Integer literals can
include the wildcard character ?. An integer literal containing a wildcard will match any
constant obtained by replacing each wildcard character by a valid digit. For example, ’h12?4
will match any constant between ’h1204 and ’h12f4 inclusive.

• A tagged union pattern succeeds if the value has the same tag and, recursively, if the nested
pattern matches the member value of the tagged union.

• A struct or tuple pattern succeeds if, recursively, each of the nested member patterns matches
the corresponding member values in V . In struct patterns with named members, the textual
order of members does not matter, and members may be omitted. Omitted members are
ignored.

Conceptually, if the value V is seen as a flattened vector of bits, the pattern specifies the following:
which bits to match, what values they should be matched with and, if the match is successful, which
bits to extract and bind to the pattern identifiers.
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10.1 Case statements with pattern matching

Case statements can occur in various contexts, such as in modules, function bodies, action and
actionValue blocks, and so on. Ordinary case statements are described in Section 8.6. Here we
describe pattern-matching case statements.

<ctxt>Case ::= case ( expression ) matches
{ <ctxt>CasePatItem }
[ <ctxt>DefaultItem ]

endcase

<ctxt>CasePatItem ::= pattern { &&& expression } : <ctxt>Stmt

<ctxt>DefaultItem ::= default [ : ] <ctxt>Stmt

The keyword matches after the main expression (following the case keyword) signals that this is a
pattern-matching case statement instead of an ordinary case statement.

Each case item contains a left-hand side and a right-hand side, separated by a colon. The left-hand
side contains a pattern and an optional filter (&&& followed by a boolean expression). The right-hand
side is a statement. The pattern variables in a pattern may be used in the corresponding filter and
right-hand side. The case items may optionally be followed, finally, by a default item (the colon
after the default keyword is optional).

The value of the main expression (following the case keyword) is matched against each case item, in
the order given, until an item is selected. A case item is selected if and only if the value matches the
pattern and the filter (if present) evaluates to True. Note that there is a left-to-right sequentiality
in each item— the filter is evaluated only if the pattern match succeeds. This is because the filter
expression may use pattern variables that are meaningful only if the pattern match succeeds. If none
of the case items matches, and a default item is present, then the default item is selected.

If a case item (or the default item) is selected, the right-hand side statement is executed. Note that
the right-hand side statement may use pattern variables bound on the left hand side. If none of the
case items succeed, and there is no default item, no statement is executed.

Example (uses the Maybe type definition of Section 7.3):

case (f(a)) matches
tagged Valid .x : return x;
tagged Invalid : return 0;

endcase

First, the expression f(a) is evaluated. In the first arm, the value is checked to see if it has the form
tagged Valid .x, in which case the pattern variable x is assigned the component value. If so, then
the case arm succeeds and we execute return x. Otherwise, we fall through to the second case arm,
which must match since it is the only other possibility, and we return 0.

Example:

typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {

bit [4:0] regAddr;
bit [4:0] regIndex;

} Indexed;
} InstrOperand;
...
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InstrOperand orand;
...

case (orand) matches
tagged Register .r : x = rf [r];
tagged Literal .n : x = n;
tagged Indexed {regAddr: .ra, regIndex: .ri} : x = mem[ra+ri];

endcase

Example:

Reg#(Bit#(16)) rg <- mkRegU;
rule r;
case (rg) matches
’b_0000_000?_0000_0000: $display("1");
’o_0?_00: $display("2");
’h_?_0: $display("3");
default: $display("D");

endcase
endrule

10.2 Case expressions with pattern matching

caseExpr ::= case ( expression ) matches
{ caseExprItem }

endcase

caseExprItem ::= pattern [ &&& expression ] : expression
| default [ : ] expression

Case expressions with pattern matching are similar to case statements with pattern matching. In
fact, the process of selecting a case item is identical, i.e., the main expression is evaluated and
matched against each case item in sequence until one is selected. Case expressions can occur in
any expression context, and the right-hand side of each case item is an expression. The whole case
expression returns a value, which is the value of the right-hand side expression of the selected item.
It is an error if no case item is selected and there is no default item.

In contrast, case statements can only occur in statement contexts, and the right-hand side of each
case arm is a statement that is executed for side effect. The difference between case statements and
case expressions is analogous to the difference between if statements and conditional expressions.

Example. Rules and rule composition for Pipeline FIFO using case statements with pattern match-
ing.

package PipelineFIFO;

import FIFO::*;

module mkPipelineFIFO (FIFO#(a))
provisos (Bits#(a, sa));

// STATE ----------------

Reg#(Maybe#(a)) taggedReg <- mkReg (tagged Invalid); // the FIFO
RWire#(a) rw_enq <- mkRWire; // enq method signal
RWire#(Bit#(0)) rw_deq <- mkRWire; // deq method signal
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// RULES and RULE COMPOSITION ----------------

Maybe#(a) taggedReg_post_deq = case (rw_deq.wget) matches
tagged Invalid : return taggedReg;
tagged Valid .x : return tagged Invalid;

endcase;

Maybe#(a) taggedReg_post_enq = case (rw_enq.wget) matches
tagged Invalid : return taggedReg_post_deq;
tagged Valid .v : return tagged Valid v;

endcase;

rule update_final (isValid(rw_enq.wget) || isValid(rw_deq.wget));
taggedReg <= taggedReg_post_enq;

endrule

10.3 Pattern matching in if statements and other contexts

If statements are described in Section 8.6. As the grammar shows, the predicate (condPredicate)
can be a series of pattern matches and expressions, separated by &&&. Example:

if ( e1 matches p1 &&& e2 &&& e3 matches p3 )
stmt1

else
stmt2

Here, the value of e1 is matched against the pattern p1; if it succeeds, the expression e2 is evaluated;
if it is true, the value of e3 is matched against the pattern p3; if it succeeds, stmt1 is executed,
otherwise stmt2 is executed. The sequential order is important, because e2 and e3 may use pattern
variables bound in p1, and stmt1 may use pattern variables bound in p1 and p3, and pattern variables
are only meaningful if the pattern matches. Of course, stmt2 cannot use any of the pattern variables,
because none of them may be meaningful when it is executed.

In general the condPredicate can be a series of terms, where each term is either a pattern match
or a filter expression (they do not have to alternate). These are executed sequentially from left to
right, and the condPredicate succeeds only if all of them do. In each pattern match e matches p, the
value of the expression e is matched against the pattern p and, if successful, the pattern variables are
bound appropriately and are available for the remaining terms. Filter expressions must be boolean
expressions, and succeed if they evaluate to True. If the whole condPredicate succeeds, the bound
pattern variables are available in the corresponding “consequent” arm of the construct.

The following contexts also permit a condPredicate cp with pattern matching:

• Conditional expressions (Section 9.2):

cp ? e2 : e3

The pattern variables from cp are available in e2 but not in e3.

• Conditions of rules (Sections 5.6 and 9.13):

rule r (cp);
... rule body ...

endrule

The pattern variables from cp are available in the rule body.
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• Conditions of methods (Sections 5.5 and 9.12):

method t f (...) if (cp);
... method body ...

endmethod

The pattern variables from cp are available in the method body.

Example. Continuing the Pipeline FIFO example from the previous section (10.2).

// INTERFACE ----------------

method Action enq(v) if (taggedReg_post_deq matches tagged Invalid);
rw_enq.wset(v);

endmethod

method Action deq() if (taggedReg matches tagged Valid .v);
rw_deq.wset(?);

endmethod

method first() if (taggedReg matches tagged Valid .v);
return v;

endmethod

method Action clear();
taggedReg <= tagged Invalid;

endmethod

endmodule: mkPipelineFIFO

endpackage: PipelineFIFO

10.4 Pattern matching assignment statements

Pattern matching can be used in variable assignments for convenient access to the components of a
tuple or struct value.

varAssign ::= match pattern = expression ;

The pattern variables in the left-hand side pattern are declared at this point and their scope extends
to subsequent statements in the same statement sequence. The types of the pattern variables are
determined by their position in the pattern.

The left-hand side pattern is matched against the value of the right-hand side expression. On a
successful match, the pattern variables are assigned the corresponding components in the value.

Example:

Reg#(Bit#(32)) a <- mkReg(0);
Tuple2#(Bit#(32), Bool) data;

rule r1;
match {.in, .start} = data;
//using "in" as a local variable
a <= in;

endrule
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11 Finite state machines

BSV contains a powerful and convenient notation for expressing finite state machines (FSMs). FSMs
are essentially well-structured processes involving sequencing, parallelism, conditions and loops, with
a precise compositional model of time. In principle, FSMs can be coded with rules, which are strictly
more powerful, but the FSM sublanguage herein provides a succinct notation for FSM structures
and automates all the generation and management of the actual FSM state. In fact, the BSV
compiler translates all the constructs described here internally into rules. In particular, the primitive
statements in these FSMs are standard actions (Section 9.6), obeying all the scheduling semantics
of actions (Section 6.2).

First, one uses the Stmt sublanguage, described in Section C.6.1 to compose the actions of an
FSM using sequential, parallel, conditional and looping structures. This sublanguage is within the
expression syntactic category, i.e., a term in the sublanguage is an expression whose value is of type
Stmt. This value can be bound to identifiers, passed as arguments and results of functions, held in
static data structures, etc., like any other value. Finally, the FSM can be instantiated into hardware,
multiple times if desired, by passing the Stmt value to the module constructor mkFSM. The resulting
module interface has type FSM, which has methods to start the FSM and to wait until it completes.

In order to use this sublanguage, it is necessary to import the StmtFSM package, which is described
in more detail in Section C.6.1.

12 Important primitives

These primitives are available via the Standard Prelude package and other standard libraries. See
also Appendix C more useful libraries.

12.1 The types bit and Bit

The type bit[m:0] and its synonym Bit#(Mplus1) represents bit-vectors of width m+ 1, provided
the type Mplus1 has been suitably defined. The lower (lsb) index must be zero. Example:

bit [15:0] zero;
zero = 0

typedef bit [50:0] BurroughsWord;

Syntax for bit concatenation and selection is described in Section 9.4.

There is also a useful function, split, to split a bit-vector into two sub-vectors:

function Tuple2#(Bit#(m), Bit#(n)) split (Bit#(mn) xy)
provisos (Add#(m,n,mn));

It takes a bit-vector of size mn and returns a 2-tuple (a pair, see Section 12.4) of bit-vectors of size
m and n, respectively. The proviso expresses the size constraints using the built-in Add type class.

The function split is polymorphic, i.e, m and n may be different in different applications of the func-
tion, but each use is fully type-checked statically, i.e., the compiler verifies the proviso, performing
any calculations necessary to do so.
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12.1.1 Bit-width compatibility

BSV is currently very strict about bit-width compatibility compared to Verilog and SystemVerilog,
in order to reduce the possibility of unintentional errors. In BSV, the types bit[m:0] and bit[n:0]
are compatible only if m = n. For example, an attempt to assign from one type to the other, when
m6=n, will be reported by the compiler as a type-checking error—there is no automatic padding or
truncation. The Standard Prelude package (see Section B) contains functions such as extend() and
truncate(), which may be used explicitly to extend or truncate to a required bit-width. These
functions, being overloaded over all bit widths, are convenient to use, i.e., you do not have to
constantly calculate the amount by which to extend or truncate; the type checker will do it for you.

12.2 UInt, Int, int and Integer

The types UInt#(n) and Int#(n), respectively, represent unsigned and signed integer data types of
width n bits. These types have all the operations from the type classes (overloading groups) Bits,
Literal, Eq, Arith, Ord, Bounded, Bitwise, BitReduction, and BitExtend. (See Appendix B for
the specifications of these type classes and their associated operations.)

Note that the types UInt and Int are not really primitive; they are defined completely in BSV.

The type int is just a synonym for Int#(32).

The type Integer represents unbounded integers. Because they are unbounded, they are only used
to represent static values used during static elaboration. The overloaded function fromInteger
allows conversion from an Integer to various other types.

12.3 String

The type String is defined in the Standard Prelude package (B.2.7). Strings are mostly used
in system tasks (such as $display). Strings can be concatenated using the + infix operator or,
equivalently, the strConcat function. Strings can be tested for equality and inequality using the ==
and != operators. String literals, written in double-quotes, are described in Section 2.5.

12.4 Tuples

It is frequently necessary to group a small number of values together, e.g., when returning multiple
results from a function. Of course, one could define a special struct type for this purpose, but BSV
predefines a number of structs called tuples that are convenient:

typedef struct {a _1; b _2;} Tuple2#(type a, type b) deriving (Bits,Eq,Bounded);
typedef ... Tuple3#(type a, type b, type c) ...;
typedef ... ... ...;
typedef ... Tuple8#(type a, ..., type h) ...;

Values of these types can be created by applying a predefined family of constructor functions:

tuple2 (e1, e2)
tuple3 (e1, e2, e3)
...
tuple8 (e1, e2, e3, ..., e8)

where the expressions eJ evaluate to the component values of the tuples. The tuple types are defined
in the Standard Prelude package (B.2.12).

Components of tuples can be extracted using a predefined family of selector functions:
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tpl_1 (e)
tpl_2 (e)
...
tpl_8 (e)

where the expression e evaluates to tuple value. Of course, only the first two are applicable to
Tuple2 types, only the first three are applicable to Tuple3 types, and so on.

In using a tuple component selector, it is sometimes necessary to use a static type assertion to help
the compiler work out the type of the result. Example:

UInt#(6)’(tpl_2 (e))

Tuple components are more conveniently selected using pattern matching. Example:

Tuple2#(int, Bool) xy;
...

case (xy) matches
{ .x, .y } : ... use x and y ...

endcase

12.5 Registers

The most elementary module available in BSV is the register (B.4), which has a Reg interface.
Registers are instantiated using the mkReg module, whose single parameter is the initial value of the
register. Registers can also be instantiated using the mkRegU module, which takes no parameters
(don’t-care initial value). The Reg interface type and the module types are shown below.

interface Reg#(type a);
method Action _write (a x);
method a _read;

endinterface: Reg

module mkReg#(a initVal) (Reg#(a))
provisos (Bits#(a, sa));

module mkRegU (Reg#(a))
provisos (Bits#(a, sa));

Registers are polymorphic, i.e., in principle they can hold a value of any type but, of course, ulti-
mately registers store bits. Thus, the provisos on the modules indicate that the type must be in the
Bits type class (overloading group), i.e., the operations pack() and unpack() must be defined on
this type to convert into to bits and back.

Section 8.4 describes special notation whereby one rarely uses the _write() and _read methods
explicitly. Instead, one more commonly uses the traditional non-blocking assignment notation for
writes and, for reads, one just mentions the register interface in an expression.

Since mentioning the register interface in an expression is shorthand for applying the _read method,
BSV also provides a notation for overriding this implicit read, producing an expression representing
the register interface itself:

asReg (r)
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Since it is also occasionally desired to have automatically read interfaces that are not registers, BSV
also provides a notation for more general suppression of read desugaring, producing an expression
that always represents an interface itself:

asIfc(ifc)

12.6 FIFOs

Package FIFO (C.2.2) defines several useful interfaces and modules for FIFOs:

interface FIFO#(type a);
method Action enq (a x);
method Action deq;
method a first;
method Action clear;

endinterface: FIFO

module mkFIFO (FIFO#(a))
provisos (Bits#(a, as));

module mkSizedFIFO#(Integer depth) (FIFO#(a))
provisos (Bits#(a, as));

The FIFO interface type is polymorphic, i.e., the FIFO contents can be of any type a. However,
since FIFOs ultimately store bits, the content type a must be in the Bits type class (overloading
group); this is specified in the provisos for the modules.

The module mkFIFO leaves the capacity of the FIFO unspecified (the number of entries in the FIFO
before it becomes full).

The module mkSizedFIFO takes the desired capacity of the FIFO explicitly as a parameter.

Of course, when compiled, mkFIFO will pick a particular capacity, but for formal verification purposes
it is useful to leave this undetermined. It is often useful to be able to prove the correctness of a design
without relying on the capacity of the FIFO. Then the choice of FIFO depth can only affect circuit
performance (speed, area) and cannot affect functional correctness, so it enables one to separate the
questions of correctness and “performance tuning.” Thus, it is good design practice initially to use
mkFIFO and address all functional correctness questions. Then, if performance tuning is necessary,
it can be replaced with mkSizedFIFO.

12.7 FIFOFs

Package FIFOF (C.2.2) defines several useful interfaces and modules for FIFOs. The FIFOF interface
is like FIFO, but it also has methods to test whether the FIFO is full or empty:

interface FIFOF#(type a);
method Action enq (a x);
method Action deq;
method a first;
method Action clear;
method Bool notFull;
method Bool notEmpty;

endinterface: FIFOF
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module mkFIFOF (FIFOF#(a))
provisos (Bits#(a, as));

module mkSizedFIFOF#(Integer depth) (FIFOF#(a))
provisos (Bits#(a, as));

The module mkFIFOF leaves the capacity of the FIFO unspecified (the number of entries in the FIFO
before it becomes full). The module mkSizedFIFOF takes the desired capacity of the FIFO as an
argument.

12.8 System tasks and functions

BSV supports a number of Verilog’s system tasks and functions. There are two types of system tasks;
statements which are conceptually equivalent to Action functions, and calls which are conceptually
equivalent to ActionValue and Value functions. Calls can be used within statements.

systemTaskStmt ::= systemTaskCall ;

12.8.1 Displaying information

systemTaskStmt ::= displayTaskName ( [ expression [ , expression ] ] );

displayTaskName ::= $display | $displayb | $displayo | $displayh
| $write | $writeb | $writeo | $writeh

These system task statements are conceptually function calls of type Action, and can be used in
any context where an action is expected.

The only difference between the $display family and the $write family is that members of the
former always output a newline after displaying the arguments, whereas members of the latter do
not.

The only difference between the ordinary, b, o and h variants of each family is the format in which
numeric expressions are displayed if there is no explicit format specifier. The ordinary $display
and $write will output, by default, in decimal format, whereas the b, o and h variants will output
in binary, octal and hexadecimal formats, respectively.

There can be any number of argument expressions between the parentheses. The arguments are
displayed in the order given. If there are no arguments, $display just outputs a newline, whereas
$write outputs nothing.

The argument expressions can be of type String, Bit#(n) (i.e., of type bit[n-1:0]), Integer,
or any type that is a member of the overloading group Bits. Members of Bits will display their
packed representation. The output will be interpreted as a signed number for the types Integer
and Int#(n). Arguments can also be literals. Integers and literals are limited to 32 bits.

Arguments of type String are interpreted as they are displayed. The characters in the string are
output literally, except for certain special character sequences beginning with a % character, which
are interpreted as format-specifiers for subsequent arguments. The following format specifiers are
supported9:

%d Output a number in decimal format
%b Output a number in binary format
%o Output a number in octal format

9Displayed strings are passed through the compiler unchanged, so other format specifiers may be supported by
your Verilog simulator. Only the format specifiers above are supported by Bluespec’s C-based simulator.
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%h Output a number in hexadecimal format

%c Output a character with given ASCII code

%s Output a string (argument must be a string)

%t Output a number in time format

%m Output hierarchical name

The values output are sized automatically to the largest possible value, with leading zeros, or in the
case of decimal values, leading spaces. The automatic sizing of displayed data can be overridden
by inserting a value n indicating the size of the displayed data. If n=0 the output will be sized to
minimum needed to display the data without leading zeros or spaces.

ActionValues (see Section 9.7) whose returned type is displayable can also be directly displayed.
This is done by performing the associated action (as part of the action invoking $display) and
displaying the returned value.

Example:

$display ("%t", $time);

For display statements in different rules, the outputs will appear in the usual logical scheduling order
of the rules. For multiple display statements within a single rule, technically there is no defined
ordering in which the outputs should appear, since all the display statements are Actions within
the rule and technically all Actions happen simultaneously in the atomic transaction. However, as
a convenience to the programmer, the compiler will arrange for the display outputs to appear in
the normal textual order of the source text, taking into accout the usual flow around if-then-elses,
statically elaborated loops, and so on. However, for a rule that comprises separately compiled parts
(for example, a rule that invokes a method in a separately compiled module), the system cannot
guarantee the ordering of display statements across compilation boundaries. Within each separately
compiled part, the display outputs will appear in source text order, but these groups may appear in
any order. In particular, verification engineers should be careful about these benign (semantically
equivalent) reorderings when checking the outputs for correctness.

12.8.2 $format

systemTaskCall ::= $format ( [ expression [ , expression ] ] )

Bluespec also supports $format, a display related system task that does not exist in Verilog. $format
takes the same arguments as the $display family of system tasks. However, unlike $display (which
is a function call of type Action), $format is a value function which returns an object of type Fmt
(section B.2.8). Fmt representations of data objects can thus be written hierarchically and applied
to polymorphic types. The FShow package, described in Section C.8.8, defines a typeclass based on
this capability.

Example:

typedef struct {OpCommand command;
Bit#(8) addr;
Bit#(8) data;
Bit#(8) length;
Bool lock;
} Header deriving (Eq, Bits, Bounded);
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function Fmt fshow (Header value);
return ($format("<HEAD ")

+
fshow(value.command)
+
$format(" (%0d)", value.length)
+
$format(" A:%h", value.addr)
+
$format(" D:%h>", value.data));

endfunction

12.8.3 File data type

File is a defined type in BSV which is defined as:
typedef union tagged {

void InvalidFile ;
Bit#(31) MCD;
Bit#(31) FD;

} File;

Type Classes for File
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
File

√ √ √

Note: Bitwise operations are valid only for sub-type MCD.

12.8.4 Opening and closing file operations

systemTaskCall ::= $fopen ( fileName [ , fileType ] )

systemTaskStmt ::= $fclose ( fileIdentifier ) ;

The $fopen system call is of type ActionValue and can be used anywhere an ActionValue is
expected. The argument fileName is of type String. $fopen returns a fileIdentifier of type File. If
there is a fileType argument, the fileIdentifier returned is a file descriptor of type FD. If there is not
a fileType argument, the fileIdentifier returned is a multi channel descriptor of type MCD.

One file of type MCD is pre-opened for append, stdout_mcd (value 1).

Three files of type FD are pre-opened; they are stdin (value 0), stdout (value 1), and stderr (value
2). stdin is pre-opened for reading and stdout and stderr are pre-opened for append.

The fileType determines, according to the following table, how other files of type FD are opened:

File Types for File Descriptors

Argument Description
"r" or "rb" open for reading
"w" or "wb" truncate to zero length or create for writing
"a" or "ab" append; open for writing at end of file, or create for writing
"r+", or "r+b", or "rb+" open for update (reading and writing)
"w+", or "w+b", or "wb+" truncate or create for update
"a+", or "a+b", or "ab+" append; open or create for update at end of file
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The $fclose system call is of type Action and can be used in any context where an action is
expected.

12.8.5 Writing to a file

systemTaskStmt ::= fileTaskName ( fileIdentifier , [ expression [ , expression ] ] ) ;

fileTaskName ::= $fdisplay | $fdisplayb | $fdisplayo | $fdisplayh
| $fwrite | $fwriteb | $fwriteo | $fwriteh

These system task calls are conceptually function calls of type Action, and can be used in any
context where an action is expected. They correspond to the display tasks ($display, $write)
but they write to specific files instead of to the standard output. They accept the same arguments
(Section 12.8.1) as the tasks they are based on, with the addition of a first parameter fileIdentifier
which indicates where to direct the file output.

Example:

Reg#(int) cnt <- mkReg(0);
let fh <- mkReg(InvalidFile) ;
let fmcd <- mkReg(InvalidFile) ;

rule open (cnt == 0 ) ;
// Open the file and check for proper opening
String dumpFile = "dump_file1.dat" ;
File lfh <- $fopen( dumpFile, "w" ) ;
if ( lfh == InvalidFile )

begin
$display("cannot open %s", dumpFile);
$finish(0);

end
cnt <= 1 ;
fh <= lfh ; // Save the file in a Register

endrule

rule open2 (cnt == 1 ) ;
// Open the file and check for proper opening
// Using a multi-channel descriptor.
String dumpFile = "dump_file2.dat" ;
File lmcd <- $fopen( dumpFile ) ;
if ( lmcd == InvalidFile )

begin
$display("cannot open %s", dumpFile );
$finish(0);

end
lmcd = lmcd | stdout_mcd ; // Bitwise operations with File MCD
cnt <= 2 ;
fmcd <= lmcd ; // Save the file in a Register

endrule

rule dump (cnt > 1 );
$fwrite( fh , "cnt = %0d\n", cnt); // Writes to dump_file1.dat
$fwrite( fmcd , "cnt = %0d\n", cnt); // Writes to dump_file2.dat
dump_file2.dat // and stdout
cnt <= cnt + 1;

endrule
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12.8.6 Formatting output to a string

systemTaskStmt ::= stringTaskName ( ifcIdentifier , [ expression [ , expression ] ] ) ;

stringTaskName ::= $swrite | $swriteb | $swriteo | $swriteh | $sformat

These system task calls are analogous to the $fwrite family of system tasks. They are conceptually
function calls of type Action, and accept the same type of arguments as the corresponding $fwrite
tasks, except that the first parameter must now be an interface with an _write method that takes
an argument of type Bit#(n).

The task $sformat is similar to $swrite, except that the second argument, and only the second
argument, is interpreted as a format string. This format argument can be a static string, or it
can be a dynamic value whose content is interpreted as the format string. No other arguments in
$sformat are interpreted as format strings. $sformat supports all the format specifies supported
by $display, as documented in 12.8.1.

The Bluespec compiler de-sugars each of these task calls into a call of an ActionValue version of
the same task. For example:

$swrite(foo, "The value is %d", count);

de-sugars to

let x <- $swriteAV("The value is %d", count);
foo <= x;

An ActionValue value version is available for each of these tasks. The associated syntax is given
below.

systemTaskCall ::= stringAVTaskName ( [ expression [ , expression ] ] )

stringAVTaskName ::= $swriteAV | $swritebAV | $swriteoAV | $swritehAV | $sformatAV

The ActionValue versions of these tasks can also be called directly by the user.

Use of the system tasks described in this section allows a designer to populate state elements with
dynamically generated debugging strings. These values can then be viewed using other display tasks
(using the %s format specifier) or output to a VCD file for examination in a waveform viewer.

12.8.7 Reading from a file

systemTaskCall ::= $fgetc ( fileIdentifier )

systemTaskStmt ::= $ungetc ( expression, fileIdentifier ) ;

The $fgetc system call is a function of type ActionValue#(int) which returns an int from the file
specified by fileIdentifier.

The $ungetc system statement is a function of type Action which inserts the character specified by
expression into the buffer specified by fileIdentifier.

Example:

rule open ( True ) ;
String readFile = "gettests.dat";
File lfh <- $fopen(readFile, "r" ) ;

int i <- $fgetc( lfh );
if ( i != -1 )

begin
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Bit#(8) c = truncate( pack(i) ) ;
end

else // an error occurred.
begin

$display( "Could not get byte from %s",
readFile ) ;

end

$fclose ( lfh ) ;
$finish(0);

endrule

12.8.8 Flushing output

systemTaskStmt ::= $fflush ( [ fileIdentifier ] ) ;

The system call $fflush is a function of type Action and can be used in any context where an
action is expected. The $fflush function writes any buffered output to the file(s) specified by the
fileIdentifier. If no argument is provided, $fflush writes any buffered output to all open files.

12.8.9 Stopping simulation

systemTaskStmt ::= $finish [ ( expression ) ] ;
| $stop [ ( expression ) ] ;

These system task calls are conceptually function calls of type Action, and can be used in any
context where an action is expected.

The $finish task causes simulation to stop immediately and exit back to the operating system. The
$stop task causes simulation to suspend immediately and enter an interactive mode. The optional
argument expressions can be 0, 1 or 2, and control the verbosity of the diagnostic messages printed
by the simulator. the default (if there is no argument expression) is 1.

12.8.10 VCD dumping

systemTaskStmt ::= $dumpvars | $dumpon | $dumpoff ;

These system task calls are conceptually function calls of type Action, and can be used in any
context where an action is expected.

A call to $dumpvars starts dumping the changes of all the state elements in the design to the
VCD file. BSV’s $dumpvars does not currently support arguments that control the specific module
instances or levels of hierarchy that are dumped.

Subsequently, a call to $dumpoff stops dumping, and a call to $dumpon resumes dumping.

12.8.11 Time functions

systemFunctionCall ::= $time | $stime

These system function calls are conceptually of ActionValue type (see Section 9.7), and can be used
anywhere an ActionValue is expected. The time returned is the time when the associated action
was performed.

The $time function returns a 64-bit integer (specifically, of type Bit#(64)) representing time, scaled
to the timescale unit of the module that invoked it.
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The $stime function returns a 32-bit integer (specifically, of type Bit#(32)) representing time,
scaled to the timescale unit of the module that invoked it. If the actual simulation time does not fit
in 32 bits, the lower-order 32 bits are returned.

12.8.12 Real functions

There are two system tasks defined for the Real data type (section B.2.6), used to convert between
Real and IEEE standard 64-bit vector representation, $realtobits and $bitstoreal. They are
identical to the Verilog functions.

systemTaskCall ::= $realtobits ( expression )

systemTaskCall ::= $bitstoreal ( expression )

12.8.13 Testing command line input

Information for use in simulation can be provided on the command line. This information is spec-
ified via optional arguments in the command used to invoke the simulator. These arguments are
distinguished from other simulator arguments by starting with a plus (+) character and are therefore
known as plusargs. Following the plus is a string which can be examined during simulation via
system functions.

systemTaskCall ::= $test$plusargs ( expression )

The $test$plusargs system function call is conceptually of ActionValue type (see Section 9.7),
and can be used anywhere an ActionValue is expected. An argument of type String is expected
and a boolean value is returned indicating whether the provided string matches the beginning of any
plusarg from the command line.

13 Guiding the compiler with attributes

This section describes how to guide the compiler in some of its decisions using BSV’s attribute
syntax.

attributeInstances ::= attributeInstance
{ attributeInstance }

attributeInstance ::= (* attrSpec { , attrSpec } *)

attrSpec ::= attrName [ = expression ]

attrName ::= identifier |Identifier

Multiple attributes can be written together on a single line

(* synthesize, always_ready = "read, subifc.enq" *)

Or attributes can be written on multiple lines

(* synthesize *)
(* always_ready = "read, subifc.enq" *)

Attributes can be associated with a number of different language constructs such as module, interface,
and function definitions. A given attribute declaration is applied to the first attribute construct that
follows the declaration.
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13.1 Verilog module generation attributes

In addition to compiler flags on the command line, it is possible to guide the compiler with attributes
that are included in the BSV source code.

The attributes synthesize and noinline control code generation for top-level modules and func-
tions, respectively.

Attribute name Section Top-level module Top-level function
definitions definitions

synthesize 13.1.1
√

noinline 13.1.2
√

13.1.1 synthesize

When the compiler is directed to generate Verilog or Bluesim code for a BSV module, by default it
tries to integrate all definitions into one big module. The synthesize attribute marks a module for
code generation and ensures that, when generated, instantiations of the module are not flattened but
instead remain as references to a separate module definition. Modules that are annotated with the
synthesize attribute are said to be synthesized modules. The BSV hierarchy boundaries associated
with synthesized modules are maintained during code generation. Not all BSV modules can be
synthesized modules (i.e.,can maintain a module boundary during code generation). Section 5.8
describes in more detail which modules are synthesizable.

13.1.2 noinline

The noinline attribute is applied to functions, instructing the compiler to generate a separate
module for the function. This module is instantiated as many times as required by its callers. When
used in complicated calling situations, the use of the noinline attribute can simplify and speed up
compilation. The noinline attribute can only be applied to functions that are defined at the top
level and the inputs and outputs of the function must be in the typeclass Bits.

Example:

(* noinline *)
function Bit#(LogK) popCK(Bit#(K) x);
return (popCountTable(x));

endfunction: popCK

13.2 Interface attributes

Interface attributes express protocol and naming requirements for generated Verilog interfaces. They
are considered during generation of the Verilog module which uses the interface. These attributes
can be applied to synthesized modules, methods, interfaces, and subinterfaces at the top level only.
If the module is not synthesized, the attribute is ignored. The following table shows which attributes
can be applied to which elements. These attributes cannot be applied to Clock, Reset, or Inout
subinterface declarations.
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Synthesized Interface Methods of Subinterfaces of
Attribute name Section module type interface type interface type

definitions declarations declarations declarations
ready= 13.2.1

√

enable= 13.2.1
√

result= 13.2.1
√

prefix= 13.2.1
√ √

port= 13.2.1
√

always ready 13.2.2
√ √ √ √

always enabled 13.2.2
√ √ √ √

There is a direct correlation between interfaces in Bluespec and ports in the generated Verilog. These
attributes can be applied to interfaces to control the naming and the protocols of the generated
Verilog ports.

Bluespec uses a simple Ready-Enable micro-protocol for each method within the module’s interface.
Each method contains both a output Ready (RDY) signal and an input Enable (EN) signal in
addition to any needed directional data lines. When a method can be safely called it asserts its
RDY signal. When an external caller sees the RDY signal it may then call (in the same cycle) the
method by asserting the method’s EN signal and providing any required data.

Generated Verilog ports names are based the method name and argument names, with some standard
prefixes. In the ActionValue method method1 shown below

method ActionValue#( type_out ) method1 ( type_in data_in ) ;

the following ports are generated:

RDY_method1 Output ready signal of the protocol
EN_method1 Input signal for Action and Action Value methods
method1 Output signal of ActionValue and Value methods
method1_data_in Input signal for method arguments

Interface attributes allow control over the naming and protocols of individual methods or entire
interfaces.

13.2.1 Renaming attributes

ready= and enable= Ready and enable ports use RDY_ and EN_ as the default prefix to the
method names. The attributes ready= ”string” and enable= ”string” replace the prefix annotation
and method name with the specified string as the name instead. These attributes may be associated
with method declarations (methodProto) only (Section 5.2).

In the above example, the following attribute would replace the RDY_method1 with avMethodIsReady
and EN_method1 with GO.

(* ready = "avMethodIsReady", enable = "GO" *)

Note that the ready= attribute is ignored if the method or module is annotated as always_ready
or always_enabled, while the enable= attribute is ignored for value methods as those are annotated
as always_enabled.
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result= By default the output port for value methods and ActionValue methods use the method
name. The attribute result = ”string” causes the output to be renamed to the specified string. This
is useful when the desired port names must begin with an upper case letter, which is not valid for
a method name. These attributes may be associated with method declarations (methodProto) only
(Section 5.2).

In the above example, the following attribute would replace the method1 port with OUT.

(* result = "OUT" *)

Note that the result= attribute is ignored if the method is an Action method which does not
return a result.

prefix= and port= By default, the input ports for methods are named by using the name of the
method as the prefix and the name of the method argument as the suffix, into method_argument.
The prefix and/or suffix name can be replaced by the attributes prefix= ”string” and port= ”string”.
By combining these attributes any desired string can be generated. The prefix= attribute replaces
the method name and the port= attribute replaces the argument name in the generated Verilog port
name. The prefix string may be empty, in which case the joining underscore is not added.

The prefix= attribute may be associated with method declarations (methodProto) or sub-interface
declarations (subinterfaceDecl). The port= attribute may be associated with each method prototype
argument in the interface declaration (methodProtoFormal ) (Section 5.2).

In the above example, the following attribute would replace the method1_data_in port with IN_DATA.

(* prefix = "" *)
method ActionValue#( type_out )

method1( (* port="IN_DATA" *) type_in data_in ) ;

Note that the prefix= attribute is ignored if the method does not have any arguments.

The prefix= attribute may also be used on sub-interface declarations to aid the renaming of interface
hierarchies. By default, interface hierarchies are named by prefixing the sub-interface name to names
of the methods within that interface (Section 5.2.1.) Using the prefix attribute on the subinterface
is a way of replacing the sub-interface name. This is demonstrated in the example in Section 13.2.3.

13.2.2 Port protocol attributes

The port protocol attributes always_enabled and always_ready remove unnecessary ports. These
attributes are applied to synthesized modules, methods, interfaces, and subinterfaces at the top
level only. If the module is not synthesized, the attribute is ignored. The compiler verifies that the
attributes are correctly applied.

The attribute always_enabled specifies that no enable signal will be generated for the associated
interface methods. The methods will be executed on every clock cycle and the compiler verifies that
the caller does this.

The attribute always_ready specifies that no ready signals will be generated. The compiler verifies
that the associated interface methods are permanently ready. always_enabled implies always_ready.

The always_ready and always_enabled attributes can be associated with the method declara-
tions (methodProto), the sub-interface declarations (subinterfaceDecl), or the interface declaration
(interfaceDecl) itself. In these cases, the attribute does not take any arguments. Example:
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interface Test;
(* always_enabled *)
method ActionValue#(Bool) check;

endinterface: Test

The attributes can also be associated with a module, in which case the attribute can have as an
argument the list of methods to which the attribute is applied. When associated with a module, the
attributes are applied when the interface is implemented by a module, not at the declaration of the
interface. Example:

interface ILookup; //the definition of the interface
interface Fifo#(int) subifc;
method Action read ();

endinterface: ILookup

(* synthesize *)
(* always_ready = "read, subifc.enq" * )//the attribute is applied when the
module mkServer (ILookup); //interface is implemented within

... //a module.
endmodule: mkServer

In this example, note that only the enq method of the subifc interface is always_ready. Other
methods of the interface, such as deq, are not always_ready.

If every method of the interface is always_ready or always_enabled, individual methods don’t have
to be specified when applying the attribute to a module. Example:

(* synthesize *)
(* always_enabled *)
module mkServer (ILookup);

13.2.3 Interface attributes example

(* always_ready *) // all methods in this and all sub-interface
// have this property
// always_enabled is also allowed here

interface ILookup;
(* prefix = "" *) // subifc_ will not be used in naming

// always_enabled and always_ready are allowed.
interface Fifo#(int) subifc;

(* enable = "GOread" *) // EN_read becomes GOread
method Action read ();
(* always_enabled *) // always_enabled and always_ready

// are allowed on any individual method
(* result = "CHECKOK" *) // output checkData becomes CHECKOK
(* prefix = "" *) // checkData_datain1 becomes DIN1

// checkData_datain2 becomes DIN2
method ActionValue#(Bool) checkData ( (* port= "DIN1" *) int datain1

(* port= "DIN2" *) int datain2 ) ;

endinterface: ILookup
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13.3 Scheduling attributes

Attribute name Section Module rule rules
definitions definitions expressions

fire when enabled 13.3.1
√

no implicit conditions 13.3.2
√

descending urgency 13.3.3
√ √ √

execution order 13.3.4
√ √ √

mutually exclusive 13.3.5
√ √ √

conflict free 13.3.6
√ √ √

preempts 13.3.7
√ √ √

Scheduling attributes are used to express certain performance requirements. When the compiler
maps rules into clocks, as described in Section 6.2.2, scheduling attributes guide or constrain its
choices, in order to produce a schedule that will meet performance goals.

Scheduling attributes are most often attached to rules or to rule expressions, but some can also be
added to module definitions.

The scheduling attributes are are only applied when the module is synthesized.

13.3.1 fire_when_enabled

The fire_when_enabled scheduling attribute immediately precedes a rule (just before the rule
keyword) and governs the rule.

It asserts that this rule must fire whenever its predicate and its implicit conditions are true, i.e.,
when the rule conditions are true, the attribute checks that there are no scheduling conflicts with
other rules that will prevent it from firing. This is statically verified by the compiler. If the rule
won’t fire, the compiler will report an error.

Example. Using fire_when_enabled to ensure the counter is reset:

// IfcCounter with read method
interface IfcCounter#(type t);
method t readCounter;

endinterface

// Definition of CounterType
typedef Bit#(16) CounterType;

// Module counter using IfcCounter interface. It never contains 0.

(* synthesize,
reset_prefix = "reset_b",
clock_prefix = "counter_clk",
always_ready = "readCounter",
always_enabled= "readCounter" *)

module counter (IfcCounter#(CounterType));
// Reg counter gets reset to 1 asynchronously with the RST signal
Reg#(CounterType) counter <- mkRegA(1);

// Next rule resets the counter to 1 when it reaches its limit.
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// The attribute fire_when_enabled will check that this rule will fire
// if counter == ’1
(* fire_when_enabled *)
rule resetCounter (counter == ’1);
counter <= 1;

endrule

// Next rule updates the counter.
rule updateCounter;
counter <= counter + 1;

endrule

// Method to output the counter’s value
method CounterType readCounter;
return counter;

endmethod
endmodule

Rule resetCounter conflicts with rule updateCounter because both try to modify the counter
register when it contains all its bits set to one. If the rule updateCounter is more urgent, only the
rule updateCounter will fire. In this case, the assertion fire_when_enabled will be violated and
the compiler will produce an error message. Note that without the assertion fire_when_enabled
the compilation process will be correct.

13.3.2 no_implicit_conditions

The no_implicit_conditions scheduling attribute immediately precedes a rule (just before the
rule keyword) and governs the rule.

It asserts that the implicit conditions of all interface methods called within the rule must always
be true; only the explicit rule predicate controls whether the rule can fire or not. This is statically
verified by the compiler, and it will report an error if necessary.

Example:

// Import the FIFO package
import FIFO :: *;

// IfcCounter with read method
interface IfcCounter#(type t);
method t readCounter;
method Action setReset(t a);

endinterface

// Definition of CounterType
typedef Bit#(16) CounterType;

// Module counter using IfcCounter interface
(* synthesize,

reset_prefix = "reset_b",
clock_prefix = "counter_clk",
always_ready = "readCounter",
always_enabled = "readCounter" *)

module counter (IfcCounter#(CounterType));
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// Reg counter gets reset to 1 asynchronously with the RST signal
Reg#(CounterType) counter <- mkRegA(1);

// The 4 depth valueFifo contains a list of reset values
FIFO#(CounterType) valueFifo <- mkSizedFIFO(4);

/* Next rule increases the counter with each counter_clk rising edge
if the maximum has not been reached */

(* no_implicit_conditions *)
rule updateCounter;
if (counter != ’1)
counter <= counter + 1;

endrule

// Next rule resets the counter to a value stored in the valueFifo
(* no_implicit_conditions *)
rule resetCounter (counter == ’1);
counter <= valueFifo.first();
valueFifo.deq();

endrule

// Output the counters value
method CounterType readCounter;
return counter;

endmethod

// Update the valueFifo
method Action setReset(CounterType a);
valueFifo.enq(a);

endmethod
endmodule

The assertion no_implicit_conditions is incorrect for the rule resetCounter, resulting in a com-
pilation error. This rule has the implicit condition in the FIFO module due to the fact that the deq
method cannot be invoked if the fifo valueFifo is empty. Note that without the assertion no error
will be produced and that the condition if (counter != ’1) is not considered an implicit one.

13.3.3 descending_urgency

The compiler maps rules into clocks, as described in Section 6.2.2. In each clock, amongst all the
rules that can fire in that clock, the system picks a subset of rules that do not conflict with each
other, so that their parallel execution is consistent with the reference TRS semantics. The order in
which rules are considered for selection can affect the subset chosen. For example, suppose rules r1
and r2 conflict, and both their conditions are true so both can execute. If r1 is considered first and
selected, it may disqualify r2 from consideration, and vice versa. Note that the urgency ordering is
independent of the TRS ordering of the rules, i.e., the TRS ordering may be r1 before r2, but either
one could be considered first by the compiler.

The designer can specify that one rule is more urgent than another, so that it is always considered
for scheduling before the other. The relationship is transitive, i.e., if rule r1 is more urgent than
rule r2, and rule r2 is more urgent than rule r3, then r1 is considered more urgent than r3.

Urgency is specified with the descending_urgency attribute. Its argument is a string containing a
comma-separated list of rule names (see Section 5.6 for rule syntax, including rule names). Example:
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(* descending_urgency = "r1, r2, r3" *)

This example specifies that r1 is more urgent than r2 which, in turn, is more urgent than r3.

If urgency attributes are contradictory, i.e., they specify both that one rule is more urgent than
another and its converse, the compiler will report an error. Note that such a contradiction may
be a consequence of a collection of urgency attributes, because of transitivity. One attribute may
specify r1 more urgent than r2, another attribute may specify r2 more urgent than r3, and another
attribute may specify r3 more urgent than r1, leading to a cycle, which is a contradiction.

The descending_urgency attribute can be placed in one of three syntactic positions:

• It can be placed just before the module keyword in a module definitions (Section 5.3), in which
case it can refer directly to any of the rules inside the module.

• It can be placed just before the rule keyword in a rule definition, (Section 5.6) in which case
it can refer directly to the rule or any other rules at the same level.

• It can be placed just before the rules keyword in a rules expression (Section 9.13), in which
case it can refer directly to any of the rules in the expression.

In addition, an urgency attribute can refer to any rule in the module hierarchy at or below the
current module, using a hierarchical name. For example, suppose we have:

module mkFoo ...;

mkBar the_bar (barInterface);

(* descending_urgency = "r1, the_bar.r2" *)
rule r1 ...

...
endrule

endmodule: mkFoo

The hierarchical name the_bar.r2 refers to a rule named r2 inside the module instance the_bar.
This can be several levels deep, i.e., the scheduling attribute can refer to a rule deep in the module
hierarchy, not just the sub-module immediately below. In general a hierarchical rule name is a
sequence of module instance names and finally a rule name, separated by periods.

A reference to a rule in a sub-module cannot cross synthesis boundaries. This is because synthesis
boundaries are also scheduler boundaries. Each separately synthesized part of the module hierarchy
contains its own scheduler, and cannot directly affect other schedulers. Urgency can only apply to
rules considered within the same scheduler.

If rule urgency is not specified, and it impacts the choice of schedule, the compiler will print a
warning to this effect during compilation.

Example. Using descending_urgency to control the scheduling of conflicting rules:

// IfcCounter with read method
interface IfcCounter#(type t);
method t readCounter;

endinterface

// Definition of CounterType
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typedef Bit#(16) CounterType;

// Module counter using IfcCounter interface. It never contains 0.
(* synthesize,

reset_prefix = "reset_b",
clock_prefix = "counter_clk",
always_ready = "readCounter",
always_enabled= "readCounter" *)

module counter (IfcCounter#(CounterType));

// Reg counter gets reset to 1 asynchronously with the RST signal
Reg#(CounterType) counter <- mkRegA(1);

/* The descending_urgency attribute will indicate the scheduling
order for the indicated rules. */

(* descending_urgency = "resetCounter, updateCounter" *)

// Next rule resets the counter to 1 when it reaches its limit.
rule resetCounter (counter == ’1);
action
counter <= 1;

endaction
endrule

// Next rule updates the counter.
rule updateCounter;
action
counter <= counter + 1;

endaction
endrule

// Method to output the counter’s value
method CounterType readCounter;
return counter;

endmethod

endmodule

Rule resetCounter conflicts with rule updateCounter because both try to modify the counter
register when it contains all its bits set to one. Without any descending_urgency attribute, the
updateCounter rule may obtain more urgency, meaning that if the predicate of resetCounter is
met, only the rule updateCounter will fire. By setting the descending_urgency attribute the
designer can control the scheduling in the case of conflicting rules.

13.3.4 execution_order

With the execution_order attribute, the designer can specify that, when two rules fire in the same
cycle, one rule should sequence before the other. This attribute is similar to the descending_urgency
attribute (section 13.3.3) except that it specifies the execution order instead of the urgency order.
The execution_order attribute may occur in the same syntactic positions as the descending_urgency
attribute (Section 13.3.3) and takes a similar argument, a string containing a comma-separated list
of rule names. Example:

(* execution_order = "r1, r2, r3" *)
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This example specifies that r1 should execute before r2 which, in turn, should execute before r3.

If two rules cannot execute in the order specified, because of method calls which must sequence in
the opposite order, for example, then the two rules are forced to conflict.

13.3.5 mutually_exclusive

The scheduler always attempts to deduce when two rules are mutually exclusive (based on their
predicates). However, this deduction can fail even when two rules are actually exclusive, either
because the scheduler effort limit is exceeded or because the mutual exclusion depends on a higher-
level invariant that the scheduler does not know about. The mutually_exclusive attribute allows
the designer to overrule the scheduler’s deduction and forces the generated schedule to treat the
annotated rules as exclusive. The mutually_exclusive attribute may occur in the same syntactic
positions as the descending_urgency attribute (Section 13.3.3) and takes a similar argument, a
string containing a comma-separated list of rule names. Example:

(* mutually_exclusive = "r1, r2, r3" *)

This example specifies that every pair of rules that are in the annotation (i.e (r1, r2), (r1, r3), and
(r2, r3)) is a mutually-exclusive rule pair.

Since an asserted mutual exclusion does not come with a proof of this exclusion, the compiler will
insert code that will check and generate a runtime error if two rules ever execute during the same clock
cycle during simulation. This allows a designer to find out when their use of the mutually_exclusive
attribute is incorrect.

13.3.6 conflict_free

Like the mutually_exclusive rule attribute (section 13.3.5), the conflict_free rule attribute is a
way to overrule the scheduler’s deduction about the relationship between two rules. However, unlike
rules that are annotated mutually_exclusive, rules that are conflict_free may fire in the same
clock cycle. Instead, the conflict_free attribute asserts that the annotated rules will not make
method calls that are inconsistent with the generated schedule when they execute.

The conflict_free attribute may occur in the same syntactic positions as the descending_urgency
attribute (Section 13.3.3) and takes a similar argument, a string containing a comma-separated list
of rule names. Example:

(* conflict_free = "r1, r2, r3" *)

This example specifies that every pair of rules that are in the annotation (i.e (r1, r2), (r1, r3), and
(r2, r3)) is a conflict-free rule pair.

For example, two rules may both conditionally enqueue data into a FIFO with a single enqueue
port. Ordinarily, the scheduler would conclude that the two rules conflict since they are competing
for a single method. However, if they are annotated as conflict_free the designer is asserting that
when one rule is enqueuing into the FIFO, the other will not be, so the conflict is apparent, not real.
With the annotation, the schedule will be generated as if any conflicts do not exist and code will be
inserted into the resulting model to check if conflicting methods are actually called by the conflict
free rules during simulation.

It is important to know the conflict_free attribute’s capabilities and limitations. The attribute
works with more than method calls that totally conflict (like the single enqueue port). During simu-
lation, it will check and report any method calls amongst conflict_free rules that are inconsistent
with the generated schedule (including registers being read after they have been written and wires
being written after they are read). On the other hand, the conflict_free attribute does not over-
rule the scheduler’s deductions with respect to resource usage (like uses of a multi-ported register
file).
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13.3.7 preempts

The designer can also prevent a rule from firing whenever another rule (or set of rules) fires. The
preempts attribute accepts two elements as arguments. Each element may be either a rule name or
a list of rule names. A list of rule names must be separated by commas and enclosed in parentheses.
In each cycle, if any of the rule names specified in the first list can be executed and are scheduled
to fire, then none of the rules specified in the second list will be allowed to fire.

The preempts attribute is similar to the descending_urgency attribute (section 13.3.3), and may
occur in the same syntactic positions. The preempts attribute is equivalent to forcing a conflict
and adding descending_urgency. With descending_urgency, if two rules do not conflict, then
both would be allowed to fire even if an urgency order had been specified; with preempts, if one
rule preempts the other, they can never fire together. If r1 preempts r2, then the compiler forces a
conflict and gives r1 priority. If r1 is able to fire, but is not scheduled to, then r2 can still fire.

Examples:

(* preempts = "r1, r2" *)

If r1 will fire, r2 will not.

(* preempts = "(r1, r2), r3" *)

If either r1 or r2 (or both) will fire, r3 will not.

(* preempts = "(the_bar.r1, (r2, r3)" *)

If the rule r1 in the sub-module the_bar will fire, then neither r2 nor r3 will fire.

13.4 Evaluation behavior attributes

13.4.1 split and nosplit

Attribute name Section Action ActionValue
statements statements

split/nosplit 13.4.1
√ √

The split/nosplit attributes are applied to Action and ActionValue statements, but cannot
preceed certain expressions inside an action/endaction including return, variable declarations,
instantiations, and function statements.

When a rule contains an if (or case) statement, the compiler has the option either of splitting the
rule into two mutually exclusive rules, or leaving it as one rule for scheduling but using MUXes in the
production of the action. Rule splitting can sometimes be desirable because the two split rules are
scheduled independently, so non-conflicting branches of otherwise conflicting rules can be scheduled
concurrently. Splitting also allows the split fragments to appear in different positions in the logical
execution order, providing the effect of condition dependent scheduling.

Splitting is turned off by default for two reasons:

• When a rule contains many if statements, it can lead to an exponential explosion in the
number of rules. A rule with 15 if statements might split into 215 rules, depending on how
independent the statements and their branch conditions are. An explosion in the number of
rules can dramatically slow down the compiler and cause other problems for later compiler
phases, particularly scheduling.
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• Splitting propagates the branch condition of each if to the predicates of the split rules. Re-
sources required to compute rule predicates are reserved on every cycle. If a branch condition
requires a scarce resource, this can starve other parts of the design that want to use that
resource.

The split and nosplit attributes override any compiler flags, either the default or a flag entered
on the command line (-split-if).

The split attribute splits all branches in the statement immediately following the attribute state-
ment, which must be an Action statement. A split immediately preceeding a binding (e.g. let)
statement is not valid. If there are nested if or case statements within the split statement, it will
continue splitting recursively through the branches of the statement. The nosplit attribute can be
used to disable rule splitting within nested if statements.

Example:

module mkConditional#(Bit#(2) sel) ();
Reg#(Bit#(4)) a <- mkReg(0);
Reg#(Bool) done <- mkReg(False);

rule finish ;
(*split*)
if (a == 3)

begin
done <= True;

end
else

(*nosplit*)
if (a == 0)

begin
done <= False;
a <= 1;

end
else

begin
done <= False;

end
endrule

endmodule

To enable rule splitting for an entire design, use the compiler flag -split-if at compile time. See the
user guide for more information on compiler flags. You can enable rule splitting for an entire design
with the -split-if flag and then disable the effect for specific rules, by specifying the nosplit
attribute before the rules you do not want to split.

13.5 Input clock and reset attributes

The following attributes control the definition and naming of clock oscillator, clock gate, and reset
ports. The attributes can only be applied to top-level module definitions.
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Attribute name Section Top-level module
clock prefix= 13.5.1

√

gate prefix= 13.5.1
√

reset prefix= 13.5.1
√

gate input clocks= 13.5.2
√

gate all clocks 13.5.2
√

default clock osc= 13.5.3
√

default clock gate= 13.5.3
√

default gate inhigh 13.5.3
√

default gate unused 13.5.3
√

default reset= 13.5.3
√

clock family= 13.5.4
√

clock ancestors= 13.5.4
√

13.5.1 Clock and reset prefix naming attributes

The generated port renaming attributes clock_prefix=, gate_prefix=, and reset_prefix= re-
name the ports for the clock oscillators, clock gates, and resets in a module by specifying a prefix
string to be added to each port name. The prefix is used only when a name is not provided for the
port, (as described in Sections 13.5.3 and 13.6.1), requiring that the port name be created from the
prefix and argument name. The attributes are associated with a module and are only applied when
the module is synthesized.

Clock Prefix Naming Attributes
Attribute Default name Description

clock_prefix= CLK Provides the prefix string to be added to port names for
all the clock oscillators in a module.

gate_prefix= CLK GATE Provides the prefix string to be added to port names for
all the clock gates in a module.

reset_prefix= RST N Provides the prefix string to be added to port names for
all the resets in a module.

If a prefix is specified as the empty string, then no prefix will be used when creating the port names;
that is the argument name alone will be used as the name.

Example:

(* synthesize, clock_prefix = "CK" *)
module mkMod(Clock clk2, ModIfc ifc);

generates the following in the Verilog:

module mkMod (CK, RST_N, CK_clk2, ...

Where CK is the default clock (using the user-supplied prefix), RST_N is the default reset (using the
default prefix), and CK_clk2 is the oscillator for the input clk2 (using the user-supplied prefix).
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13.5.2 Gate synthesis attributes

When a module is synthesized, one port, for the oscillator, is created for each clock input (including
the default clock). The gate for the clock is defaulted to a logical 1. The attributes gate_all_clocks
and gate_input_clocks= specify that a second port be generated for the gate.

The attribute gate_all_clocks will add a gate port to the default clock and to all input clocks.
The attribute gate_input_clocks= is used to individually specify each input clock which should
have a gate supplied by the parent module.

If an input clock is part of a vector of clocks, the gate port will be added to all clocks in the vector.
Example:

(* gate_input_clock = "clks, c2" *)
module mkM(Vector#(2, Clock) clks, Clock c2);

In this example, a gate port will be added to both the clocks in the vector clks and the clock c2.
A gate port cannot be added to just one of the clocks in the vector clks.

The gate_input_clocks= attribute can be used to add a gate port to the default clock. Example:

( * gate_input_clocks = "default_clock" * )

Note that by having a gate port, the compiler can no longer assume the gate is always logical 1. This
can cause an error if the clock is connected to a sub-module which requires the gate to be logical 1.

The gate synthesis attributes are associated with a module and are only applied when the module
is synthesized.

13.5.3 Default clock and reset naming attributes

The default clock and reset naming attributes are associated with a module and are only applied
when the module is synthesized.

The attributes default_clock_osc=, default_clock_gate=, and default_reset= provide the
names for the default clock oscillator, default gate, and default reset ports for a module. When
a name for the default clock or reset is provided, any prefix attribute for that port is ignored.

The attributes default_gate_inhigh and default_gate_unused indicate that a gate port should
not be generated for the default clock and whether the gate is always logical 1 or unused. The default
is default_gate_inhigh. This is only necessary when the attribute gate_all_clocks (section
13.5.2) has been used.

The attributes no_default_clock and no_default_reset are used to remove the ports for the
default clock and the default reset.

Default Clock and Reset Naming Attributes
Attribute Description

default_clock_osc= Provides the name for the default oscillator port.
no_default_clock Removes the port for the default clock.
default_clock_gate= Provides the name for the default gate port.
default_gate_inhigh Removes the gate ports for the module and the gate is always

high.
default_gate_unused Removes the gate ports for the module and the gate is un-

used.
default_reset= Provides the name for the default reset port.
no_default_reset Removes the port for the default reset.
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13.5.4 Clock family attributes

The clock_family and clock_ancestors attributes indicate to the compiler that clocks are in the
same domain in situations where the compiler may not recognize the relationship. For example, when
clocks split in synthesized modules and are then recombined in a subsequent module, the compiler
may not recognize that they have a common ancestor. The clock_ancestors and clock_family
attributes allow the designer to explicitly specify the family relationship between the clocks. These
attributes are applied to modules only.

The clock_ancestors attribute specifies an ancestry relationship between clocks. A clock is a gated
version of its ancestors. In other words, if clk1 is an ancestor of clk2 then clk2 is a gated version
of clk1, as specified in the following statement:

(* clock_ancestors = "clk1 AOF clk2" *)

Multiple ancestors as well as multiple independent groups can be listed in a single attribute state-
ment. For example:

(* clock_ancestors = "clk1 AOF clk2 AOF clk3, clk1 AOF clk4, clka AOF clkb" *)

The above statement specifies that clk1 is an ancestor of clk2, which is itself an ancestor of clk3;
that clk1 is also an ancestor of clk4; and that clka is an ancestor of clkb. You can also repeat
the attribute statement instead of including all clock ancestors in a single statement. Example:

(* clock_ancestors = "clk1 AOF clk2 AOF clk3" *)
(* clock_ancestors = "clk1 AOF clk4" *)
(* clock_ancestors = "clka AOF clkb" *)

For clocks which do not have an ancestor relationship, but do share a common ancestor, you can
use the clock_family attribute. Clocks which are in the same family have the same oscillator with
a different gate. To be in the same family, one does not have to be a gated version of the other,
instead they may be gated versions of a common ancestor.

(* clock_family = "clk1, clk2, clk3" *)

Note that clock_ancestors implies same_family.

13.6 Module argument attributes

The attributes in this section are applied to module arguments. The following table shows which
type of module argument each attribute can be applied to. Each attribute can be applied to vectors
of arguments as well.

Clock/ Reset/ Value Inout/
Attribute name Section vector of clock vector of reset argument vector of inouts

osc= 13.6.1
√

gate= 13.6.1
√

gate inhigh 13.6.1
√

gate unused 13.6.1
√

reset= 13.6.1
√

clocked by= 13.6.2
√ √ √

reset by= 13.6.3
√ √

port= 13.6.4
√ √
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13.6.1 Argument-level clock and reset naming attributes

The non-default clock and reset inputs to a module will have a port name created using the argument
name and any associated prefix for that port type. This name can be overridden on a per-argument
basis by supplying argument-level attributes that specify the names for the ports.

These attributes are applied to the clock module arguments, except for reset= which is applied to
the reset module arguments.

Argument-level Clock and Reset Naming Attributes
Attribute Applies to Description

osc= Clock or vector of clocks
module arguments

Provides the full name of the oscillator port.

gate= Clock or vector of clocks
module arguments

Provides the full name of the gate port.

gate_inhigh Clock or vector of clocks
module arguments

Indicates that the gate port should be omitted and
the gate is assumed to be high.

gate_unused Clock or vector of clocks
module arguments

Indicates that the gate port should be omitted and is
never used within the module.

reset= Reset or vector of resets
module arguments

Provides the full name of the reset port.

Example:

(* synthesize *)
module mkMod((* osc="ACLK", gate="AGATE" *) Clock clk,

(* reset="RESET" *) Reset rst,
ModIfc ifc);

generates the following in the Verilog:

module mkMod(CLK, RST_N, ACLK, AGATE, RESET, ...

The attributes can be applied to the base name generated for a vector of clocks, gates or resets.
Example:

(* synthesize *)
module mkMod((* osc="ACLK", gate="AGATE" *) Vector#(2, Clock) clks,

(* reset="ARST" *) Vector#(2, Reset) rsts,
ModIfc ifc);

generates the following in the Verilog:

module mkMod(CLK, RST_N, ACLK_0, AGATE_0, ACLK_1, AGATE_1, ARST_0, ARST_1,...

13.6.2 clocked_by=

The attribute clocked_by= allows the user to assert which clock a reset, inout, or value module
argument is associated with, to specify that the argument has no_clock, or to associate the argument
with the default_clock. If the clocked_by= attribute is not provided, the default clock will be
used for inout and value arguments; the clock associated with a reset argument is dervied from where
the reset is connected.

Examples:
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module mkMod (Clock c2, (* clocked_by="c2" *) Bool b,
ModIfc ifc);

module mkMod (Clock c2, (* clocked_by="default_clock" *) Bool b,
ModIfc ifc);

module mkMod (Clock c2, (* clocked_by="c2" *) Reset rstIn,
(* clocked_by="default_clock" *) Inout q_inout,
(* clocked_by="c2" *) Bool b,

ModIfc ifc);

To specify that an argument is not associated with any clock domain, the clock no_clock is used.
Example:

module mkMod (Clock c2, (* clocked_by="no_clock" *) Bool b,
ModIfc ifc);

13.6.3 reset_by=

The attribute reset_by= allows the user to assert which reset an inout or value module argument is
associated with, to specify that the argument has no_reset, or to associate the argument with the
default_reset. If the reset_by= attribute is not provided, the default reset will be used.

Examples:

module mkMod (Reset r2, (* reset_by="r2" *) Bool b,
ModIfc ifc);

module mkMod (Reset r2, (* reset_by="default_reset" *) Inout q_inout,
ModIfc ifc);

To specify that the port is not associated with any reset, no_reset is used. Example:

module mkMod (Reset r2, (* reset_by="no_reset" *) Bool b,
ModIfc ifc);

13.6.4 port=

The attribute port= allows renaming of value module arguments. These are port-like arguments
that are not clocks, resets or parameters. It provides the full name of the port generated for the
argument. This is the same attribute as the port= attribute in Section 13.2.1, as applied to module
arguments instead of interface methods.

13.7 Documentation attributes

A BSV design can specify comments to be included in the generated Verilog by use of the doc
attribute.

Top-level
Attribute name Section module Sub-Module rule rules

definitions instantiations definitions expressions
doc= 13.7

√ √ √ √
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Example:

(* doc = "This is a user-provided comment" *)

To provide a multi-line comment, either include a \n character:

(* doc = "This is one line\nAnd this is another" *)

Or provide several instances of the doc attribute:

(* doc = "This is one line" *)
(* doc = "And this is another" *)

Or:

(* doc = "This is one line",
doc = "And this is another" *)

Multiple doc attributes will appear together in the order that they are given. doc attributes can be
added to modules, module instantiations, and rules, as described in the following sections.

13.7.1 Modules

The Verilog file that is generated for a synthesized BSV module contains a header comment prior
to the Verilog module definition. A designer can include additional comments between this header
and the module by attaching a doc attribute to the module being synthesized. If the module is not
synthesized, the doc attributes are ignored.

Example:

(* synthesize *)
(* doc = "This is important information about the following module" *)
module mkMod (IFC);
...

endmodule

13.7.2 Module instantiation

In generated Verilog, a designer might want to include a comment on sub-module instantiations,
to document something about that sub-module. This can be achieved with a doc attribute on the
corresponding BSV module. There are three ways to express instantiation in BSV syntax, and the
doc attribute can be attached to all three.

(* doc = "This sub-module does something" *)
FIFO#(Bool) f();
mkFIFO the_f(f);

(* doc = "This sub-module does something else" *)
Server srv <- mkServer;

Client c;
...
(* doc = "This sub-module does a third thing" *)
c <- mkClient;
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The syntax also works if the type of the module interface is given with let, a variable, or the current
module type. Example:

(* doc = "This sub-module does something else" *)
let srv <- mkServer;

If the sub-module being instantiated is a separately synthesized module or primitive, then its corre-
sponding Verilog instantiation will be preceded by the comments. Example:

// sub-module the_f
// This sub-module does something
wire the_f$CLR, the_f$DEQ, the_f$ENQ;
FIFO2 #(.width(1)) the_f(...);

If the sub-module is not separately synthesized, then there is no place in the Verilog module to
attach the comment. Instead, the comment is included in the header at the beginning of the module.
For example, assume that the module the_sub was instantiated inside mkTop with a user-provided
comment but was not separately synthesized. The generated Verilog would include these lines:

// ...
// Comments on the inlined module ‘the_sub’:
// This is the sub-module
//
module mkTop(...);

The doc attribute can be attached to sub-module instantiations inside functions and for-loops.

If several sub-modules are inlined and their comments carry to the top-module’s header comment, all
of their comments are printed. To save space, if the comments on several modules are the same, the
comment is only displayed once. This can occur, for instance, with doc attributes on instantiations
inside for-loops. For example:

// Comments on the inlined modules ‘the_sub_1‘, ‘the_sub_2‘,
// ‘the_sub_3‘:
// ...

If the doc attribute is attached to a register instantiation and the register is inlined (as is the default),
the Verilog comment is included with the declaration of the register signals. Example:

// register the_r
// This is a register
reg the_r;
wire the_r$D_IN, the_r$EN;

If the doc attribute is attached to an RWire instantiation, and the wire instantiation is inlined (as
is the default), then the comment is carried to the top-module’s header comment.

If the doc attribute is attached to a probe instantiation, the comment appears in the Verilog above
the declaration of the probe signals. Since the probe signals are declared as a group, the comments
are listed at the start of the group. Example:

// probes
//
// Comments for probe ‘the_r’:
// This is a probe
//
wire the_s$PROBE;
wire the_r$PROBE;
...

115



Reference Guide Bluespec SystemVerilog

13.7.3 Rules

In generated Verilog, a designer might want to include a comment on rule scheduling signals (such as
CAN_FIRE_ and WILL_FIRE_ signals), to say something about the actions that are performed when
that rule is executed. This can be achieved with a doc attribute attached to a BSV rule declaration
or rules expression.

The doc attribute can be attached to any rule..endrule or rules...endrules statement. Exam-
ple:

(* doc = "This rule is important" *)
rule do_something (b);

x <= !x;
endrule

If any scheduling signals for the rule are explicit in the Verilog output, their definition will be
preceeded by the comment. Example:

// rule RL_do_something
// This rule is important
assign CAN_FIRE_RL_do_something = b ;
assign WILL_FIRE_RL_do_something = CAN_FIRE_RL_do_something ;

If the signals have been inlined or otherwise optimized away and thus do not appear in the Verilog,
then there is no place to attach the comments. In that case, the comments are carried to the top
module’s header. Example:

// ...
// Comments on the inlined rule ‘RL_do_something’:
// This rule is important
//
module mkTop(...);

The designer can ensure that the signals will exist in the Verilog by using an appropriate compiler
flag, the -keep-fires flag which is documented in the Bluespec SystemVerilog User Guide.

The doc attribute can be attached to any rule..endrule expression, such as inside a function or
inside a for-loop.

As with comments on sub-modules, if the comments on several rules are the same, and those com-
ments are carried to the top-level module header, the comment is only displayed once.

// ...
// Comments on the inlined rules ‘RL_do_something_2’, ‘RL_do_something_1’,
// ‘RL_do_something’:
// This rule is important
//
module mkTop(...);

14 Advanced topics

This section can be skipped on first reading.
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14.1 Type classes (overloading groups) and provisos

Note that for most BSV programming, one just needs to know about a few predefined type classes
such as Bits and Eq, about provisos, and about the automatic mechanism for defining the overloaded
functions in those type classes using a deriving clause. The brief introduction in Sections 4.2 and
4.3 should suffice.

This section is intended for the advanced programmer who may wish to define new type classes
(using a typeclass declaration), or explicitly to define overloaded functions using an instance
declaration.

In programming languages, the term overloading refers to the use of a common function name or
operator symbol to represent some number (usually finite) of functions with distinct types. For
example, it is common to overload the operator symbol + to represent integer addition, floating
point addition, complex number addition, matrix addition, and so on.

Note that overloading is distinct from polymorphism, which is used to describe a single function
or operator that can operate at an infinity of types. For example, in many languages, a single
polymorphic function arraySize() may be used to determine the number of elements in any array,
no matter what the type of the contents of the array.

A type class (or overloading group) further recognizes that overloading is often performed with
related groups of function names or operators, giving the group of related functions and operators a
name. For example, the type class Ord contains the overloaded operators for order-comparison: <,
<=, > and >=.

If we specify the functions represented by these operator symbols for the types int, Bool, bit[m:0]
and so on, we say that those types are instances of the Ord type class.

A proviso is a (static) condition attached to some constructs. A proviso requires that certain types
involved in the construct must be instances of certain type classes. For example, a generic sort
function for sorting lists of type List#(t) will have a proviso (condition) that t must be an instance
of the Ord type class, because the generic function uses an overloaded comparison operator from
that type class, such as the operator < or >.

Type classes are created explicitly using a typeclass declaration (Section 14.1.2). Further, a type
class is explicitly populated with a new instance type t, using an instance declaration (Section
14.1.3), in which the programmer provides the specifications for the overloaded functions for the
type t.

14.1.1 Provisos

Consider the following function prototype:

function List#(t) sort (List#(t) xs)
provisos (Ord#(t));

This prototype expresses the idea that the sorting function takes an input list xs of items of type
t (presumably unsorted), and produces an output list of type t (presumably sorted). In order to
perform its function it needs to compare elements of the list against each other using an overloaded
comparison operator such as <. This, in turn, requires that the overloaded operator be defined on
objects of type t. This is exactly what is expressed in the proviso, i.e., that t must be an instance
of the type class (overloading group) Ord, which contains the overloaded operator <.

Thus, it is permissible to apply sort to lists of Integers or lists of Bools, because those types are
instances of Ord, but it is not permissible to apply sort to a list of, say, some interface type Ifc
(assuming Ifc is not an instance of the Ord type class).
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The syntax of provisos is the following:

provisos ::= provisos ( proviso { , proviso } )

proviso ::= Identifier #(type { , type } )

In each proviso, the Identifier is the name of type class (overloading group). In most provisos, the
type class name T is followed by a single type t, and can be read as a simple assertion that t is an
instance of T , i.e., that the overloaded functions of type class T are defined for the type t. In some
provisos the type class name T may be followed by more than one type t1, ..., tn and these express
more general relationships. For example, a proviso like this:

provisos (Bits#(macAddress, 48))

can be read literally as saying that the types macAddress and 48 are in the Bits type class, or
can be read more generally as saying that values of type macAddress can be converted to and from
values of the type bit[47:0] using the pack and unpack overloaded functions of type class Bits.

We sometimes also refer to provisos as contexts, meaning that they constrain the types that may be
used within the construct to which the provisos are attached.

Occasionally, if the context is too weak, the compiler may be unable to figure out how to resolve an
overloading. Usually the compiler’s error message will be a strong hint about what information is
missing. In these situations it may be necessary for the programmer to guide the compiler by adding
more type information to the program, in either or both of the following ways:

• Add a static type assertion (Section 9.10) to some expression that narrows down its type.

• Add a proviso to the surrounding construct.

14.1.2 Type class declarations

A new class is declared using the following syntax:

typeclassDef ::= typeclass typeclassIde typeFormals [ provisos ]
[ typedepends ] ;
{ overloadedDef }

endtypeclass [ : typeclassIde ]

typeclassIde ::= Identifier

typeFormals ::= # ( typeFormal { , typeFormal })

typeFormal ::= [ numeric ] type typeIde

typedepends ::= dependencies ( typedepend { , typedepend } )

typedepend ::= typelist determines typelist

typelist ::= typeIde
| ( typeIde { , typeIde } )

overloadedDef ::= functionProto
| varDecl

The typeclassIde is the newly declared class name. The typeFormals represent the types that will be
instances of this class. These typeFormals may themselves be constrained by provisos, in which case
the classes named in provisos are called the“super type classes”of this type class. Type dependencies
(typedepends) are relevant only if there are two or more type parameters; the typedepends comes after
the typeclass’s provisos (if any) and before the semicolon. The overloadedDef s declare the overloaded
variables or function names, and their types.

Example (from the Standard Prelude package):

118



Bluespec SystemVerilog Reference Guide

typeclass Literal#(type a);
function a fromInteger (Integer x);
function Bool inLiteralRange(a target, Integer i);

endtypeclass: Literal

This defines the type class Literal. Any type a that is an instance of Literal must have an
overloaded function called fromInteger that converts an Integer value into the type a. In fact,
this is the mechanism that BSV uses to interpret integer literal constants, e.g., to resolve whether a
literal like 6847 is to be interpreted as a signed integer, an unsigned integer, a floating point number,
a bit value of 10 bits, a bit value of 8 bits, etc. (See Section 2.3.1 for a more detailed description.).

The typeclass also provides a function inLiteralRange that takes an argument of type a and an
Integer and returns a Bool. In the standard Literal typeclass this boolean indicates whether or
not the supplied Integer is in the range of legal values for the type a.

Example (from a predefined type class in BSV):

typeclass Bounded#(type a);
a minBound;
a maxBound;

endtypeclass

This defines the type class Bounded. Any type a that is an instance of Bounded will have two values
called minBound and maxBound that, respectively, represent the minimum and maximum of all values
of this type.

Example (from a predefined type class in BSV):10

typeclass Arith #(type data_t)
provisos (Literal#(data_t));
function data_t \+ (data_t x, data_t y);
function data_t \- (data_t x, data_t y);
function data_t negate (data_t x);
function data_t \* (data_t x, data_t y);
function data_t \/ (data_t x, data_t y);
function data_t \% (data_t x, data_t y);

endtypeclass

This defines the type class Arith with super type class Literal, i.e., the proviso states that in order
for a type data_t to be an instance of Arith it must also be an instance of the type class Literal.
Further, it has six overloaded functions with the given names and types. Said another way, a type
that is an instance of the Arith type class must have a way to convert integer literals into that type,
and it must have addition, subtraction, negation, multiplication, and division defined on it.

The semantics of a dependency say that once the types on the left of the determines keyword are
fixed, the types on the right are uniquely determined. The types on either side of the list can be a
single type or a list of types, in which case they are enclosed in parentheses.

Example of a typeclass definition specifying type dependencies:

typeclass Connectable #(type a, type b)
dependencies (a determines b, b determines a);

module mkConnection#(a x1, b x2) (Empty);
endtypeclass

10 We are using Verilog’s notation for escaped identifiers to treat operator symbols as ordinary identifiers. The
notation allows an identifier to be constructed from arbitrary characters beginning with a backslash and ending with
a whitespace (the backslash and whitespace are not part of the identifier.)
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For any type t we know that Get#(t) and Put#(t) are connectable because of the following decla-
ration in the GetPut package:

instance Connectable#(Get#(element_type), Put#(element_type));

In the Connectable dependency above, it states that a determines b. Therefore, you know that if a
is Get#(t), the only possibility for b is Put#(t).

Example of a typeclass definition with lists of types in the dependencies:

typeclass Extend #(type a, type b, type c)
dependencies ((a,c) determines b, (b,c) determines a);

endtypeclass

An example of a case where the dependencies are not commutative:

typeclass Bits#(type a, type sa)
dependencies (a determines sa);

function Bit#(sa) pack(a x);
function a unpack (Bit#(sa) x);

endtypeclass

In the above example, if a were UInt#(16) the dependency would require that b had to be 16; but
the fact that something occupies 16 bits by no means implies that it has to be a UInt.

14.1.3 Instance declarations

A type can be declared to be an instance of a class in two ways, with a general mechanism or with
a convenient shorthand. The general mechanism of instance declarations is the following:

typeclassInstanceDef ::= instance typeclassIde # ( type { , type } ) [ provisos ] ;
{ varAssign ; | functionDef | moduleDef }

endinstance [ : typeclassIde ]

This says that the types are an instance of type class typeclassIde with the given provisos. The
varAssigns, functionDef s and moduleDef s specify the implementation of the overloaded identifiers
of the type class.

Example, declaring a type as an instance of the Eq typeclass:

typedef enum { Red, Blue, Green } Color;

instance Eq#(Color);
function Bool \== (Color x, Color y); //must use \== with a trailing
return True; //space to define custom instances

endfunction //of the Eq typeclass
endinstance

The shorthand mechanism is to attach a deriving clause to a typedef of an enum, struct or tagged
union and let the compiler do the work. In this case the compiler chooses the “obvious” implementa-
tion of the overloaded functions (details in the following sections). The only type classes for which
deriving can be used for general types are Bits, Eq and Bounded. Furthermore, deriving can be
used for any class if the type is a data type that is isomorphic to a type that has an instance for the
derived class.

derives ::= deriving ( typeclassIde { , typeclassIde } )
Example:

typedef enum { Red, Blue, Green } Color deriving (Eq);
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14.1.4 The Bits type class (overloading group)

The type class Bits contains the types that are convertible to bit strings of a certain size. Many
constructs have membership in the Bits class as a proviso, such as putting a value into a register,
array, or FIFO.

Example: The Bits type class definition (which is actually predefined in BSV) looks something like
this:

typeclass Bits#(type a, type n);
function Bit#(n) pack (a x);
function a unpack (Bit#(n) y);

endtypeclass

Here, a represents the type that can be converted to/from bits, and n is always instantiated by a
size type (Section 4) representing the number of bits needed to represent it. Implementations of
modules such as registers and FIFOs use these functions to convert between values of other types
and the bit representations that are really stored in those elements.

Example: The most trivial instance declaration states that a bit-vector can be converted to a bit
vector, by defining both the pack and unpack functions to be identity functions:

instance Bits#(Bit#(k), k);
function Bit#(k) pack (Bit#(k) x);

return x;
endfunction: pack

function Bit#(k) unpack (Bit#(k) x);
return x;

endfunction: unpack
endinstance

Example:

typedef enum { Red, Green, Blue } Color deriving (Eq);

instance Bits#(Color, 2);
function Bit#(2) pack (Color c);

if (c == Red) return 3;
else if (c == Green) return 2;
else return 1; // (c == Blue)

endfunction: pack

function Color unpack (Bit#(2) x);
if (x == 3) return Red;
else if (x == 2) return Green;
else if (x == 1) return Blue;
else ? //Illegal opcode; return unspecified value

endfunction: unpack
endinstance

Note that the deriving (Eq) phrase permits us to use the equality operator == on Color types
in the pack function. Red, Green and Blue are coded as 3, 2 and 1, respectively. If we had used
the deriving(Bits) shorthand in the Color typedef, they would have been coded as 0, 1 and 2,
respectively (Section 14.1.6).
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14.1.5 The SizeOf pseudo-function

The pseudo-function SizeOf#(t) can be applied to a type t to get the numeric type representing its
bit size. The type t must be in the Bits class, i.e., it must already be an instance of Bits#(t,n),
either through a deriving clause or through an explicit instance declaration. The SizeOf function
then returns the corresponding bit size n. Note that SizeOf returns a numeric type, not a numeric
value, i.e., the output of SizeOf can be used in a type expression, and not in a value expression.

SizeOf, which converts a type to a (numeric) type, should not be confused with the pseudo-function
valueof, described in Section 4.2.1, which converts a numeric type to a numeric value.

Example:

typedef Bit#(8) MyType;
// MyType is an alias of Bit#(8)

typedef SizeOf#(MyType) NumberOfBits;
// NumberOfBits is a numeric type, its value is 8

Integer ordinaryNumber = valueOf(NumberOfBits);
// valueOf converts a numeric type into Integer

14.1.6 Deriving Bits

When attaching a deriving(Bits) clause to a user-defined type, the instance derived for the Bits
type class can be described as follows:

• For an enum type it is simply an integer code, starting with zero for the first enum constant
and incrementing by one for each subsequent enum constant. The number of bits used is the
minimum number of bits needed to represent distinct codes for all the enum constants.

• For a struct type it is simply the concatenation of the bits for all the members. The first
member is in the leftmost bits (most significant) and the last member is in the rightmost bits
(least significant).

• For a tagged union type, all values of the type occupy the same number of bits, regardless of
which member it belongs to. The bit representation consists of two parts—a tag on the left
(most significant) and a member value on the right (least significant).

The tag part uses the minimum number of bits needed to code for all the member names. The
first member name is given code zero, the next member name is given code one, and so on.

The size of the member value part is always the size of the largest member. The member value
is stored in this field, right-justified (i.e., flush with the least-significant end). If the member
value requires fewer bits than the size of the field, the intermediate bits are don’t-care bits.

Example. Symbolic names for colors:

typedef enum { Red, Green, Blue } Color deriving (Eq, Bits);

This is the same type as in Section 14.1.4 except that Red, Green and Blue are now coded as 0, 1
and 2, instead of 3, 2, and 1, respectively, because the canonical choice made by the compiler is to
code consecutive labels incrementing from 0.

Example. The boolean type can be defined in the language itself:

typedef enum { False, True} Bool deriving (Bits);
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The type Bool is represented with one bit. False is represented by 0 and True by 1.

Example. A struct type:

typedef struct { Bit#(8) foo; Bit#(16) bar } Glurph deriving (Bits);

The type Glurph is represented in 24 bits, with foo in the upper 8 bits and bar in the lower 16 bits.

Example. Another struct type:

typedef struct{ int x; int y } Coord deriving (Bits);

The type Coord is represented in 64 bits, with x in the upper 32 bits and y in the lower 32 bits.

Example. The Maybe type from Section 7.3:

typedef union tagged {
void Invalid;
a Valid;

} Maybe#(type a)
deriving (Bits);

is represented in 1 + n bits, where n bits are needed to represent values of type a. If the leftmost
bit is 0 (for Invalid) the remaining n bits are unspecified (don’t-care). If the leftmost bit is 1 (for
Valid) then the remaining n bits will contain a value of type a.

14.1.7 Deriving Eq

The Eq type class contains the overloaded operators == (logical equality) and != (logical inequality):

typeclass Eq#(type a);
function Bool \== (a x1, a x2);
function Bool \!= (a x1, a x2);

endtypeclass: Eq

When deriving(Eq) is present on a a user-defined type definition t, the compiler defines these
equality/inequality operators for values of type t. It is the natural recursive definition of these
operators, i.e.,

• If t is an enum type, two values of type t are equal if they represent the same enum constant.

• If t is a struct type, two values of type t are equal if the corresponding members are pairwise
equal.

• If t is a tagged union type, two values of type t are equal if they have the same tag (member
name) and the two corresponding member values are equal.

14.1.8 Deriving Bounded

The predefined type class Bounded contains two overloaded identifiers minBound and maxBound rep-
resenting the minimum and maximum values of a type a:

typeclass Bounded#(type a);
a minBound;
a maxBound;

endtypeclass
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The clause deriving(Bounded) can be attached to any user-defined enum definition t, and the
compiler will define the values minBound and maxBound for values of type t as the first and last enum
constants, respectively.

The clause deriving(Bounded) can be attached to any user-defined struct definition t with the
proviso that the type of each member is also an instance of Bounded. The compiler-defined minBound
(or maxBound) will be the struct with each member having its respective minBound (respectively,
maxBound).

14.1.9 Deriving type class instances for isomorphic types

Generally speaking, the deriving(...) clause can only be used for the predefined type classes Bits,
Eq and Bounded. However there is a special case where it can be used for any type class. When a
user-defined type t is isomorphic to an existing type t′, then all the functions on t′ automatically
work on t, and so the compiler can trivially derive a function for t by just using the corresponding
function for t′.

There are two situations where a newly defined type is isomorphic to an old type: a struct or tagged
union with precisely one member. For example:

typedef struct { t′ x; } t deriving (anyClass);
typedef union tagged { t′ X; } t deriving (anyClass);

One sometimes defines such a type precisely for type-safety reasons because the new type is distinct
from the old type although isomorphic to it, so that it is impossible to accidentally use a t value in
a t′ context and vice versa. Example:

typedef struct { UInt#(32) x; } Apples deriving (Literal, Arith);
...
Apples five;
...
five = 5; // ok, since RHS applies ’fromInteger()’ from Literal

// class to Integer 5 to create an Apples value

function Apples eatApple (Apples n);
return n - 1; // ’1’ is converted to Apples by fromInteger()

// ’-’ is available on Apples from Arith class
endfunction: eatApple

The typedef could also have been written with a singleton tagged union instead of a singleton struct:

typedef union tagged { UInt#(32) X; } Apples deriving (Literal, Arith);

14.2 Higher-order functions

In BSV it is possible to write an expression whose value is a function value. These function values
can be passed as arguments to other functions, returned as results from functions, and even carried
in data structures.

Example - the function map, as defined in the package Vector (C.3.8):
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function Vector#(vsize, b_type) map (function b_type func (a_type x),
Vector#(vsize, a_type) xvect);

Vector#(vsize, b_type) yvect = newVector;

for (Integer j = 0; j < valueof(vsize); j=j+1)
yvect[j] = func (xvect[j]);

return yvect;
endfunction: map

function int sqr (int x);
return x * x;

endfunction: sqr

Vector#(100,int) avect = ...; // initialize vector avect

Vector#(100,int) bvect = map (sqr, avect);

The function map is polymorphic, i.e., is defined for any size type vsize and value types a_type and
b_type. It takes two arguments:

• A function func with input of type a_type and output of type b_type.

• A vector xvect of size vsize containing values of type a_type.

Its result is a new vector yvect that is also of size vsize and containing values of type b_type,
such that yvect[j]=func(xvect[j]). In the last line of the example, we call map passing it the sqr
function and the vector avect to produce a vector bvect that contains the squared versions of all
the elements of vector avect.

Observe that in the last line, the expression sqr is a function-valued expression, representing the
squaring function. It is not an invocation of the sqr function. Similarly, inside map, the identifier
func is a function-valued identifier, and the expression func (xsize [j]) invokes the function.

The function map could be called with a variety of arguments:

// Apply the extend function to each element of avect
Vector#(13, Bit#(5)) avect;
Vector#(13, Bit#(10)) bvect;
...
bvect = map(extend, avect);

or

// test all elements of avect for even-ness
Vector#(100,Bool) bvect = map (isEven, avect);

In other words, map captures, in one definition, the generic idea of applying some function to all
elements of a vector and returning all the results in another vector. This is a very powerful idea
enabled by treating functions as first-class values. Here is another example, which may be useful in
many hardware designs:

interface SearchableFIFO#(type element_type);
... usual enq() and deq() methods ...
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method Bool search (element_type key);

endinterface: SearchableFIFO

module mkSearchableFIFO#(function Bool test_func
(element_type x, element_type key))
(SearchableFIFO#(element_type));

...
method Bool search (element_type key);

... apply test_func(x, key) to each element of the FIFO, ...

... return OR of all results ...
endmethod: search

endmodule: mkSearchableFIFO

The SearchableFIFO interface is like a normal FIFO interface (contains usual enq() and deq()
methods), but it has an additional bit of functionality. It has a search() method to which you
can pass a search key key, and it searches the FIFO using that key, returning True if the search
succeeds.

Inside the mkSearchableFIFO module, the method applies some element test predicate test_func to
each element of the FIFO and ORs all the results. The particular element-test function test_func to
be used is passed in as a parameter to mkSearchableFIFO. In one instantiation of mkSearchableFIFO
we might pass in the equality function for this parameter (“search this FIFO for this particular ele-
ment”). In another instantiation of mkSearchableFIFO we might pass in the “greater-than” function
(“search this FIFO for any element greater than the search key”). Thus, a single FIFO definition cap-
tures the general idea of being able to search a FIFO, and can be customized for different applications
by passing in different search functions to the module constructor.

A final important point is that all this is perfectly synthesizable in BSV, i.e., the compiler can
produce RTL hardware for such descriptions. Since polymporphic modules cannot be synthesized,
for synthesis a non-polymorphic version of the module would have to be instantiated.

15 Embedding RTL in a BSV design

This section describes how to embed existing RTL modules, Verilog or VHDL, in a BSV module.
The import "BVI" statement is used to utilize existing components, utilize components generated by
other tools, or to define a custom set of primitives. One example is the definition of BSV primitives
(registers, FIFOs, etc.), which are implemented through import of Verilog modules. The import
"BVI" statement creates a Bluespec wrapper around the RTL module so that it looks like a BSV
module. Instead of ports, the wrapped module has methods and interfaces.

The import "BVI" statement can be used to wrap Verilog or VHDL modules. Throughout this
section Verilog will be used to refer to either Verilog or VHDL. (One limitatation for VHDL is that
BSV does not support two dimensional ports.)

externModuleImport ::= import "BVI" [ identifier = ] moduleProto
{ moduleStmt }
{ importBVIStmt }

endmodule [ : identifier ]

The body consists of a sequence of importBVIStmts:

importBVIStmt ::= parameterBVIStmt
| methodBVIStmt
| portBVIStmt
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| inputClockBVIStmt
| defaultClockBVIStmt
| outputClockBVIStmt
| inputResetBVIStmt
| defaultResetBVIStmt
| noResetBVIStmt
| outputResetBVIStmt
| ancestorBVIStmt
| sameFamilyBVIStmt
| scheduleBVIStmt
| pathBVIStmt
| interfaceBVIStmt
| inoutBVIStmt

The optional identifier immediately following the "BVI" is the name of the Verilog module to be
imported. This will usually be found in a Verilog file of the same name (identifier.v). If this identifier
is excluded, it is assumed that the Verilog module name is the same as the BSV name of the module.

The moduleProto is the first line in the module definition as described in Section 5.3.

The BSV wrapper returns an interface. All arguments and return values must be in the Bits class
or be of type Clock, Reset, Inout, or a subinterface which meets these requirements. Note that the
BSV module’s parameters have no inherent relationship to the Verilog module’s parameters. The
BSV wrapper is used to connect the Verilog ports to the BSV parameters, performing any data
conversion, such as packs or unpacks, as necessary.

Example of the header of a BVI import statement:

import "BVI" RWire =
module RWire (VRWire#(a))

provisos (Bits#(a,sa));
...
endmodule: vMkRWire

Since the Verilog module’s name matches the BSV name, the header could be also written as:

import "BVI"
module RWire (VRWire#(a))

provisos (Bits#(a,sa));
...
endmodule: vMkRWire

The module body may contain both moduleStmts and importBVIStmts. Typically when including a
Verilog module, the only module statements would be a few local definitions. However, all module
statements, except for method definitions, sub-interface definitions, and return statements, are valid,
though most are rarely used in this instance. Only the statements specific to importBVIStmt bodies
are described in this section.

The importBVIStmts must occur at the end of the body, after the moduleStmts. They may be
written in any order.

The following is an example of embedding a Verilog SRAM model in BSV. The Verilog file is shown
after the BSV wrapper.

import "BVI" mkVerilog_SRAM_model =
module mkSRAM #(String filename) (SRAM_Ifc #(addr_t, data_t))
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provisos(Bits#(addr_t, addr_width),
Bits#(data_t, data_width));

parameter FILENAME = filename;
parameter ADDRESS_WIDTH = valueOf(addr_width);
parameter DATA_WIDTH = valueof(data_width);
method request (v_in_address, v_in_data, v_in_write_not_read)

enable (v_in_enable);
method v_out_data read_response;
default_clock clk(clk, (*unused*) clk_gate);
default_reset no_reset;
schedule (read_response) SB (request);

endmodule

This is the Verilog module being wrapped in the above BVI import statement.

module mkVerilog_SRAM_model (clk,
v_in_address, v_in_data,
v_in_write_not_read,
v_in_enable,
v_out_data);

parameter FILENAME = "Verilog_SRAM_model.data";
parameter ADDRESS_WIDTH = 10;
parameter DATA_WIDTH = 8;
parameter NWORDS = (1 << ADDRESS_WIDTH);

input clk;
input [ADDRESS_WIDTH-1:0] v_in_address;
input [DATA_WIDTH-1:0] v_in_data;
input v_in_write_not_read;
input v_in_enable;

output [DATA_WIDTH-1:0] v_out_data;
...

endmodule

15.1 Parameter

The parameter statement specifies the parameter values which will be used by the Verilog module.

parameterBVIStmt ::= parameter identifier = expression ;

The value of expression is supplied to the Verilog module as the parameter named identifier. The
expression must be a compile-time constant. The valid types for parameters are String, Integer
and Bit#(n ). Example:

import "BVI" ClockGen =
module vAbsoluteClock#(Integer start, Integer period)

( ClockGenIfc );
let halfPeriod = period/2 ;
parameter initDelay = start; //the parameters start,
parameter v1Width = halfPeriod ; //halfPeriod and period
parameter v2Width = period - halfPeriod ; //must be compile-time constants

...
endmodule
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15.2 Method

The method statement is used to connect methods in a Bluespec interface to the appropriate Verilog
wires. The syntax imitates a function prototype in that it doesn’t define, but only declares. In the
case of the method statement, instead of declaring types, it declares ports.

methodBVIStmt ::= method [ portId ] identifer [ ( [ portId { , portId } ] ) ]
[ enable (portId ) ] [ ready ( portId) ]
[ clocked_by ( clockId) ] [ reset_by ( resetId) ] ;

The first portId is the output port for the method, and is only used when the method has a return
value. The identifier is the method’s name according to the BSV interface definition. The paren-
thesized list is the input port names corresponding to the method’s arguments, if there are any.
There may follow up to four optional clauses (in any order): enable (for the enable input port if the
method has an Action component), ready (for the ready output port), clocked_by (to indicate the
clock of the method, otherwise the default clock will be assumed) and reset_by (for the associated
reset signal, otherwise the default reset will be assumed). If no ready port is given, the constant
value 1 is used meaning the method is always ready. The names no_clock and no_reset can be used
in clocked_by and reset_by clauses indicating that there is no associated clock and no associated
reset, respectively.

If the input port list is empty and none of the optional clauses are specified, the list and its paren-
theses may be omitted. If any of the optional clauses are specified, the empty list () must be shown.
Example:

method CLOCKREADY_OUT clockready() clocked_by(clk);

If there was no clocked_by statement, the following would be allowed:

method CLOCKREADY_OUT clockready;

The BSV types of all the method’s arguments and its result (if any) must all be in the Bits typeclass.

Any of the port names may have an attribute attached to them. The allowable attributes are reg,
const, unused, and inhigh. The attributes are translated into port descriptions. Not all port
attributes are allowed on all ports.

For the output ports, the ready port and the method return value, the properties reg and const
are allowed. The reg attribute specifies that the value is coming directly from a register with no
intermediate logic. The const attribute indicates that the value is hardwired to a constant value.

For the input ports, the input arguments and the enable port, reg and unused are allowed. In this
context reg specifies that the value is immediately written to a register without intermediate logic.
The attribute unused indicates that the port is not used inside the module; its value is ignored.

Additionally, for the method enable, there is the inhigh property, which indicates that the method
is always_enabled, as described in Section 13.2.2. Inside the module, the value of the enable is
assumed to be 1 and, as a result, the port doesn’t exist. The user still gives a name for the port as
a placeholder. Note that only Action or ActionValue methods can have an enable signal.

The following code fragment shows an attribute on a method enable:

method load(flopA, flopB) enable((*inhigh*) EN);

The output ports may be shared across methods (and ready signals).
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15.3 Port

The port statement declares an input port, which is not part of a method, along with the value to
be passed to the port. While parameters must be compile-time constants, ports can be dynamic.
The port statements are analogous to arguments to a BSV module, but are rarely needed, since
BSV style is to interact and pass arguments through methods.

portBVIStmt ::= port identifier [ clocked_by ( clockId ) ]
[ reset_by ( resetId ) ] = expression ;

The defining operator <- or = may be used.

The value of expression is supplied to the Verilog port named identifier. The type of expression
must be in the Bits typeclass. The expression may be dynamic (e.g. the _read method of a register
instantiated elsewhere in the module body), which differentiates it from a parameter statement. The
Bluespec compiler cannot check that the import has specified the same size as declared in the Verilog
module. If the width of the value is not the same as that expected by the Verilog module, Verilog
will truncate or zero-extend the value to fit.

Example - Setting port widths to a specific width:

// Tie off the test ports
Bit#(1) v = 0 ;
port TM = v ; // This ties off the port TM to a 1 bit wide 0
Bit#(w) z = 0 ;
port TD = z ; // This ties off the port TD to w bit wide 0

The clocked_by clause is used to specify the clock domain that the port is associated with, named
by clockId. Any clock in the domain may be used. The values no_clock and default_clock, as
described in Section 15.5, may be used. If the clause is omitted, the associated clock is the default
clock.

Example - BVI import statement including port statements

port BUS_ID clocked_by (clk2) = busId ;

The reset_by clause is used to specify the reset the port is associated with, named by resetId. Any
reset in the domain may be used. The values no_reset and default_reset, as described in Section
15.8 may be used. If the clause is omitted, the associated reset is the default reset.

15.4 Input clock

The input_clock statement specifies how an incoming clock to a module is connected. Typically,
there are two ports, the oscillator and the gate, though the connection may use fewer ports.

inputClockBVIStmt ::= input_clock [ identifier ] ( [ portsDef ] ) = expression ;

portsDef ::= portId [ , [ attributeInstances ] portId ]

portId ::= identifier

The defining operator = or <- may be used.

The identifier is the clock name which may be used elsewhere in the import to associate the clock with
resets and methods via a clocked_by clause, as described in Sections 15.7 and 15.2. The portsDef
statement describes the ports that define the clock. The clock value which is being connected is
given by expression.
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If the expression is an identifier being assigned with =, and the user wishes this to be the name of
the clock, then the identifier of the clock can be omitted and the expression will be assumed to be
the name. The clock name can be omitted in other circumstances, but then no name is associated
with the clock. An unamed clock cannot be referred to elsewhere, such as in a method or reset or
other statement. Example:

input_clock (OSC, GATE) = clk;

is equivalent to:

input_clock clk (OSC, GATE) = clk;

The user may leave off the gate (one port) or the gate and the oscillator (no ports). It is the
designer’s responsibility to ensure that not connecting ports does not lead to incorrect behavior. For
example, if the Verilog module is purely combinational, there is no requirement to connect a clock,
though there may still be a need to associate its methods with a clock to ensure that they are in
the correct clock domain. In this case, the portsDef would be omitted. Example of an input clock
without any connection to the Verilog ports:

input_clock ddClk() = dClk;

If the clock port is specified and the gate port is to be unconnected, an attribute, either unused
or inhigh, describing the gate port should be specified. The attribute unused indicates that the
sub-module doesn’t care what the unconnected gate is, while inhigh specifies the gate is assumed
in the module to be logical 1. It is an error if a clock with a gate that is not logical 1 is connected
to an input clock with an inhigh attribute. The default when a gate port is not specified is inhigh,
though it is recommended style that the designer specify the attribute explicitly.

To add an attribute, the usual attribute syntax, (* attribute_name *) immediately preceeding
the object of the attribute, is used. For example, if a Verilog module has no internal transitions and
responds only to method calls, it might be unnecessary to connect the gating signal, as the implicit
condition mechanism will ensure that no method is invoked if its clock is off. So the second portId,
for the gate port, would be marked unused.

input_clock ddClk (OSC, (*unused*) UNUSED) = dClk;

The options for specifying the clock ports in the portsDef clause are:

( ) // there are no Verilog ports
(OSC, GATE) // both an oscillator port and a gate port are specified
(OSC, (*unused*)GATE) // there is no gate port and it’s unused
(OSC, (*inhigh*)GATE) // there is no gate port and it’s required to be logical 1
(OSC) // same as (OSC, (*inhigh*) GATE)

In an input_clock statement, it is an error if both the port names and the input clock name are
omitted, as the clock is then unusable.

15.5 Default clock

In BSV, each module has an implicit clock (the current clock) which is used to clock all instantiated
sub-modules unless otherwise specified with a clocked_by clause. Other clocks to sub-modules must
be explicitly passed as input arguments.
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Every BVI import module must declare which input clock (if any) is the default clock. This default
clock is the implicit clock provided by the parent module, or explicitly given via a clocked_by
clause. The default clock is also the clock associated with methods and resets in the BVI import
when no clocked_by clause is specified.

The simplest definition for the default clock is:

defaultClockBVIStmt ::= default_clock identifier ;

where the identifier specifies the name of an input clock which is designated as the default clock.

The default clock may be unused or not connected to any ports, but it must still be declared.
Example:

default_clock no_clock;

This statement indicates the implicit clock from the parent module is ignored (and not connected).
Consequently, the default clock for methods and resets becomes no_clock, meaning there is no
associated clock.

To save typing, you can merge the default_clock and input_clock statements into a single line:

defaultClockBVIStmt ::= default_clock [ identifier ] [ ( portsDef ) ] [ = expression ] ;

The defining operator = or <- may be used.

This is precisely equivalent to defining an input clock and then declaring that clock to be the default
clock. Example:

default_clock clk_src (OSC, GATE) = sClkIn;

is equivalent to:

input_clock clk_src (OSC, GATE) = sClkIn;
default_clock clk_src;

If omitted, the = expression in the default_clock statement defaults to <- exposeCurrentClock.
Example:

default_clock xclk (OSC, GATE);

is equivalent to:

default_clock xclk (OSC, GATE) <- exposeCurrentClock;

If the portnames are excluded, the names default to CLK, CLK_GATE. Example:

default_clock xclk = clk;

is equivalent to:

default_clock xclk (CLK, CLK_GATE) = clk;

Alternately, if the expression is an identifier being assigned with =, and the user wishes this to be
the name of the default clock, then he can leave off the name of the default clock and expression
will be assumed to be the name. Example:
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default_clock (OSC, GATE) = clk;

is equivalent to:

default_clock clk (OSC, GATE) = clk;

If an expression is provided, both the ports and the name cannot be omitted.

However, omitting the entire statement is equivalent to:

default_clock (CLK, CLK_GATE) <- exposeCurrentClock;

specifying that the current clock is to be associated with all methods which do not specify otherwise.

15.6 Output clock

The output_clock statement gives the port connections for a clock provided in the module’s inter-
face.

outputClockBVIStmt ::= output_clock identifier ( [ portsDef ] ) ;

The identifier defines the name of the output clock, which must match a clock declared in the
module’s interface. Example:

interface ClockGenIfc;
interface Clock gen_clk;

endinterface

import "BVI" ClockGen =
module vMkAbsoluteClock #( Integer start,

Integer period
) ( ClockGenIfc );

...
output_clock gen_clk(CLK_OUT);

endmodule

It is an error for the same identifier to be declared by more than one output_clock statement.

15.7 Input reset

The input_reset statement defines how an incoming reset to the module is connected. Typically
there is one port. BSV assumes that the reset is inverted (the reset is asserted with the value 0).

inputResetBVIStmt ::= input_reset [ identifier ] [ ( portId ) ] [ clocked_by ( clockId ) ]
= expression ;

portId ::= identifier

clockId ::= identifier

where the = may be replaced by <-.

The reset given by expression is to be connected to the Verilog port specified by portId. The identifier
is the name of the reset and may be used elsewhere in the import to associate the reset with methods
via a reset_by clause.

The clocked_by clause is used to specify the clock domain that the reset is associated with, named
by clockId. Any clock in the domain may be used. If the clause is omitted, the associated clock is
the default clock. Example:
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input_reset rst(sRST_N) = sRstIn;

is equivalent to:

input_reset rst(sRST_N) clocked_by(clk) = sRstIn;

where clk is the identifier named in the default_clock statement.

If the user doesn’t care which clock domain is associated with the reset, no_clock may be used. In
this case the compiler will not check that the connected reset is associated with the correct domain.
Example

input_reset rst(sRST_N) clocked_by(no_clock) = sRstIn;

If the expression is an identifier being assigned with =, and the user wishes this to be the name of the
reset, then he can leave off the identifier of the reset and the expression will be assumed to be the
name. The reset name can be left off in other circumstances, but then no name is associated with
the reset. An unamed reset cannot be referred to elsewhere, such as in a method or other statement.

In the cases where a parent module needs to associate a reset with methods, but the reset is not
used internally, the statement may contain a name, but not specify a port. In this case, there is no
port expected in the Verilog module. Example:

input_reset rst() clocked_by (clk_src) = sRstIn ;

Example of a BVI import statement containing an input_reset statement:

import "BVI" SyncReset =
module vSyncReset#(Integer stages ) ( Reset rstIn, ResetGenIfc rstOut ) ;

...
// we don’t care what the clock is of the input reset
input_reset rst(IN_RST_N) clocked_by (no_clock) = rstIn ;
...

endmodule

15.8 Default reset

In BSV, when you define a module, it has an implicit reset (the current reset) which is used to
reset all instantiated sub-modules (unless otherwise specifed via a reset_by clause). Other resets
to submodules must be explicitly passed as input arguments.

Every BVI import module must declare which reset, if any, is the default reset. The default reset
is the implicit reset provided by the parent module (or explicitly given with a reset_by). The
default reset is also the reset associated with methods in the BVI import when no reset_by clause
is specified.

The simplest definition for the default reset is:

defaultResetBVIStmt ::= default_reset identifier ;

where identifier specifies the name of an input reset which is designated as the default reset.

The reset may be unused or not connected to a port, but it must still be declared. Example:

default_reset no_reset;
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The keyword default_reset may be omitted when declaring an unused reset. The above statement
can thus be written as:

no_reset; // the default_reset keyword can be omitted

This statement declares that the implicit reset from the parent module is ignored (and not con-
nected). In this case, the default reset for methods becomes no_reset, meaning there is no associated
reset.

To save typing, you can merge the default_reset and input_reset statements into a single line:

defaultResetBVIStmt ::= default_reset [ identifier ] [ ( portId ) ] [ clocked_by ( clockId ) ]
[ = expression ] ;

The defining operator = or <- may be used.

This is precisely equivalent to defining an input reset and then declaring that reset to be the default.
Example:

default_reset rst (RST_N) clocked_by (clk) = sRstIn;

is equivalent to:

input_reset rst (RST_N) clocked_by (clk) = sRstIn;
default_reset rst;

If omitted, = expression in the default_reset statement defaults to <- exposeCurrentReset.
Example:

default_reset rst (RST_N);

is equivalent to

default_reset rst (RST_N) <- exposeCurrentReset;

The clocked_by clause is optional; if omitted, the reset is clocked by the default clock. Example:

default_reset rst (sRST_N) = sRstIn;

is equivalent to

default_reset rst (sRST_N) clocked_by(clk) = sRstIn;

where clk is the default_clock.

If no_clock is specified, the reset is not associated with any clock. Example:

input_reset rst (sRST_N) clocked_by(no_clock) = sRstIn;

If the portId is excluded, the reset port name defaults to RST_N. Example:

default_reset rstIn = rst;

is equivalent to:
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default_reset rstIn (RST_N) = rst;

Alternatively, if the expression is an identifier being assigned with =, and the user wishes this to be
the name of the default reset, then he can leave off the name of the default reset and expression will
be assumed to be the name. Example:

default_reset (rstIn) = rst;

is equivalent to:

default_reset rst (rstIn) = rst;

Both the ports and the name cannot be omitted.

However, omitting the entire statement is equivalent to:

default_reset (RST_N) <- exposeCurrentReset;

specifying that the current reset is to be associated with all methods which do not specify otherwise.

15.9 Output reset

The output_reset statement gives the port connections for a reset provided in the module’s inter-
face.

outputResetBVIStmt ::= output_reset identifier [ ( portId ) ] [ clocked_by ( clockId ) ];

The identifier defines the name of the output reset, which must match a reset declared in the
module’s interface. Example:

interface ResetGenIfc;
interface Reset gen_rst;

endinterface

import "BVI" SyncReset =
module vSyncReset#(Integer stages ) ( Reset rstIn, ResetGenIfc rstOut ) ;

...
output_reset gen_rst(OUT_RST_N) clocked_by(clk) ;

endmodule

It is an error for the same identifier to be declared by more than one output_reset statement.

15.10 Ancestor, same family

There are two statements for specifying the relationship between clocks: ancestor and same_family.

ancestorBVIStmt ::= ancestor ( clockId , clockId ) ;

This statement indicates that the second named clock is an ancestor of the first named clock. To
say that clock1 is an ancestor of clock2, means that clock2 is a gated version of clock1. This
is written as:

ancestor (clock2, clock1);
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For clocks which do not have an ancestor relationship, but do share a common ancestor, we have:

sameFamilyBVIStmt ::= same_family ( clockId , clockId ) ;

This statement indicates that the clocks specified by the clockIds are in the same family (same clock
domain). When two clocks are in the same family, they have the same oscillator with a different
gate. To be in the same family, one does not have to be a gated version of the other, instead they
may be gated versions of a common ancestor. Note that ancestor implies same_family, which then
need not be explicitly stated. For example, a module which gates an input clock:

input_clock clk_in(CLK_IN, CLK_GATE_IN) = clk_in ;
output_clock new_clk(CLK_OUT, CLK_GATE_OUT);
ancestor(new_clk, clk_in);

15.11 Schedule

scheduleBVIStmt ::= schedule ( identifier { , identifier } ) operatorId
( identifier { , identifier } );

operatorId ::= CF
| SB
| SBR
| C

The schedule statement specifies the scheduling constraints between methods in an imported mod-
ule. The operators relate two sets of methods; the specified relation is understood to hold for each
pair of an element of the first set and an element of the second set. The order of the methods in the
lists is unimportant and the parentheses may be omitted if there is only one name in the set.

The meanings of the operators are:

CF conflict-free
SB sequences before
SBR sequences before, with range conflict (that is, not composable in parallel)
C conflicts

It is an error to specify two relationships for the same pair of methods. It is an error to specify a
scheduling annotation other than CF for methods clocked by unrelated clocks. For such methods,
CF is the default; for methods clocked by related clocks the default is C. The compiler generates a
warning if an annotation between a method pair is missing. Example:

import "BVI" FIFO2 =
module vFIFOF2_MC ( Clock sClkIn, Reset sRstIn,

Clock dClkIn, Reset dRstIn,
Clock realClock, Reset realReset,
FIFOF_MC#(a) ifc )

provisos (Bits#(a,sa));
...
method enq( D_IN ) enable(ENQ) clocked_by( clk_src ) reset_by( srst ) ;
method FULL_N notFull clocked_by( clk_src ) reset_by( srst ) ;

method deq() enable(DEQ) clocked_by( clk_dst ) reset_by( drst ) ;
method D_OUT first clocked_by( clk_dst ) reset_by( drst ) ;
method EMPTY_N notEmpty clocked_by( clk_dst ) reset_by( drst ) ;
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schedule (enq, notFull) CF (deq, first, notEmpty) ;
schedule (first, notEmpty) CF (first, notEmpty) ;
// CF: conflict free - methods in the first list can be scheduled
// in any order or any number of times, with the methods in the
// second list - there is no conflict between the methods.
schedule first SB deq ;
schedule (notEmpty) SB (deq) ;
schedule (notFull) SB (enq) ;
// SB indicates the order in which the methods must be scheduled
// the methods in the first list must occur (be scheduled) before
// the methods in the second list
// SB allows these methods to be called from one rule but the
// SBR relationship does not.
schedule (enq) C (enq) ;
schedule (deq) C (deq) ;
schedule (notFull) CF (notFull) ;
// C: conflicts - methods in the first list conflict with the
// methods in the second - they cannot be called in the same clock cycle.
// if a method conflicts with itself, (enq,deq, and notFull), it
// cannot be called more than once in a clock cycle

endmodule

15.12 Path

The path statement indicates that there is a combinational path from the first port to the second
port.

pathBVIStmt ::= path ( portId, portId ) ;

It is an error to specify a path between ports that are connected to methods clocked by unrelated
clocks. This would be, by definition, an unsafe clock domain crossing. Note that the compiler
assumes that there will be a path from a value or ActionValue method’s input parameters to its
result, so this need not be specified explicitly.

The paths defined by the path statement are used in scheduling. A path may impact rule urgency
by implying an order in how the methods are scheduled. The path is also used in checking for
combinational cycles in a design. The compiler will report an error if it detects a cycle in a design.
In the following example, there is a path declared between WSET and WHAS, as shown in figure 2.

Figure 2: Path in the RWire0 Verilog module between WSET and WHAS ports

import "BVI" RWire0 =
module vMkRWire0 (VRWire0);

...
method wset() enable(WSET) ;
method WHAS whas ;
schedule whas CF whas ;
schedule wset SB whas ;
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path (WSET, WHAS) ;
endmodule: vMkRWire0

15.13 Interface

interfaceBVIStmt ::= interface typeDefType ;
{ interfaceBVIMembDecl }
endinterface [ : typeIde ]

interfaceBVIMembDecl::= methodBVIStmt
| interfaceBVIStmt ;

An interface statement can contain two types of statements: method statements and subinterface
declarations. The interface statement in BVI import is the same as any other interface statement
(Section 5.2) with one difference: the method statements within the interface are BVI method
statements (methodBVIStmt 15.2).

Example:

import "BVI" BRAM2 =
module vSyncBRAM2#(Integer memSize, Bool hasOutputRegister,

Clock clkA, Reset rstNA, Clock clkB, Reset rstNB
) (BRAM_DUAL_PORT#(addr, data))

provisos(Bits#(addr, addr_sz),
Bits#(data, data_sz));

...

interface BRAM_PORT a;
method put(WEA, (*reg*)ADDRA, (*reg*)DIA) enable(ENA) clocked_by(clkA) reset_by(rstA);
method DOA read() clocked_by(clkA) reset_by(rstA);

endinterface: a

interface BRAM_PORT b;
method put(WEB, (*reg*)ADDRB, (*reg*)DIB) enable(ENB) clocked_by(clkB) reset_by(rstB);
method DOB read() clocked_by(clkB) reset_by(rstB);

endinterface: b
endmodule: vSyncBRAM2

Since a BVI wrapper module can only provide a single interface (BRAM_DUAL_PORT in this example),
to provide multiple interfaces you have to create an interface hierarchy using interface statements.

The interface hierarchy provided in this example is:

interface BRAM_DUAL_PORT#(type addr, type data);
interface BRAM_PORT#(addr, data) a;
interface BRAM_PORT#(addr, data) b;

endinterface: BRAM_DUAL_PORT

where the subinterfaces, a and b, are defined as interface statements in the body of the import
"BVI" statement.

15.14 Inout

The following statements describe how to pass an inout port from a wrapped Verilog module through
a BSV module. These ports are represented in BSV by the type Inout. There are two ways that
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an Inout can appear in BSV modules: as an argument to the module or as a subinterface of the
interface provided by the module. There are, therefore, two ways to declare an Inout port in a
BVI import: the statement inout declares an argument of the current module; and the statement
ifc_inout declares a subinterface of the provided interface.

inoutBVIStmt ::= inout portId [ clocked_by ( clockId ) ]
[ reset_by ( resetId ) ] = expression ;

The value of portId is the Verilog name of the inout port and expression is the name of an argument
from the module.

inoutBVIStmt ::= ifc_inout identifier (inoutId ) [ clocked_by ( clockId ) ]
[ reset_by ( resetId ) ] ;

Here, the identifier is the name of the subinterface of the provided interface and portId is, again,
the Verilog name of the inout port.

The clock and reset associated with the Inout are assumed to be the default clock and default reset
unless explicitly specified.

Example:

interface Q;
interface Inout#(Bit#(13)) q_inout;
interface Clock c_clock;

endinterface

import "BVI" Foo =
module mkFoo#(Bool b)(Inout#(int) x, Q ifc);

default_clock ();
no_reset;

inout iport = x;

ifc_inout q_inout(qport);
output_clock c_clock(clockport);

endmodule

The wrapped Verilog module is:

module Foo (iport, clockport, qport);
input cccport;
inout [31:0] iport;
inout [12:0] qport;
...

endmodule

16 Embedding C in a BSV Design

This section describes how to declare a BSV function that is provided as a C function. This is used
when there are existing C functions which the designer would like to include in a BSV module. Using
the importBDPI syntax, the user can specify that the implementation of a BSV function is provided
as a C function.

externCImport ::= import "BDPI" [ identifier = ] function type
identifier ( [ CFuncArgs ] ) [ provisos ] ;
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CFuncArgs ::= CFuncArg { , CFuncArg }

CFuncArg ::= type [ identifier ]

This defines a function identifier in the BSV source code which is implemented by a C function of
the same name. A different link name (C name) can be specified immediately after the "BDPI",
using an optional [identifier = ]. The link name is not bound by BSV case-restrictions on identifiers
and may start with a capital letter.

Example of an import statement where the C name matches the BSV name:

// the C function and the BSV function are both named checksum
import "BDPI" function Bit#(32) checksum (Bit#(n), Bit#(32));

Example of an import statement where the C name does not match the BSV name:

// the C function name is checksum
// the BSV function name is checksum_raw
import "BDPI" checksum = function Bit#(32) checksum_raw (Bit#(n), Bit#(32));

The first type specifies the return type of the function. The optional CFuncArgs specify the argu-
ments of the function, along with an optional identifier to name the arguments.

For instance, in the above checksum example, you might want to name the arguments to indicate
that the first argument is the input value and the second argument is the size of the input value.

import "BDPI" function Bit#(32) checksum (Bit#(n) input_val, Bit#(32) input_size);

16.1 Argument Types

The types for the arguments and return value are BSV types. The following table shows the corre-
lation from BSV types to C types.

BSV Type C Type
String char*
Bit#(0) - Bit#(8) unsigned char
Bit#(9) - Bit#(32) unsigned int
Bit#(33) - Bit#(64) unsigned long long
Bit#(65) - unsigned int*
Bit#(n) unsigned int*

The importBDPI syntax provides the ability to import simple C functions that the user may already
have. A C function with an argument of type char or unsigned char should be imported as a BSV
function with an argument of type Bit#(8). For int or unsigned int, use Bit#(32). For long
long or unsigned long long, use Bit#(64). While BSV creates unsigned values, they can be
passed to a C function which will treat the value as signed. This can be reflected in BSV with
Int#(8), Int#(32), Int#(64), etc.

The user may also import new C functions written to match a given BSV function type. For instance,
a function on bit-vectors of size 17 (that is, Bit#(17)) would expect to pass this value as the C type
unsigned int and the C function should be aware that only the first 17 bits of the value are valid
data.
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Wide data Bit vectors of size 65 or greater are passed by reference, as type unsigned int*. This
is a pointer to an array of 32-bit words, where bit 0 of the BSV vector is bit 0 of the first word in
the array, and bit 32 of the BSV vector is bit 0 of the second word, etc. Note that we only pass the
pointer; no size value is passed to the C function. This is because the size is fixed and the C function
could have the size hardcoded in it. If the function needs the size as an additional parameter, then
either a C or BSV wrapper is needed. See the examples below.

Polymorphic data As the above table shows, bit vectors of variable size are passed by reference,
as type unsigned int*. As with wide data, this is a pointer to an array of 32-bit words, where bit
0 of the BSV vector is bit 0 of the first word in the array, and bit 32 of the BSV vector is bit 0 of
the second word, etc. No size value is passed to the C function, because the import takes no stance
on how the size should be communicated. The user will need to handle the communication of the
size, typically by adding an additional argument to the import function and using a BSV wrapper
to pass the size via that argument, as follows:

// This function computes a checksum for any size bit-vector
// The second argument is the size of the input bit-vector
import "BDPI" checksum = function Bit#(32) checksum_raw (Bit#(n), Bit#(32));

// This wrapper handles the passing of the size
function Bit#(32) checksum (Bit#(n) vec);

return checksum_raw(vec, fromInteger(valueOf(n)));
endfunction

16.2 Return types

Imported functions can be value functions, Action functions, or ActionValue functions. The ac-
ceptable return types are the same as the acceptable argument types, except that String is not
permitted as a return type.

Imported functions with return values correlate to C functions with return values, except in the
cases of wide and polymorphic data. In those cases, where the BSV type correlates to unsigned
int*, the simulator will allocate space for the return result and pass a pointer to this memory to
the C function. The C function will not be responsible for allocating memory. When the C function
finishes execution, the simulator copies the result in that memory to the simulator state and frees
the memory. By convention, this special argument is the first argument to the C function.

For example, the following BSV import:

import "BDPI" function Bit#(32) f (Bit#(8));

would connect to the following C function:

unsigned int f (unsigned char x);

While the following BSV import with wide data:

import "BDPI" function Bit#(128) g (Bit#(8));

would connect to the following C function:

void g (unsigned int* resultptr, unsigned char x);
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16.3 Implicit pack/unpack

So far we have only mentioned Bit and String types for arguments and return values. Other types
are allowed as arguments and return values, as long as they can be packed into a bit-vector. These
types include Int, UInt, Bool, and Maybe, all of which have an instance in the Bits class.

For example, this is a valid import:

import "BDPI" function Bool my_and (Bool, Bool);

Since a Bool packs to a Bit#(1), it would connect to a C function such as the following:

unsigned char
my_and (unsigned char x, unsigned char y);

In this next example, we have two C functions, signedGT and unsignedGT, both of which implement
a greater-than function, returning a Bool indicating whether x is greater than y.

import "BDPI" function Bool signedGT (Int#(32) x, Int#(32) y);
import "BDPI" function Bool unsignedGT (UInt#(32) x, UInt#(32) y);

Because the function signedGT assumes that the MSB is a sign bit, we use the type-system to make
sure that we only call that function on signed values by specifying that the function only works on
Int#(32). Similarly, we can enforce that unsignedGT is only called on unsigned values, by requiring
its arguments to be of type UInt#(32).

The C functions would be:

unsigned char signedGT (unsigned int x, unsigned int y);
unsigned char unsignedGT (unsigned int x, unsigned int y);

In both cases, the packed value is of type Bit#(32), and so the C function is expected to take the its
arguments as unsigned int. The difference is that the signedGT function will then treat the values
as signed values while the unsignedGT function will treat them as unsigned values. Both functions
return a Bool, which means the C return type is unsigned char.

Argument and return types to imported functions can also be structs, enums, and tagged unions.
The C function will receive the data in bit form and must return values in bit form.

16.4 Other examples

Shared resources In some situations, several imported functions may share access to a resource,
such as memory or the file system. If these functions wish to share file handles, pointers, or other
cookies between each other, they will have to pass the data as a bit-vector, such as unsigned
int/Bit#(32).

When to use Action components If an imported function has a side effect or if it matters
how many times or in what order the function is called (relative to other calls), then the imported
function should have an Action component in its BSV type. That is, the functions should have a
return type of Action or ActionValue.
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Removing indirection for polymorphism within a range A polymorphic type will always
become unsigned int* in the C, even if there is a numeric proviso which restricts the size. Consider
the following import:

import "BDPI" function Bit#(n) f(Bit#(n), Bit#(8)) provisos (Add#(n,j,32));

This is a polymorphic vector, so the conversion rules indicate that it should appear as unsigned
int* in the C. However, the proviso indicates that the value of n can never be greater than 32. To
make the import be a specific size and not a pointer, you could use a wrapper, as in the example
below.

import "BDPI" f = function Bit#(32) f_aux(Bit#(32), Bit#(8));

function Bit#(n) f (Bit#(n) x) provisos (Add#(n,j,32));
return f_aux(extend(x), fromInteger(valueOf(n)));

endfunction
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A Keywords

In general, keywords do not use uppercase letters (the only exception is the keyword valueOf). The
following are the keywords in BSV (and so they cannot be used as identifiers).

Action
ActionValue
BVI
C
CF
E
SB
SBR
action endaction
actionvalue endactionvalue
ancestor
begin
bit
case endcase
clocked_by
default
default_clock
default_reset
dependencies
deriving
determines
e
else
enable
end
enum
export
for
function endfunction
if
ifc_inout
import
inout
input_clock
input_reset
instance endinstance
interface endinterface
let
match
matches
method endmethod
module endmodule
numeric
output_clock
output_reset
package endpackage
parameter
path
port
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provisos
reset_by
return
rule endrule
rules endrules
same_family
schedule
struct
tagged
type
typeclass endtypeclass
typedef
union
valueOf
valueof
void
while
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The following are keywords in SystemVerilog (which includes all the keywords in Verilog). Although
most of them are not used in BSV, for compatibility reasons they are not allowed as identifiers in
BSV either.

alias

always

always_comb

always_ff

always_latch

and

assert

assert_strobe

assign

assume

automatic

before

begin end

bind

bins

binsof

bit

break

buf

bufif0

bufif1

byte

case endcase

casex

casez

cell

chandle

class endclass

clocking endclocking

cmos

config endconfig

const

constraint

context

continue

cover

covergroup endgroup

coverpoint

cross

deassign

default

defparam

design

disable

dist

do

edge

else

enum

event

expect

export

extends

extern

final

first_match

for

force

foreach

forever

fork

forkjoin

function endfunction

generate endgenerate

genvar

highz0

highz1

if

iff

ifnone

ignore_bins

illegal_bins

import

incdir

include

initial

inout

input

inside

instance

int

integer

interface endinterface

intersect

join

join_any

join_none

large

liblist

library

local

localparam

logic

longint

macromodule

matches

medium

modport

module endmodule

nand

negedge

new

nmos

nor

noshowcancelled

not

notif0

notif1

null

or

output

package endpackage

packed

parameter

pmos

posedge

primitive endprimitive

priority

program endprogram

property endproperty

protected

pull0

pull1

pulldown

pullup

pulsestyle_onevent

pulsestyle_ondetect

pure

rand

randc

randcase

randsequence

rcmos

real

realtime

ref

reg

release

repeat

return

rnmos

rpmos

rtran

rtranif0

rtranif1

scalared

sequence endsequence

shortint

shortreal

showcancelled
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signed

small

solve

specify endspecify

specparam

static

string

strong0

strong1

struct

super

supply0

supply1

table endtable

tagged

task endtask

this

throughout

time

timeprecision

timeunit

tran

tranif0

tranif1

tri

tri0

tri1

triand

trior

trireg

type

typedef

union

unique

unsigned

use

var

vectored

virtual

void

wait

wait_order

wand

weak0

weak1

while

wildcard

wire

with

within

wor

xnor

xor
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B The Standard Prelude package

This sections describes the type classes, data types, interfaces and functions which are provided by
the Standard Prelude package, and therefore always available to the programmer.

The Standard Prelude package is automatically included in all packages, i.e., the programmer does
not need to take any special action to use any of the features described here. Please see also Section
C for a number of useful libraries that must be explicitly imported into a package in order to use
them.

B.1 Type classes

A type class groups related functions and operators and allows for instances across the various
datatypes which are members of the typeclass. Hence the function names within a type class are
overloaded across the various type class members.

A typeclass declaration creates a type class. An instance declaration defines a datatype as
belonging to a type class. A datatype may belong to zero or many type classes.

The Prelude package declares the following type classes:

Prelude Type Classes
Bits Types that can be converted to bit vectors and back.
Eq Types on which equality is defined.
Literal Types which can be created from integer literals.
RealLiteral Types which can be created from real literals.
Arith Types on which arithmetic operations are defined.
Ord Types on which comparison operations are defined.
Bounded Types with a finite range.
Bitwise Types on which bitwise operations are defined.
BitReduction Types on which bitwise operations on a single operand to produce

a single bit result are defined.
BitExtend Types on which extend operations are defined.

B.1.1 Bits

Bits defines the class of types that can be converted to bit vectors and back. Membership in this
class is required for a data type to be stored in a state, such as a Register or a FIFO, or to be used
at a synthesized module boundary. Often instance of this class can be automatically derived using
the deriving statement.

typeclass Bits #(type a, numeric type n)
function Bit#(n) pack(a x);
function a unpack(Bit#(n) x);

endtypeclass

Note: the numeric keyword is not required

The functions pack and unpack are provided to convert elements to Bit#() and to convert Bit#()
elements to another datatype.

Bits Functions
pack Converts element a of datatype data_t to a element of datatype

Bit#() of size_a.

function Bit#(size_a) pack(data_t a);
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unpack Converts an element a of datatype Bit#() and size_a into an
element with of element type data_t.

function data_t unpack(Bit#(size_a) a);

B.1.2 Eq

Eq defines the class of types whose values can be compared for equality. Instances of the Eq class
are often automatically derived using the deriving statement.

typeclass Eq #(type data_t);
function Bool \== (data_t x, data_t y);
function Bool \/= (data_t x, data_t y);

endtypeclass

The equality functions == and != are Boolean functions which return a value of True if the equality
condition is met. When defining an instance of an Eq typeclass, the \== and \/= notations must be
used. If using or referring to the functions, the standard Verilog operators == and != may be used.

Eq Functions
== Returns True if x is equal to y.

function Bool \== (data_t x, data_t y,);

!= Returns True if x is not equal to y.

function Bool \/= (data_t x, data_t y,);

B.1.3 Literal

Literal defines the class of types which can be created from integer literals.

typeclass Literal #(type data_t);
function data_t fromInteger(Integer x);
function Bool inLiteralRange(data_t target, Integer x);

endtypeclass

The fromInteger function converts an Integer into an element of datatype data_t. Whenever you
write an integer literal in BSV(such as “0” or “1”), there is an implied fromInteger applied to it,
which turns the literal into the type you are using it as (such as Int, UInt, Bit, etc.). By defining
an instance of Literal for your own datatypes, you can create values from literals just as for these
predefined types.

The typeclass also provides a function inLiteralRange that takes an argument of the target type
and an Integer and returns a Bool that indicates whether the Integer argument is in the legal
range of the target type. For example, assuming x has type Bit#(4), inLiteralRange(x, 15)
would return True, but inLiteralRange(x,22) would return False.
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Literal Functions
fromInteger Converts an element x of datatype Integer into an element of data

type data_t

function data_t fromInteger(Integer x);

inLiteralRange Tests whether an element x of datatype Integer is in the legal
range of data type data_t

function Bool inLiteralRange(data_t target, Integer x);

B.1.4 RealLiteral

RealLiteral defines the class of types which can be created from real literals.

typeclass RealLiteral #(type data_t);
function data_t fromReal(Real x);

endtypeclass

The fromReal function converts a Real into an element of datatype data_t. Whenever you write
a real literal in BSV(such as “3.14”), there is an implied fromReal applied to it, which turns the
real into the specified type. By defining an instance of RealLiteral for a datatype, you can create
values from reals for any type.

RealLiteral Functions
fromReal Converts an element x of datatype Real into an element of data

type data_t

function data_t fromReal(Real x);

B.1.5 SizedLiteral

SizedLiteral defines the class of types which can be created from integer literals with a specified
size.

typeclass SizedLiteral #(type data_t, type size_t)
dependencies (data_t determines size_t);
function data_t fromSizedInteger(Bit#(size_t);

endtypeclass

The fromSizedInteger function converts a literal of type Bit#(size_t) into an element of datatype
data_t. Whenever you write a sized literal like 1’b0, there is an implied fromSizedInteger which
turns the literal into the type you are using it as, with the defined size. Instances are defined for the
types Bit, UInt, and Int.

SizedLiteral Functions
fromSizedInteger Converts an element of Bit#(size_t) into an element of data

type data_t

function data_t fromSizedInteger(Bit#(size_t));
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B.1.6 Arith

Arith defines the class of types on which arithmetic operations are defined.
typeclass Arith #(type data_t)
provisos (Literal#(data_t));
function data_t \+ (data_t x, data_t y);
function data_t \- (data_t x, data_t y);
function data_t negate (data_t x);
function data_t \* (data_t x, data_t y);
function data_t \/ (data_t x, data_t y);
function data_t \% (data_t x, data_t y);
function data_t abs (data_t x);
function data_t signum (data_t x);
function data_t \** (data_t x, data_t y);
function data_t exp_e (data_t x);
function data_t log (data_t x);
function data_t logb (data_t b, data_t x);
function data_t log2 (data_t x);
function data_t log10 (data_t x);

endtypeclass

The Arith functions provide arithmetic operations. For the arithmetic symbols, when defining an
instance of the Arith typeclass, the escaped operator names must be used as shown in the tables
below. The negate name may be used instead of the operator for negation. If using or referring to
these functions, the standard (non-escaped) Verilog operators can be used.

Arith Functions
+ Element x is added to element y.

function data_t \+ (data_t x, data_t y);

- Element y is subtracted from element x.

function data_t \- (data_t x, data_t y);

negate Change the sign of the number. When using the function the Ver-
ilog negate operator, -, may be used.

-

function data_t negate (data_t x);

* Element x is multiplied by y.

function data_t \* (data_t x, data_t y);

/ Element x is divided by y. The definition depends on the type -
many types truncate the remainder . Note: may not be synthesiz-
able with downstream tools.

function data_t \/ (data_t x, data_t y);
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% Returns the remainder of x/y. Obeys the identity ((x/y) ∗ y) +
(x%y) = x.

function data_t \% (data_t x, data_t y);

Note: Division by 0 is undefined. Both x/0 and x%0 will generate errors at compile-time and
run-time for most instances.

abs Returns the absolute value of x.

function data_t abs (data_t x);

signum Returns a unit value with the same sign as x, such that
abs(x)*signum(x) = 1. signum(12) returns 1 and signum(-12)
returns -1.

function data_t signum (data_t x);

** The element x is raised to the y power (x**y = xy).

function data_t \** (data_t x, data_t y);

log2 Returns the base 2 logarithm of x (log 2x).

function data_t log2(data_t x) ;

exp_e e is raised to the power of x (ex).

function data_t exp_e (data_t x);

log Returns the base e logarithm of x (log ex).

function data_t log (data_t x);

logb Returns the base b logarithm of x (log bx).

function data_t logb (data_t b, data_t x);

log10 Returns the base 10 logarithm of x (log 10x).

function data_t log10(data_t x) ;
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B.1.7 Ord

Ord defines the class of types for which an order is defined, allowing comparison operations. A
complete definition of an instance of Ord requires defining either <= or compare.

typeclass Ord #(type data_t);
function Bool \< (data_t x, data_t y);
function Bool \<= (data_t x, data_t y);
function Bool \> (data_t x, data_t y);
function Bool \>= (data_t x, data_t y);
function Ordering compare(data_t x, data_t y);
function data_t min(data_t x, data_t y);
function data_t max(data_t x, data_t y);

endtypeclass

The functions <, <=, >, and >= are Boolean functions which return a value of True if the comparison
condition is met.

Ord Functions
< Returns True if x is less than y.

function Bool \< (data_t x, data_t y);

<= Returns True if x is less than or equal to y.

function Bool \<= (data_t x, data_t y);

> Returns True if x is greater than y.

function Bool \> (data_t x, data_t y);

>= Returns True if x is greater than or equal to y.

function Bool \>= (data_t x, data_t y);

The function compare returns a value of the Ordering (Section B.2.11) data type (LT, GT, or EQ).

compare Returns the Ordering value describing the relationship of x to y.

function Ordering compare (data_t x, data_t y);

The functions min and max return a value of datatype data_t which is either the minimum or
maximum of the two values, depending on the function.

min Returns the minimum of the values x and y.

function data_t min (data_t x, data_t y);

max Returns the maximum of the values x and y.

function data_t max (data_t x, data_t y);
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B.1.8 Bounded

Bounded defines the class of types with a finite range and provides functions to define the range.

typeclass Bounded #(type data_t);
data_t minBound;
data_t maxBound;

endtypeclass

The Bounded functions minBound and maxBound define the minimum and maximum values for the
type data_t.

Bounded Functions
minBound The minimum value the type data_t can have.

data_t minBound;

maxBound The maximum value the type data_t can have.

data_t maxBound;

B.1.9 Bitwise

Bitwise defines the class of types on which bitwise operations are defined.

typeclass Bitwise #(type data_t);
function data_t \& (data_t x1, data_t x2);
function data_t \| (data_t x1, data_t x2);
function data_t \^ (data_t x1, data_t x2);
function data_t \~^ (data_t x1, data_t x2);
function data_t \^~ (data_t x1, data_t x2);
function data_t invert (data_t x1);
function data_t \<< (data_t x1, x2);
function data_t \>> (data_t x1, x2);
function Bit#(1) msb (data_t x);
function Bit#(1) lsb (data_t x);

endtypeclass

The Bitwise functions compare two operands bit by bit to calculate a result. That is, the bit in the
first operand is compared to its equivalent bit in the second operand to calculate a single bit for the
result.

Bitwise Functions
& Performs an and operation on each bit in x1 and x2 to calculate

the result.

function data_t \& (data_t x1, data_t x2);

| Performs an or operation on each bit in x1 and x2 to calculate the
result.

function data_t \| (data_t x1, data_t x2);
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^ Performs an exclusive or operation on each bit in x1 and x2 to
calculate the result.

function data_t \^ (data_t x1, data_t x2);

~^ Performs an exclusive nor operation on each bit in x1 and x2 to
calculate the result.

^~

function data_t \~^ (data_t x1, data_t x2);
function data_t \^~ (data_t x1, data_t x2);

~ Performs a unary negation operation on each bit in x1. When using
this function, the corresponding Verilog operator, ~, may be used.

invert

function data_t invert (data_t x1);

The << and >> operators perform left and right shift operations. Whether the shift is an arithmetic
shift (Int) or a logical shift (Bit, UInt) is dependent on how the type is defined.

<< Performs a left shift operation of x1 by the number of bit positions
given by x2. x2 must be of an acceptable index type (Integer,
Bit#(n), Int#(n) or UInt#(n)).

function data_t \<< (data_t x1, x2);

>> Performs a right shift operation of x1 by the number of bit positions
given by x2. x2 must be of an acceptable index type (Integer,
Bit#(n), Int#(n) or UInt#(n)).

function data_t \>> (data_t x1, x2);

The functions msb and lsb operate on a single argument.

msb Returns the value of the most significant bit of x. Returns 0 if
width of data t is 0.

function Bit#(1) msb (data_t x);

lsb Returns the value of the least significant bit of x. Returns 0 if
width of data t is 0.

function Bit#(1) lsb (data_t x);
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B.1.10 BitReduction

BitReduction defines the class of types on which the Verilog bit reduction operations are defined.

typeclass BitReduction #(type x, numeric type n)
function x#(1) reduceAnd (x#(n) d);
function x#(1) reduceOr (x#(n) d);
function x#(1) reduceXor (x#(n) d);
function x#(1) reduceNand (x#(n) d);
function x#(1) reduceNor (x#(n) d);
function x#(1) reduceXnor (x#(n) d);

endtypeclass

Note: the numeric keyword is not required

The BitReduction functions take a sized type and reduce it to one element. The most common
example is to operate on a Bit#() to produce a single bit result. The first step of the operation
applies the operator between the first bit of the operand and the second bit of the operand to produce
a result. The function then applies the operator between the result and the next bit of the operand,
until the final bit is processed.

Typically the bit reduction operators will be accessed through their Verilog operators. When defining
a new instance of the BitReduction type class the BSV names must be used. The table below lists
both values. For example, the BSV bit reduction and operator is reduceAnd and the corresponding
Verilog operator is &.

BitReduction Functions
reduceAnd Performs an and bit reduction operation between the elements of

d to calculate the result.
&

function x#(1) reduceAnd (x#(n) d);

reduceOr Performs an or bit reduction operation between the elements of d
to calculate the result.

|

function x#(1) reduceOr (x#(n) d);

reduceXor Performs an xor bit reduction operation between the elements of d
to calculate the result.

^

function x#(1) reduceXor (x#(n) d);

reduceNand Performs an nand bit reduction operation between the elements of
d to calculate the result.

^&

function x#(1) reduceNand (x#(n) d);
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reduceNor Performs an nor bit reduction operation between the elements of d
to calculate the result.

~|

function x#(1) reduceNor (x#(n) d);

reduceXnor Performs an xnor bit reduction operation between the elements of
d to calculate the result.

~^
^~

function x#(1) reduceXnor (x#(n) d);

B.1.11 BitExtend

BitExtend defines types on which bit extension operations are defined.

typeclass BitExtend #(numeric type m, numeric type n, type x); // n > m
function x#(n) extend (x#(m) d);
function x#(n) zeroExtend (x#(m) d);
function x#(n) signExtend (x#(m) d);
function x#(m) truncate (x#(n) d);

endtypeclass

The BitExtend operations take as input of one size and changes it to an input of another size, as
described in the tables below. It is recommended that extend be used in place of zeroExtend or
signExtend, as it will automatically perform the correct operation based on the data type of the
argument.

BitExtend Functions
extend Performs either a zeroExtend or a signExtend as appropriate, de-

pending on the data type of the argument (zeroExtend for an un-
signed argument, signExtend for a signed argument).

function x#(n) extend (x#(m) d)
provisos (Add#(k, m, n));

zeroExtend Use of extend instead is recommended. Adds extra zero bits to
the MSB of argument d of size m to make the datatype size n.

function x#(n) zeroExtend (x#(m) d)
provisos (Add#(k, m, n));

signExtend Use of extend instead is recommended. Adds extra sign bits to
the MSB of argument d of size m to make the datatype size n by
replicating the sign bit.

function x#(n) signExtend (x#(m) d)
provisos (Add#(k, m, n));
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truncate Removes bits from the MSB of argument d of size n to make the
datatype size m.

function x#(m) truncate (x#(n) d)
provisos (Add#(k, n, m));

B.1.12 SaturatingArith

The SaturatingArith typeclass contains modified addition and subtraction functions which saturate
to the values defined by maxBound or minBound when the operation would otherwise overflow or
wrap-around.

There are 4 types of saturation modes which determine how an overflow or underflow should be
handled, as defined by the SaturationMode type.

Saturation Modes
Enum Value Description
Sat_Wrap Ignore overflow and underflow, just wrap around
Sat_Bound On overflow or underflow result becomes maxBound or minBound
Sat_Zero On overflow or underflow result becomes 0
Sat_Symmetric On overflow or underflow result becomes maxBound or (minBound+1)

typedef enum { Sat_Wrap
,Sat_Bound
,Sat_Zero
,Sat_Symmetric

} SaturationMode deriving (Bits, Eq);

typeclass SaturatingArith#( type t);
function t satPlus (SaturationMode mode, t x, t y);
function t satMinus (SaturationMode mode, t x, t y);
function t boundedPlus (t x, t y) = satPlus (Sat_Bound, x, y);
function t boundedMinus (t x, t y) = satMinus(Sat_Bound, x, y);

endtypeclass

Instances of the SaturatingArith class are defined for Int, UInt, Complex, and FixedPoint.

satPlus Modified plus function which saturates when the operation would otherwise over-
flow or wrap-around. The saturation value (maxBound, wrap, or 0) is determined
by the value of mode, the SaturationMode.

function t satPlus (SaturationMode mode, t x, t y);

satMinus Modified minus function which saturates when the operation would otherwise
overflow or wrap-around. The saturation value (minBound, wrap, minBound +1,
or 0) is determined by the value of mode, the SaturationMode.

function t satMinus (SaturationMode mode, t x, t y);
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boundedPlus Modified plus function which saturates to maxBound when the operation would
otherwise overflow or wrap-around. The function is the same as satPlus where
the SaturationMode is Sat_Bound.

function t boundedPlus (t x, t y) = satPlus (Sat_Bound, x, y);

boundedMinus Modified minus function which saturates to minBound when the operation would
otherwise overflow or wrap-around. The function is the same as satMinus where
the SaturationMode is Sat_Bound.

function t boundedMinus (t x, t y) = satMinus(Sat_Bound, x, y);

B.1.13 Alias and NumAlias

Alias specifies that two types can be used interchangeably, providing a way to introduce local names
for types within a module. They are used in Provisos. See Section 7.1 for more information.

typeclass Alias#(type a, type b)
dependencies (a determines b,

b determines a);
endtypeclass

NumAlias is used to give a new name to a numeric type.

typeclass NumAlias#(numeric type a, numeric type b)
dependencies (a determines b,

b determines a);
endtypeclass

Examples

Alias#(fp, FixedPoint#(i,f));
NumAlias#(TLog#(a,b), logab);

B.2 Data Types

Every variable and every expression in BSV has a type. Prelude defines the data types which are
always available. An instance declaration defines a data type as belonging to a type class. Each
data type may belong to one or more type classes; all functions, modules, and operators declared
for the type class are then defined for the data type. A data type does not have to belong to any
type classes.

Data type identifiers must always begin with a capital letter. There are three exceptions; bit, int,
and real, which are predefined for backwards compatibility.

B.2.1 Bit

To define a value of type Bit:

Bit#(type n);
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Type Classes for Bit
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Bit

√ √ √ √ √ √ √ √ √

Bit type aliases
bit The data type bit is defined as a single bit. This is a special case

of Bit.

typedef Bit#(1) bit;

The Bit data type provides functions to concatenate and split bit-vectors.

Bit Functions
{x,y} Concatenate two bit vectors, x of size n and y of size m returning a

bit vector of size k. The Verilog operator { } is used.

function Bit#(k) bitconcat(Bit#(n) x, Bit#(m) y)
provisos (Add#(n, m, k));

split Split a bit vector into two bit vectors (higher-order bits (n), lower-
order bits (m)).

function Tuple2 #(Bit#(n), Bit#(m)) split(Bit#(k) x)
provisos (Add#(n, m, k));

B.2.2 UInt

The UInt type is an unsigned fixed width representation of an integer value.

Type Classes for UInt
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
UInt

√ √ √ √ √ √ √ √ √

B.2.3 Int

The Int type is a signed fixed width representation of an integer value.

Type Classes for Int
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Int

√ √ √ √ √ √ √ √ √

Int type aliases
int The data type int is defined as a 32-bit signed integer. This is a

special case of Int.

typedef Int#(32) int;
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B.2.4 Integer

The Integer type is a data type used for integer values and functions. Because Integer is not
part of the Bits typeclass, the Integer type is used for static elaboration only; all values must be
resolved at compile time.

Type Classes for Integer
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Integer

√ √ √ √

Integer Functions
div Element x is divided by element y and the result is rounded toward

negative infinity. Division by 0 is undefined.

function Integer div(Integer x, Integer y);

mod Element x is divided by element y using the div function and the
remainder is returned as an Integer value. div and mod satisfy the
identity (div(x, y)∗y)+mod(x, y) == x. Division by 0 is undefined.

function Integer mod(Integer x, Integer y);

quot Element x is divided by element y and the result is truncated
(rounded towards 0). Division by 0 is undefined.

function Integer quot(Integer x, Integer y);

rem Element x is divided by element y using the quot function and the
remainder is returned as an Integer value. quot and rem satisfy
the identity (quot(x, y) ∗ y) + rem(x, y) == x. Division by 0 is
undefined.

function Integer rem(Integer x, Integer y);

The fromInteger function, defined in Section B.1.3, can be used to convert an Integer into any
type in the Literal typeclass.

B.2.5 Bool

The Bool type is defined to have two values, True and False.

typedef enum {False, True} Bool;

Type Classes for Bool
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Bool

√ √

162



Bluespec SystemVerilog Reference Guide

The Bool functions return either a value of True or False.

Bool Functions
not Returns True if x is false, returns False if x is true.
!

function Bool not (Bool x);

&& Returns True if x and y are true, else it returns False.

function Bool \&& (Bool x, Bool y);

|| Returns True if x or y is true, else it returns False.

function Bool \|| (Bool x, Bool y);

B.2.6 Real

The Real type is a data type used for real values and functions.

Real numbers are of the form:

Real ::= decNum[ .decDigitsUnderscore ] exp [ sign ] decDigitsUnderscore
| decNum.decDigitsUnderscore

sign ::= + | -

exp ::= e | E

decNum ::= decDigits [ decDigitsUnderscore ]

decDigits ::= { 0...9 }
decDigitsUnderscore ::= { 0...9, _ }

If there is a decimal point, there must be digits following the decimal point. An exponent can start
with either an E or an e, followed by an optional sign (+ or -), followed by digits. There cannot be an
exponent or a sign without any digits. Any of the numeric components may include an underscore,
but an underscore cannot be the first digit of the real number.

Unlike integer numbers, real numbers are of limited precision. They are represented as IEEE floating
point numbers of 64 bit length, as defined by the IEEE standard.

Because the type Real is not part of the Bits typeclass, the Real type is used for static elaboration
only; all values must be resolved at compile time.

There are many functions defined for Real types, provided in the Real package (Section C.5.1). To
use these functions, the Real package must be imported.

Type Classes for Real
Bits Eq Literal Real Arith Ord Bounded Bitwise Bit Bit

Literal Reduction Extend
Real

√ √ √ √ √
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Real type aliases
real The SystemVerilog name real is an alias for Real

typedef Real real;

There are two system tasks defined for the Real data type, used to convert between Real and IEEE
standard 64-bit vector representation (Bit#(64)).

Real system tasks
$realtobits Converts from a Real to the IEEE 64-bit vector representation.

function Bit#(64) $realtobits (Real x) ;

$bitstoreal Converts from a 64-bit vector representation to a Real.

function Real $bitstoreal (Bit#(64) x) ;

B.2.7 String

Strings are mostly used in system tasks (such as $display). The String type belongs to the Eq type
class; strings can be tested for equality and inequality using the == and != operators. The String
type is also part of the Arith class, but only the addition (+) operator is defined. All other Arith
operators will produce an error message.

Type Classes for String
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
String

√ √ √

The strConcat function is provided for combining String values.

String Functions
strConcat Concatenates two elements of type String, x and y.
+

function String strConcat(String x, String y);

B.2.8 Fmt

The Fmt primitive type provides a representation of arguments to the $display family of system
tasks (Section 12.8.1) that can be manipulated in BSV code. Fmt representations of data objects
can be written hierarchically and applied to polymorphic types.

Objects of type Fmt can be supplied directly as arguments to system tasks in the $display family.
An object of type Fmt is returned by the $format (Section 12.8.2) system task.

The Fmt type is part of the Arith class, but only the addition (+) operator is defined. All other
Arith operators will produce an error message.

Type Classes for Fmt
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Fmt

√ √
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B.2.9 Void

The Void type is a type which has one literal ? used for constructing concrete values of the type
void . The Void type is part of the Bits and Literal typeclasses.

Type Classes for Void
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Void

√ √

B.2.10 Maybe

The Maybe type is used for tagging values as either Valid or Invalid. If the value is Valid, the value
contains a datatype data_t.

typedef union tagged {
void Invalid;
data_t Valid;

} Maybe #(type data_t) deriving (Eq, Bits);

Type Classes for Maybe
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Maybe

√ √

The Maybe data type provides functions to check if the value is Valid and to extract the valid value.

Maybe Functions
fromMaybe Extracts the Valid value out of a Maybe argument. If the tag is

Invalid the default value, defaultval, is returned.

function data_t fromMaybe( data_t defaultval,
Maybe#(data_t) val ) ;

isValid Returns a value of True if the Maybe argument is Valid.

function Bool isValid( Maybe#(data_t) val ) ;

B.2.11 Ordering

The Ordering type is used as the return type for the result of generic comparators, including the
compare function defined in the Ord (Section B.1.7) type class. The valid values of Ordering are:
LT, GT, and EQ.

typedef enum {
LT,
EQ,
GT

} deriving (Eq, Bits, Bounded);

Type Classes for Ordering
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Ordering

√ √ √
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B.2.12 Tuples

Tuples are predefined structures which group a small number of values together. The following
pseudo code explains the structure of the tuples. You cannot define your own tuples, but must use
the seven predefined tuples, Tuple2 through Tuple8. As shown, Tuple2 groups two items together,
Tuple3 groups three items together, up through Tuple8 which groups eight items together.

typedef struct{
a tpl_1;
b tpl_2;

} Tuple2 #(type a, type b) deriving (Bits, Eq, Bounded);

typedef struct{
a tpl_1;
b tpl_2;
c tpl_3;

} Tuple3 #(type a, type b, type c) deriving (Bits, Eq, Bounded);

typedef struct{
a tpl_1;
b tpl_2;
c tpl_3;
d tpl_4;

} Tuple4 #(type a, type b, type c, type d) deriving (Bits, Eq, Bounded);

typedef struct{
a tpl_1;
b tpl_2;
c tpl_3;
d tpl_4;
e tpl_5;

} Tuple5 #(type a, type b, type c, type d, type e)
deriving (Bits, Eq, Bounded);

typedef struct{
a tpl_1;
b tpl_2;
c tpl_3;
d tpl_4;
e tpl_5;
f tpl_6;

} Tuple6 #(type a, type b, type c, type d, type e, type f)
deriving (Bits, Eq, Bounded);

typedef struct{
a tpl_1;
b tpl_2;
c tpl_3;
d tpl_4;
e tpl_5;
f tpl_6;
g tpl_7;

} Tuple7 #(type a, type b, type c, type d, type e, type f, type g)
deriving (Bits, Eq, Bounded);
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typedef struct{
a tpl_1;
b tpl_2;
c tpl_3;
d tpl_4;
e tpl_5;
f tpl_6;
g tpl_7;
h tpl_8;

} Tuple8 #(type a, type b, type c, type d, type e, type f, type g, type h)
deriving (Bits, Eq, Bounded);

Type Classes for Tuples
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
TupleN

√ √ √ √

Tuples cannot be manipulated like normal structures; you cannot create values of and select fields
from tuples as you would a normal structure. Values of these types can be created only by applying
a predefined family of constructor functions.

Tuple Constructor Functions
tuple2 (e1, e2) Creates a variable of type Tuple2 with com-

ponent values e1 and e2.
tuple3 (e1, e2, e3) Creates a variable of type Tuple3 with values

e1, e2, and e3.
tuple4 (e1, e2, e3, e4) Creates a variable of type Tuple4 with com-

ponent values e1, e2, e3, and e4.
tuple5 (e1, e2, e3, e4, e5) Creates a variable of type Tuple5 with com-

ponent values e1, e2, e3, e4, and e5.
tuple6 (e1, e2, e3, e4, e5, e6) Creates a variable of type Tuple6 with com-

ponent values e1, e2, e3, e4, e5, and e6.
tuple7 (e1, e2, e3, e4, e5, e6, e7) Creates a variable of type Tuple7 with com-

ponent values e1, e2, e3, e4, e5, e6, and e7.
tuple8 (e1, e2, e3, e4, e5, e6, e7,
e8)

Creates a variable of type Tuple8 with com-
ponent values e1, e2, e3, e4, e5, e6, e7, and
e8.

Fields of these types can be extracted only by applying a predefined family of selector functions.

Tuple Extract Functions
tpl_1 (x) Extracts the first field of x from a Tuple2 to Tuple8.
tpl_2 (x) Extracts the second field of x from a Tuple2 to Tuple8.
tpl_3 (x) Extracts the third field of x from a Tuple3 to Tuple8.
tpl_4 (x) Extracts the fourth field of x from a Tuple4 to Tuple8.
tpl_5 (x) Extracts the fifth field of x from a Tuple5 to Tuple8.
tpl_6 (x) Extracts the sixth field of x from a Tuple6, Tuple7 or Tuple8.
tpl_7 (x) Extracts the seventh field of x from a Tuple7 or Tuple8.
tpl_8 (x) Extracts the seventh field of x from a Tuple8.
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B.2.13 Clock

Clock is an abstract type of two components: a single Bit oscillator and a Bool gate.

typedef ... Clock ;

Clock is in the Eq type class, meaning two values can be compared for equality.

Type Classes for Clock
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Clock

√

B.2.14 Reset

Reset is an abstract type.

typedef ... Reset ;

Reset is in the Eq type class, meaning two fields can be compared for equality.

Type Classes for Reset
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Reset

√

B.2.15 Inout

An Inout type is a first class type that is used to pass Verilog inouts through a BSV module. It
takes an argument which is the type of the underlying signal:

Inout#(type t)

For example, the type of an Inout signal which communicates boolean values would be:

Inout#(Bool)

Type Classes for Inout
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Inout

An Inout type is a valid subinterface type (like Clock and Reset). A value of an Inout type is
clocked_by and reset_by a particular clock and reset.

Inouts are connectable via the Connectable typeclass. The use of mkConnection instantiates a
Verilog module InoutConnect. The connected inouts must be on the same clock and the same reset.
The clock and reset of the inouts may be different than the clock and reset of the parent module of
the mkConnection.

instance Connectable#(Inout#(a, x1), Inout#(a, x2))
provisos (Bit#(a,sa));

168



Bluespec SystemVerilog Reference Guide

A module with an Inout subinterface cannot leave that interface undefined since there is no way to
create or examine inout values in BSV. For example, you cannot even write:

Inout#(int) i = ? ; // not valid in BSV

The Inout type exists only so that RTL inout signals can be connected in BSV; the ultimate users
of the signal will be outside the BSV code. An imported Verilog module might have an inout port
that your BSV design doesn’t use, but which needs to be exposed at the top level. In this case, the
submodule will introduce an inout signal that the BSV cannot read or write, but merely provides
in its interfaces until it is exposed at the top level. Or, a design may contain two imported Verilog
modules that have inout ports that expect to be connected. You can import these two modules,
declaring that they each have a port of type Inout#(t) and connect them together. The compiler
will check that both ports are of the same type t and that they are in the same clock domain with
the same reset. Beyond that, BSV does not concern itself with the values of the inout signals.

Example - Instantiating a submodule with an inout and exposing it at the next level:

interface SubIfc;
...
interface Inout#(Bool) b;

endinterface

interface TopIfc;
...
interface Inout#(Bool) bus;

endinterface

module mkTop (TopIfc);
SubIfc sub <- mkSub;
...
interface bus = sub.b;

endmodule

Example - Connecting two submodules, using SubIfc defined above:

module mkTop(...);
...
SubIfc sub1 <- mkSub;
SubIfc sub2 <- mkSub;
mkConnection (sub1.b, sub2.b);
...

endmodule

B.2.16 Action/ActionValue

Any expression that is intended to act on the state of the circuit (at circuit execution time) is called
an action and has type Action or ActionValue#(a). The type parameter a represents the type of
the returned value.

Type Classes for Action/ActionValue
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Action
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The types Action and ActionValue are special keywords, and therefore cannot be redefined.

typedef · · · abstract · · · struct ActionValue#(type a);

ActionValue type aliases
Action The Action type is a special case of the more general type

ActionValue where nothing is returned. That is, the returns type
is (void).

typedef ActionValue#(void) Action;

Action Functions
noAction An empty Action, this is an Action that does nothing.

function Action noAction();

B.2.17 Rules

A rule expression has type Rules and consists of a collection of individual rule constructs. Rules
are first class objects, hence variables of type Rules may be created and manipulated. Rules values
must eventually be added to a module in order to appear in synthesized hardware.

Type Classes for Rules
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Rules

The Rules data type provides functions to create, manipulate, and combine values of the type Rules.

Rules Functions
emptyRules An empty rules variable.

function Rules emptyRules();

addRules Takes rules r and adds them into a module. This function may only
be called from within a module. The return type Empty indicates
that the instantiation does not return anything.

module addRules#(Rules r) (Empty);

rJoin Symmetric union of two sets of rules. A symmetric union means
that neither set is implied to have any relation to the other: not
more urgent, not execute before, etc.

function Rules rJoin(Rules x, Rules y);
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rJoinPreempts Union of two sets of rules, with rules on the left getting scheduling
precedence and blocking the rules on the right.That is, if a rule in
set x fires, then all rules in set y are prevented from firing. This is
the same as specifying descending_urgency plus a forced conflict.

function Rules rJoinPreempts(Rules x, Rules y);

rJoinDescendingUrgency
Union of two sets of rule, with rules in the left having higher urgency.That
is, if some rules compete for resources, then scheduling will select rules in
set x set before set y. If the rules do not conflict, no conflict is added; the
rules can fire together.

function Rules rJoinDescendingUrgency(Rules x, Rules y);

rJoinMutuallyExclusive
Union of two sets of rule, with rules in the all rules in the left set anno-
tated as mutually exclusive with all rules in the right set.No relationship
between the rules in the left set or between the rules in the right set
is assumed. This annotation is used in scheduling and checked during
simulation.

function Rules rJoinMutuallyExclusive(Rules x, Rules y);

rJoinExecutionOrder
Union of two sets of rule, with the rules in the left set executing before the
rules in the right set.No relationship between the rules in the left set or
between the rules in the right set is assumed. If any pair of rules cannot
execute in the specified order in the same clock cycle, that pair of rules
will conflict.

function Rules rJoinExecutionOrder(Rules x, Rules y);

rJoinConflictFree
Union of two sets of rule, with the rules in the left set annotated as
conflict-free with the rules in the right set. This assumption is used during
scheduling and checked during simulation. No relationship between the
rules in the left set or between the rules in the right set is assumed.

function Rules rJoinConflictFree(Rules x, Rules y);

B.3 Operations on Numeric Types

B.3.1 Size Relationship/Provisos

These classes are used in provisos to express constraints between the sizes of types.

171



Reference Guide Bluespec SystemVerilog

Class Proviso Description
Add Add#(n1,n2,n3) Assert n1 + n2 = n3
Mul Mul#(n1,n2,n3) Assert n1 ∗ n2 = n3
Div Div#(n1,n2,n3) Assert ceiling n1/n2 = n3
Max Max#(n1,n2,n3) Assert max(n1, n2) = n3
Min Min#(n1,n2,n3) Assert min(n1, n2) = n3
Log Log#(n1,n2) Assert ceiling log2(n1) = n2.

Examples of Provisos using size relationships:
instance Bits #( Vector#(vsize, element_type), tsize)

provisos (Bits#(element_type, sizea),
Mul#(vsize, sizea, tsize)); // vsize * sizea = tsize

function Vector#(vsize1, element_type)
cons (element_type elem, Vector#(vsize, element_type) vect)

provisos (Add#(1, vsize, vsize1)); // 1 + vsize = vsize1

function Vector#(mvsize,element_type)
concat(Vector#(m,Vector#(n,element_type)) xss)

provisos (Mul#(m,n,mvsize)); // m * n = mvsize

B.3.2 Size Relationship Type Functions

These type functions are used when “defining” size relationships between data types, where the
defined value need not (or cannot) be named in a proviso. They may be used in datatype definition
statements when the size of the datatype may be calculated from other parameters.

Type Function Size Relationship Description
TAdd TAdd#(n1,n2) Calculate n1 + n2
TSub TSub#(n1,n2) Calculate n1− n2
TMul TMul#(n1,n2) Calculate n1 ∗ n2
TDiv TDiv#(n1,n2) Calculate ceiling n1/n2
TLog TLog#(n1) Calculate ceiling log2(n1)
TExp TExp#(n1) Calculate 2n1

TMax TMax#(n1,n2) Calculate max(n1, n2)
TMin TMin#(n1,n2) Calculate min(n1, n2)

Examples using other arithmetic functions:

Int#(TAdd#(5,n)); // defines a signed integer n+5 bits wide
// n must be in scope somewhere

typedef TAdd#(vsize, 8) Bigsize#(numeric type vsize);
// defines a new type Bigsize which
// is 8 bits wider than vsize

typedef Bit#(TLog#(n)) CBToken#(numeric type n);
// defines a new parameterized type,
// CBToken, which is log(n) bits wide.

typedef 8 Wordsize; // Blocksize is based on Wordsize
typedef TAdd#(Wordsize, 1) Blocksize;

172



Bluespec SystemVerilog Reference Guide

B.3.3 valueOf and SizeOf pseudo-functions

Prelude provides these pseudo-functions to convert between types and numeric values. The pseudo-
function valueof (or valueOf) is used to convert a numeric type into the corresponding Integer
value. The pseudo-function SizeOf is used to convert a type t into the numeric type representing
its bit size.

valueof Converts a numeric type into its Integer value.
valueOf

function Integer valueOf (t) ;

Example:

module mkFoo (Foo#(n));
UInt#(n) x;
Integer y = valueOf(n);

endmodule

SizeOf Converts a type into a numeric type representing its bit size.

function t SizeOf#(any_type)
provisos (Bits#(any_type, sa)) ;

Example:

any_type x = structIn;
Bit#(SizeOf#(any_type)) = pack(structIn);

B.4 Registers and Wires

Register and Wire Interfaces
Name Section Description
Reg B.4.1 Register interface.
RWire B.4.2 Similar to a register with output wrapped in a Maybe type to indi-

cate validity.
Wire B.4.3 Interchangeable with a Reg interface, validity of the data is implicit.
BypassWire B.4.4 Implementation of the Wire interface where the write method is

always enabled.
DWire B.4.5 Implementation of the Wire interface where the read method is

always ready.
PulseWire B.4.6 RWire without any data.
ReadOnly B.4.7 Interface which provides a value.
WriteOnly B.4.8 Interface which writes a value.

B.4.1 Reg

The most elementary module available in BSV is the register, which has a Reg interface. Registers
are polymorphic, i.e., in principle they can hold a value of any type but, of course, ultimately registers
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store bits. Thus, the provisos on register modules indicate that the type of the value stored in the
register must be in the Bits type class, i.e., the operations pack and unpack are defined on the type
to convert into bits and back.

Note that all Bluespec registers are considered atomic units, which means that even if one bit is
updated (written), then all the bits are considered updated. This prevents multiple rules from
updating register fields in an inconsistent manner.

When scheduling register modules, reads occur before writes. That is, any rule which reads from a
register must be scheduled earlier than any other rule which writes to the register. The value read
from the register is the value written in the previous clock cycle.

Interfaces and Methods

The Reg interface contains two methods, _write and _read.

interface Reg #(type a_type);
method Action _write(a_type x1);
method a_type _read();

endinterface: Reg

The _write and _read methods are rarely used. Instead, for writes, one uses the non-blocking
assignment notation and, for reads, one just mentions the register interface in an expression.

Reg Interface
Method Arguments

Name Type Description Name Description
_write Action writes a value x1 x1 data to be written
_read a_type returns the value of the

register

Modules

Prelude provides three modules to create a register: mkReg creates a register with a given reset value,
mkRegU creates a register without any reset, and mkRegA creates a register with a given reset value
and with asynchronous reset logic.

mkReg Make a register with a given reset value. Reset logic is synchronous.

module mkReg#(a_type resetval)(Reg#(a_type))
provisos (Bits#(a_type, sizea));

mkRegU Make a register without any reset; initial simulation value is alternating
01 bits.

module mkRegU(Reg#(a_type))
provisos (Bits#(a_type, sizea));

mkRegA Make a register with a given reset value. Reset logic is asynchronous.

module mkRegA#(a_type resetval)(Reg#(a_type))
provisos (Bits#(a_type, sizea));
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Scheduling

When scheduling register modules, reads occur before writes. That is, any rule which reads from a
register must be scheduled earlier than any other rule which writes to the register. The value read
from the register is the value written in the previous clock cycle.

Scheduling Annotations
mkReg, mkRegU, mkRegA

read write
read CF SB
write SA SBR

Functions

Three functions are provided for using registers: asReg returns the register interface instead of the
value of the register; readReg reads the value of a register, useful when managing vectors or lists of
registers; and writeReg to write a value into a register, also useful when managing vectors or lists
of registers.

asReg Treat a register as a register, i.e., suppress the normal behavior where the
interface name implicitly represents the value that the register contains
(the _read value). This function returns the register interface, not the
value of the register.

function Reg#(a_type) asReg(Reg#(a_type) regIfc);

readReg Read the value out of a register. Useful for giving as the argument to
higher-order vector and list functions.

function a_type readReg(Reg#(a_type) regIfc);

writeReg Write a value into a register. Useful for giving as the argument to higher-
order vector and list functions.

function Action writeReg(Reg#(a_atype) regIfc, a_type din);

B.4.2 RWire

An RWire is a primitive stateless module whose purpose is to allow data transfer between methods
and rules without the cycle latency of a register. That is, a RWire may be written in a cycle and
that value can be read out in the same cycle; values are not stored across clock cycles.

When scheduling wire modules, since the value is read in the same cycle in which it is written, writes
must occur before reads. That is, any rule which writes to a wire must be scheduled earlier than
any other rule which reads from the wire. This is the reverse of how registers are scheduled.

Interfaces and Methods

The RWire interface is conceptually similar to a register’s interface, but the output value is wrapped
in a Maybe type. The wset method places a value on the wire and sets the valid signal. The read-like
method, wget, returns the value and a valid signal in a Maybe type. The output is only Valid if a
write has a occurred in the same clock cycle, otherwise the output is Invalid.

175



Reference Guide Bluespec SystemVerilog

RWire Interface
Method Arguments

Name Type Description Name Description
wset Action writes a value and sets the valid

signal
datain data to be sent

on the wire
wget Maybe returns the value and the valid

signal

interface RWire#(type element_type) ;
method Action wset(element_type datain) ;
method Maybe#(element_type) wget() ;

endinterface: RWire

Modules

The mkRWire and mkUnsafeRWire modules are provided to create an RWire. The difference between
the two RWire modules is the scheduling annotations.

mkRWire Creates an RWire. Output is only valid if a write has occurred in
the same clock cycle. The write (wset) must be sequenced before
the read (wget) and they must be in different rules.

module mkRWire(RWire#(element_type))
provisos (Bits#(element_type, element_width)) ;

mkUnsafeRWire Creates an RWire. Output is only valid if a write has occurred in
the same clock cycle. The write (wset) must be sequenced before
the read (wget) but they can be in the same rule.

module mkUnsafeRWire(RWire#(element_type))
provisos (Bits#(element_type, element_width)) ;

Scheduling

When scheduling wire modules, since the value is read in the same cycle in which it is written, writes
must occur before reads. That is, any rule which writes to a wire must be scheduled earlier than
any other rule which reads from the wire. This is the reverse of how registers are scheduled.

Scheduling Annotations
mkRWire

wget wset
wget CF SAR
wset SBR C

Scheduling Annotations
mkUnsafeRWire

wget wset
wget CF SA
wset SB C

B.4.3 Wire

The Wire interface and module are similar to RWire, but the valid bit is hidden from the user and
the validity of the read is considered an implicit condition. The Wire interface works like the Reg
interface, so mentioning the name of the wire gets (reads) its contents whenever they’re valid, and
using <= writes the wire. Wire is an RWire that is designed to be interchangeable with Reg. You
can replace a Reg with a Wire without changing the syntax.

Interfaces and Methods

176



Bluespec SystemVerilog Reference Guide

typedef Reg#(element_type) Wire#(type element_type);

Wire Interface
Method Arguments

Name Type Description Name Description
_write Action writes a value x1 x1 data to be written
_read a_type returns the value of the

wire

Modules

The mkWire and mkUnsafeWire modules are provided to create a Wire. The only difference between
the two modules are the scheduling annotations. The mkWire version requires that the the write and
the read be in different rules.

mkWire Creates a Wire. Validity of the output is automatically checked as
an implicit condition of the read method. The write and the read
methods must be in different rules.

module mkWire(Wire#(element_type))
provisos (Bits#(element_type, element_width));

mkUnsafeWire Creates a Wire. Validity of the output is automatically checked as
an implicit condition of the read method. The write and the read
methods can be in the same rule.

module mkUnsafeWire(Wire#(element_type))
provisos (Bits#(element_type, element_width));

Scheduling Annotations
mkWire

read write
read CF SAR
write SBR C

Scheduling Annotations
mkUnsafeWire

read write
read CF SA
write SB C

B.4.4 BypassWire

BypassWire is an implementation of the Wire interface where the _write method is an always_enabled
method. The compiler will issue a warning if the method does not appear to be called every clock
cycle. The advantage of this tradeoff is that the _read method of this interface does not carry
any implicit condition (so it can satisfy a no_implicit_conditions assertion or an always_ready
method).

mkBypassWire Creates a BypassWire. The write method is always enabled.

module mkBypassWire(Wire#(element_type))
provisos (Bits#(element_type, element_width));
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Scheduling Annotations
mkBypassWire

read write
read CF SAR
write SBR C

B.4.5 DWire

DWire is an implementation of the Wire interface where the _read method is an always_ready
method and thus has no implicit conditions. Unlike the BypassWire however, the _write method
need not be always enabled. On cycles when a DWire is written to, the _read method returns that
value. On cycles when no value is written, the _read method instead returns a default value that is
specified as an argument during instantiation.

There are two modules to create a DWire; the only difference being the scheduling annotations. A
write is always scheduled before a read, however the mkDWire module requires that the write and
read be in different rules.

mkDWire Creates a DWire. The read method is always ready.

module mkDWire#(a_type defaultval)(Wire#(element_type))
provisos (Bits#(element_type, element_width));

mkUnsafeDWire Creates a DWire. The read method is always ready.

module mkUnsafeDWire#(a_type defaultval)(Wire#(element_type))
provisos (Bits#(element_type, element_width));

Scheduling Annotations
mkDWire

read write
read CF SAR
write SBR C

Scheduling Annotations
mkUnsafeDWire

read write
read CF SA
write SB C

B.4.6 PulseWire

Interfaces and Methods

The PulseWire interface is an RWire without any data. It is useful within rules and action methods
to signal other methods or rules in the same clock cycle. Note that because the read method is called
_read, the register shorthand can be used to get its value without mentioning the method _read (it
is implicitly added).

PulseWire Interface
Name Type Description
send Action sends a signal down the wire
_read Bool returns the valid signal

interface PulseWire;
method Action send();
method Bool _read();

endinterface
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Modules

Four modules are provided to create a PulseWire, the only difference being the scheduling annota-
tions. In the OR versions the send method does not conflict with itself. Calling the send method
for a mkPulseWire from 2 rules causes the two rules to conflict while in the mkPulseWireOR there is
no conflict. In other words, the mkPulseWireOR acts a logical ”OR”. The Unsafe versions allow the
send and _read methods to be in the same rule.

mkPulseWire The writing to this type of wire is used in rules and action methods
to send a single bit to signal other methods or rules in the same
clock cycle.

module mkPulseWire(PulseWire);

mkPulseWireOR Returns a PulseWire which acts like a logical ”Or”. The send
method of the same wire can be used in two different rules without
conflict.

module mkPulseWireOR(PulseWire);

mkUnsafePulseWire The writing to this type of wire is used in rules and action methods
to send a single bit to signal other methods or rules in the same
clock cycle. The send and _read methods can be in the same rule.

module mkUnsafePulseWire(PulseWire);

mkUnsafePulseWireOR Returns a PulseWire which acts like a logical ”Or”. The send
method of the same wire can be used in two different rules without
conflict. The send and _read methods can be in the same rule.

module mkUnsafePulseWireOR(PulseWire);

Scheduling Annotations
mkPulseWire

read send
read CF SAR

send SBR C

Scheduling Annotations
mkUnsafePulseWire

read send
read CF SA

send SB C

Scheduling Annotations
mkPulseWireOR

read send
read CF SAR

send SBR SBR

Scheduling Annotations
mkUnsafePulseWireOR

read send
read CF SA

send SB SBR

Counter Example - Using Reg and PulseWire

interface Counter#(type size_t);
method Bit#(size_t) read();
method Action load(Bit#(size_t) newval);

179



Reference Guide Bluespec SystemVerilog

method Action increment();
method Action decrement();

endinterface

module mkCounter(Counter#(size_t));
Reg#(Bit#(size_t)) value <- mkReg(0); // define a Reg

PulseWire increment_called <- mkPulseWire(); // define the PulseWires used
PulseWire decrement_called <- mkPulseWire(); // to signal other methods or rules

// whether rules fire is based on values of PulseWires
rule do_increment(increment_called && !decrement_called);

value <= value + 1;
endrule

rule do_decrement(!increment_called && decrement_called);
value <= value - 1;

endrule

method Bit#(size_t) read(); // read the register
return value;

endmethod

method Action load(Bit#(size_t) newval); // load the register
value <= newval; // with a new value

endmethod

method Action increment(); // sends the signal on the
increment_called.send(); // PulseWire increment_called

endmethod

method Action decrement(); / sends the signal on the
decrement_called.send(); // PulseWire decrement_called

endmethod
endmodule

B.4.7 ReadOnly

ReadOnly is an interface which provides a value. The _read shorthand can be used to read the
value.

Interfaces and Methods

ReadOnly Interface
Method

Name Type Description
_read a_type Reads the data

interface ReadOnly #( type a_type ) ;
method a_type _read() ;

endinterface

Functions
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regToReadOnly Converts a Reg interface into a ReadOnly interface. Useful for giving as the
argument to higher-order vector and list functions.

function ReadOnly#(a_type) regToReadOnly(Reg#(a_type) regIfc);

pulseWireToReadOnly Converts a PulseWire interface into a ReadOnly interface.

function ReadOnly#(Bool) pulseWireToReadOnly(PulseWire ifc);

readReadOnly Takes a ReadOnly interface and returns a value.

function a_type readReadOnly(ReadOnly#(a_type) r);

B.4.8 WriteOnly

WriteOnly is an interface which writes a value. The _write shorthand is used to write the value.

Interfaces and Methods

WriteOnly Interface
Method Arguments

Name Type Description Name Description
_write Action Writes the data x Value to be written, of

datatype a_type.

interface WriteOnly #( type a_type ) ;
method Action _write (a_type x) ;

endinterface

B.5 Miscellaneous Functions

B.5.1 Compile-time Messages

error Generate a compile-time error message, s, and halt compilation.

function a_type error(String s);

warning When applied to a value v of type a, generate a compile-time warn-
ing message, s, and continue compilation, returning v.

function a_type warning(String s, a_type v);

message When applied to a value v of type a, generate a compile-time in-
formative message, s, and continue compilation, returning v.

function a_type message(String s, a_type v);
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errorM Generate a compile-time error message, s, and halt compilation in
a monad.

function m#(void) errorM(String s)
provisos (Monad#(m));

warningM Generate a compilation warning in a monad.

function m#(void) warningM(String s)
provisos (Monad#(m));

messageM Generate a compilation message in a monad.

function m#(void) messageM(String s)
provisos (Monad#(m));

B.5.2 Arithmetic Functions

max Returns the maximum of two values, x and y.

function a_type max(a_type x, a_type y)
provisos (Ord#(a_type));

min Returns the minimum of two values, x and y.

function a_type min(a_type x, a_type y)
provisos (Ord#(a_type));

abs Returns the absolute value of x.

function a_type abs(a_type x)
provisos (Arith#(a_type), Ord#(a_type));

signedMul Performs full precision multiplication on two Int#(n) operands of
different sizes.

function Int#(m) signedMul(Int#(n) x, Int#(k) y)
provisos (Add#(n,k,m));

unsignedMul Performs full precision multiplication on two unsigned UInt#(n)
operands of different sizes.

function UInt#(m) unsignedMul(UInt#(n) x, UInt#(k) y)
provisos (Add#(n,k,m));
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B.5.3 Operations on Functions

Higher order functions are functions which take functions as arguments and/or return functions as
results. These are often useful with list and vector functions.

compose Creates a new function, c, made up of functions, f and g. That is,
c(a) = f(g(a))

function (function c_type (a_type x0))
compose(function c_type f(b_type x1),

function b_type g(a_type x2));

composeM Creates a new monadic function, m#(c), made up of functions, f
and g. That is, c(a) = f(g(a))

function (function m#(c_type) (a_type x0))
composeM(function m#(c_type) f(b_type x1),

function m#(b_type) g(a_type x2))
provisos # (Monad#(m));

id Identity function, returns x when given x. This function is useful
when the argument requires a function which doesn’t do anything.

function a_type id(a_type x);

constFn Constant function, returns x.

function a_type constFn(a_type x, b_type y);

flip Flips the arguments x and y, returning a new function.

function (function c_type new (b_type y, a_type x))
flip (function c_type old (a_type x, b_type y));

curry This function converts a function on a pair (Tuple2) of arguments
into a function which takes the arguments separately. The phrase
t0 f(t1 x, t2 y) is the function returned by curry

function (function t0 f(t1 x, t2 y))
curry (function t0 g(Tuple2#(t1, t2) x));

uncurry This function does the reverse of curry; it converts a function of
two arguments into a function which takes a single argument, a
pair (Tuple2).

function (function t0 g(Tuple2#(t1, t2) x))
uncurry (function t0 f(t1 x, t2 y));
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Example - using function constFn to set the initial values of the registers in a list:

List#(Reg#(Resource)) items <- mapM( constFn(mkReg(initRes)), upto(1,numAdd) );

B.5.4 Bit Functions

The following functions operate on Bit#(n) variables.

parity Returns the parity of the bit argument v. Example: parity( 5’b1)
= 1, parity( 5’b3) = 0;

function Bit#(1) parity(Bit#(n) v);

reverseBits Reverses the order of the bits in the argument x.

function Bit#(n) reverseBits(Bit#(n) x);

countOnes Returns the count of the number of 1’s in the bit vector bin.

function UInt#(lgn1) countOnes ( Bit#(n) bin )
provisos (Add#(1, n, n1), Log#(n1, lgn1),

Add#(1, xx, lgn1) );

countZerosMSB For the bit vector bin, count the number of 0s until the first 1,
starting from the most significant bit (MSB).

function UInt#(lgn1) countZerosMSB ( Bit#(n) bin )
provisos (Add#(1, n, n1), Log#(n1, lgn1) );

countZerosLSB For the bit vector bin, count the number of 0s until the first 1,
starting from the least significant bit (LSB).

function UInt#(lgn1) countZerosLSB ( Bit#(n) bin )
provisos (Add#(1, n, n1), Log#(n1, lgn1) );

truncateLSB Truncates a Bit#(m) to a Bit#(n) by dropping bits starting with
the LSB.

function Bit#(n) truncateLSB(Bit#(m) x)
provisos(Add#(n,k,m));
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B.5.5 Integer Functions

The following functions can only be used for static elaboration.

gcd Calculate the greatest common divisor of two Integers.

function Integer gcd(Integer a, Integer b);

lcm Calculate the least common multiple of two Integers.

function Integer lcm(Integer a, Integer b);

B.5.6 Control Flow Function

while Repeat a function while a predicate holds.

function a_type while(function Bool pred(a_type x1),
function a_type f(a_type x1), a_type x);

when Adds an implicit condition onto an expression.

function a when(Bool condition, a arg);

Example - adding the implicit condition readCount==0 to the action

function Action startReadSequence (BAddr startAddr,
UInt#(6) count);

return when ((readCount == 0), // implicit condition of the action
(action

readAddr <= startAddr ;
readCount <= count ;

endaction));
endfunction

rule readSeq; // readCount==0 is an implicit condition
startReadSequence (addr, count);

endrule

B.6 Environment Values

The Environment section of the Prelude contains some value definitions that remain static within a
compilation, but may vary between compilations.

Test whether the compiler is generating C.

genC Returns True if the compiler is generating C.

function Bool genC();
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Test whether the compiler is generating Verilog.

genVerilog Returns True if the compiler is generating Verilog.

function Bool genVerilog();

Return the version of the compiler.

compilerVersion Returns a String containing the compiler version. This is the same
string used with the -v flag.

String compilerVersion;

Example:
The statement:

$display("compiler version = %s", compilerVersion);
produces this output:

compiler version = version 3.8.56 (build 7084, 2005-07-22)

Return the build number of the version of the compiler.

buildVersion Returns a Bit#(32) containing the build number portion of the
compiler version.

Bit#(32) buildVersion;

Example:
The statement:

$display("The build version of the compiler is %d", buildVersion);
produces this output:

"The build version of the compiler is 12345"

Get the current date and time.

date Returns a String containing the date.

String date;

Example:
The statement:

$display("date = %s", date);
produces this output:

"date = Mon Feb 6 08:39:59 EST 2006"

Returns the number of seconds from the epoch (1970-01-01 00:00:00) to now.

epochTime Returns a Bit#(32) containing the number of seconds since the
epoch, which is defined as 1970-01-01 00:00:00.

Bit#(32) epochTime;
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Example:

The statement:
$display("Current epoch is %d", epochTime);

produces this output:
"Current epoch is 1235481642"
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C AzureIP Foundation Libraries

Section B defined the standard Prelude package, which is automatically imported into every pack-
age. This section describes BSV’s large and continuously growing collection of AzureIP Foundation
libraries. To use any of these libraries in a package you must explicitly import the library package
using an import clause (Section 3).

Bluespec’s AzureIP intellectual property (IP) accelerates hardware design and modeling. All pack-
ages in the AzureIP Foundation library are provided as compiled code. Some of the packages are
also provided as BSV source code to facilitate customization. When modifying these files, first copy
them into a local directory and then modify your local copy. Use the -p flag when compiling, as
described in the BSV Users Guide, to include the local directory in your path.

There are two AzureIP library families, Foundation and Premium:

• Foundation is an extensive family of components, types and functions that are included with
the Bluespec toolsets for use in your models and designs – they serve as a foundational base
for your modeling and implementation work.

• Premium is the designation for Bluespec’s fee-based AzureIP.

C.1 Storage Structures

C.1.1 Register File

Package

import RegFile :: * ;

Description

This package provides 5-read-port 1-write-port register array modules.

Note: In a design that uses RegFiles, some of the read ports may remain unused. This may generate
a warning in various downstream tool. Downstream tools should be instructed to optimize away the
unused ports.

Interfaces and Methods

The RegFile package defines one interface, RegFile. The RegFile interface provides two methods,
upd and sub. The upd method is an Action method used to modify (or update) the value of an
element in the register file. The sub method (from ”sub”script) is a Value method which reads and
returns the value of an element in the register file. The value returned is of a datatype data_t.

Interface Name Parameter name Parameter Description Restrictions
RegFile index type datatype of the index must be in the Bits class

data t datatype of the element values must be in the Bits class

interface RegFile #(type index_t, type data_t);
method Action upd(index_t addr, data_t d);
method data_t sub(index_t addr);

endinterface: RegFile
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Method Arguments
Name Type Description Name Description
upd Action Change or update an el-

ement within the register
file.

addr index of the element to be
changed, with a datatype of
index_t

d new value to be stored, with a
datatype of data_t

sub data t Read an element from
the register file and re-
turn it.

addr index of the element, with a
datatype of index_t

Modules

The RegFile package provides three modules: mkRegFile creates a RegFile with registers allocated
from the lo_index to the hi_index; mkRegFileFull creates a RegFile from the minimum index to
the maximum index; and mkRegFileWCF creates a RegFile from lo_index to hi_index for which
the reads and the write are scheduled conflict-free. There is a second set of these modules, the
RegFileLoad variants, which take as an argument a file containing the initial contents of the array.

mkRegFile Create a RegFile with registers allocated from lo_index to hi_index.
lo_index and hi_index are of the index_t datatype and the elements
are of the data_t datatype.

module mkRegFile#( index_t lo_index, index_t hi_index )
( RegFile#(index_t, data_t) )

provisos (Bits#(index_t, size_index),
Bits#(data_t, size_data));

mkRegFileFull Create a RegFile from min to max index where the index is of a datatype
index_t and the elements are of datatype data_t. The min and max are
specified by the Bounded typeclass instance (0 to N-1 for N-bit numbers).

module mkRegFileFull#( RegFile#(index_t, data_t) )
provisos (Bits#(index_t, size_index),

Bits#(data_t, size_data)
Bounded#(index_t) );

mkRegFileWCF Create a RegFile from lo_index to hi_index for which the reads and the
write are scheduled conflict-free. For the implications of this scheduling,
see the documentation for ConfigReg (Section C.1.2).

module mkRegFileWCF#( index_t lo_index, index_t hi_index )
( RegFile#(index_t, data_t) )

provisos (Bits#(index_t, size_index),
Bits#(data_t, size_data));

The RegFileLoad variants provide the same functionality as RegFile, but each constructor function
takes an additional file name argument. The file contains the initial contents of the array using the
Verilog hex memory file syntax, which allows white spaces (including new lines, tabs, underscores,
and form-feeds), comments, binary and hexadecimal numbers. Length and base format must not be
specified for the numbers.

189



Reference Guide Bluespec SystemVerilog

mkRegFileLoad Create a RegFile using the file to provide the initial contents of the array.

module mkRegFileLoad#
( String file, index_t lo_index, index_t hi_index)
( RegFile#(index_t, data_t) )

provisos (Bits#(index_t, size_index),
Bits#(data_t, size_data));

mkRegFileFullLoad Create a RegFile from min to max index using the file to provide the initial
contents of the array. The min and max are specified by the Bounded
typeclass instance (0 to N-1 for N-bit numbers).

module mkRegFileFullLoad#( String file)
( RegFile#(index_t, data_t))

provisos (Bits#(index_t, size_index),
Bits#(data_t, size_data),
Bounded#(index_t) );

mkRegFileWCFLoad Create a RegFile from lo_index to hi_index for which the reads and
the write are scheduled conflict-free (see Section C.1.2), using the file to
provide the initial contents of the array.

module mkRegFileWCFLoad#
( String file, index_t lo_index, index_t hi_index)
( RegFile#(index_t, data_t) )

provisos (Bits#(index_t, size_index),
Bits#(data_t, size_data));

Examples

Use mkRegFileLoad to create Register files and then read the values.

Reg#(Cntr) count <- mkReg(0);

// Create Register files to use as inputs in a testbench
RegFile#(Cntr, Fp64) vecA <- mkRegFileLoad("vec.a.txt", 0, 9);
RegFile#(Cntr, Fp64) vecB <- mkRegFileLoad("vec.b.txt", 0, 9);

//read the values from the Register files
rule drivein (count < 10);

Fp64 a = vecA.sub(count);
Fp64 b = vecB.sub(count);
uut.start(a, b);
count <= count + 1;

endrule

Verilog Modules

RegFile modules correspond to the following Verilog modules, which are found in the Bluespec
Verilog library, $BLUESPECDIR/Verilog/.
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BSV Module Name Verilog Module Name Defined in File

mkRegFile RegFile RegFile.v
mkRegFileFull
mkRegFileWCF
mkRegFileLoad RegFileLoad RegFileLoad.v
mkRegFileFullLoad
mkRegFileWCFLoad

C.1.2 ConfigReg

Package

import ConfigReg :: * ;

Description

The ConfigReg package provides a way to create registers where each update clobbers the current
value, but the precise timing of updates is not important. These registers are identical to the mkReg
registers except that their scheduling annotations allows reads and writes to occur in either order
during rule execution.

Rules which fire during the clock cycle where the register is written read a stale value (that is the
value from the beginning of the clock cycle) regardless of firing order and writes which have occurred
during the clock cycle. Thus if rule r1 writes to a ConfigReg cr and rule r2 reads cr later in the
same cycle, the old or stale value of cr is read, not the value written in r1. If a standard register
is used instead, rule r2’s execution will be blocked by r1’s execution or the scheduler may create a
different rule execution order.

The hardware implementation is identical for the more common registers (mkReg, mkRegU and
mkRegA), and the module constructors parallel these as well.

Interfaces

The ConfigReg interface is an alias of the Reg interface (section B.4.1).
typedef Reg#(a_type) ConfigReg #(type a_type);

Modules

The ConfigReg package provides three modules; mkConfigReg creates a register with a given re-
set value and synchronous reset logic, mkConfigRegU creates a register without any reset, and
mkConfigRegA creates a register with a given reset value and asynchronous reset logic.

mkConfigReg Make a register with a given reset value. Reset logic is synchronous

module mkConfigReg#(a_type resetval)(Reg#(a_type))
provisos (Bits#(a_type, sizea));

mkConfigRegU Make a register without any reset; initial simulation value is alternating
01 bits.

module mkConfigRegU(Reg#(a_type))
provisos (Bits#(a_type, sizea));
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mkConfigRegA Make a register with a given reset value. Reset logic is asynchronous.

module mkConfigRegA#(a_type, resetval)(Reg#(a_type))
provisos (Bits#(a_type, sizea));

Scheduling Annotations
mkConfigReg, mkConfigRegU, mkConfigRegA

read write
read CF CF
write CF SBR

C.1.3 DReg

Package

import DReg :: * ;

Description

The DReg package allows a designer to create registers which store a written value for only a single
clock cycle. The value written to a DReg is available to read one cycle after the write. If more than
one cycle has passed since the register has been written however, the value provided by the register
is instead a default value (that is specified during module instantiation). These registers are useful
when wanting to send pulse values that are only asserted for a single clock cycle. The DReg is the
register equivalent of a DWire B.4.5.

Modules

The DReg package provides three modules; mkDReg creates a register with a given reset/default value
and synchronous reset logic, mkDRegU creates a register without any reset (but which still takes a
default value as an argument), and mkDRegA creates a register with a given reset/default value and
asynchronous reset logic.

mkDReg Make a register with a given reset/default value. Reset logic is syn-
chronous

module mkDReg#(a_type dflt_rst_val)(Reg#(a_type))
provisos (Bits#(a_type, sizea));

mkDRegU Make a register without any reset but with a specified default; initial
simulation value is alternating 01 bits.

module mkDRegU#(a_type dflt_val)(Reg#(a_type))
provisos (Bits#(a_type, sizea));

mkDRegA Make a register with a given reset/default value. Reset logic is asyn-
chronous.

module mkDRegA#(a_type, dflt_rst_val)(Reg#(a_type))
provisos (Bits#(a_type, sizea));
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Scheduling Annotations
mkDReg, mkDRegU, mkDRegA

read write
read CF SB
write SA SBR

C.1.4 RevertingVirtualReg

Package

import RevertingVirtualReg :: * ;

Description

The RevertingVirtualReg package allows a designer to force a schedule when scheduling attributes
cannot be used. Since scheduling attributes cannot be put on methods, this allows a designer to
control the schedule between two methods, or between a method and a rule by adding a virtual
register between the two. The module RevertingVirtualReg creates a virtual register; no actual
state elements are generated.

Modules

The RevertingVirtualReg package provides the module mkRevertingVirtualReg. The properties
of the module are:

• it schedules exactly like an ordinary register;

• it reverts to its reset value at the end of each clock cycle.

These imply that all allowed reads will return the reset value (since they precede any writes in the
cycle); thus the module neither needs nor instantiates any actual state element.

mkRevertingVirtualReg Creates a virtual register reverting to the reset value at the end of
each clock cycle.

module mkRevertingVirtualReg#(a_type rst)(Reg#(a_type))
provisos (Bits#(a_type, sizea));

Scheduling Annotations
mkRevertingVirtualReg

read write
read CF SB
write SA SBR

Example Use mkRevertingVirtualReg to create the execution order of the rule followed by the method

Reg#(Bool) virtualReg <- mkRevertingVirtualReg(True);

rule the_rule (virtualReg); // reads virtualReg
...

endrule
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method Action the_method;
virtualReg <= False; // writes virtualReg
...

endmethod

In a given cycle, reads always precede writes for a register. Therefore the reading of virtualReg
by the_rule will precede the writing of virtualReg in the_method. The execution order will be
the_rule followed by the_method.

C.2 FIFOs

C.2.1 FIFO Overview

The AzureIP Foundation library contains multiple FIFO packages. All library FIFO packages are
supplied as compiled code. The FIFOs in the BRAMFIFO, SpecialFIFO, and AlignedFIFOs packages
are also provided as BSV source code to facilate customization.

Package Name Description BSV Source Section
provided

FIFO Defines the FIFO interface and module constructors. FI-
FOs provided have implicit full and empty signals. In-
cludes pipeline FIFO (mkLFIFO).

C.2.2

FIFOF Defines the FIFOF interface and module constructors. FI-
FOs provided have explicit full and empty signals. Includes
pipeline FIFOF (mkLFIFOF).

C.2.2

FIFOLevel Enhanced FIFO interfaces and modules which include
methods to indicate the level or current number of items
stored in the FIFO. Single and dual clock versions are pro-
vided.

C.2.3

BRAMFIFO FIFOs which utilize the Xilinx Block RAMs.
√

C.2.6
SpecialFIFOs Additional pipeline and bypass FIFOs

√
C.2.7

AlignedFIFOs Parameterized FIFO module for creating synchronizing FI-
FOs between clock domains with aligned edges.

√
C.2.8

Gearbox FIFOs which change the frequency and data width of data
across clock domains with aligned edges. The overall data
rate stays the samme.

√
C.2.9

Clocks Generalized FIFOs to synchronize data being sent across
clock domains

C.9.7

C.2.2 FIFO and FIFOF packages

Packages

import FIFO :: * ;
import FIFOF :: * ;

Description

The FIFO package defines the FIFO interface and four module constructors. The FIFO package is
for FIFOs with implicit full and empty signals.
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The FIFOF package defines FIFOs with explicit full and empty signals. The standard version of FIFOF
has FIFOs with the enq, deq and first methods guarded by the appropriate (notFull or notEmpty)
implicit conditions for safety and improved scheduling. Unguarded (UG) versions of FIFOF are
available for the rare cases when implicit conditions are not desired. Guarded (G) versions of FIFOF
are available which allow more control over implicit conditions. With the guarded versions the user
can specify whether the enqueue or dequeue side is guarded.

Interfaces and methods

The four common methods, enq, deq, first and clear are provided by both the FIFO and FIFOF
interfaces.

FIFO methods
Method Argument

Name Type Description Name Description
enq Action adds an entry to the FIFO x1 variable to be added to the FIFO

must be of type element type
deq Action removes first entry from

the FIFO
first element type returns first entry the entry returned is of ele-

ment type
clear Action clears all entries from the

FIFO

interface FIFO #(type element_type);
method Action enq(element_type x1);
method Action deq();
method element_type first();
method Action clear();

endinterface: FIFO

FIFOF provides two additional methods, notFull and notEmpty.

Additional FIFOF Methods
Name Type Description
notFull Bool returns a True value if there is space, you can enqueue an

entry into the FIFO
notEmpty Bool returns a True value if there are elements the FIFO, you

can dequeue from the FIFO

interface FIFOF #(type element_type);
method Action enq(element_type x1);
method Action deq();
method element_type first();
method Bool notFull();
method Bool notEmpty();
method Action clear();

endinterface: FIFOF

The FIFO and FIFOF interfaces belong to the ToGet and ToPut typeclasses. You can use the toGet
and toPut functions to convert FIFO and FIFOF interfaces to Get and Put interfaces (Section C.7.1).

Modules
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The FIFO and FIFOF interface types are provided by the module constructors: mkFIFO, mkFIFO1,
mkSizedFIFO, mkDepthParamFIFO, and mkLFIFO. Each FIFO is safe with implicit conditions; they do
not allow an enq when the FIFO is full or a deq or first when the FIFO is empty.

Most FIFOs do not allow simultaneous enqueue and dequeue operations when the FIFO is full or
empty. The exceptions are pipeline and bypass FIFOs. A pipeline FIFO (provided as mkLFIFO
in this package), allows simultaneous enqueue and dequeue operations when full. A bypass FIFO
allows simultaneous enqueue and dequeue operations when empty. Additional pipeline and bypass
FIFOs are provided in the SpecialFIFOs package (Section C.2.7). The FIFOs in the SpecialFIFOs
package are provided as both compiled code and BSV source code, so they are customizable.

Allowed Simultaneous enq and deq
by FIFO type

FIFO Condition
FIFO type empty not empty full

not full
mkFIFO

√

mkFIFOF
mkFIFO1 NA
mkFIFOF1
mkLFIFO

√ √

mkLFIFOF
mkLFIFO1 NA

√

mkLFIFOF1
Modules provided in SpecialFIFOs package C.2.7

mkPipelineFIFO NA
√

mkPipelineFIFOF
mkBypassFIFO

√
NA

mkBypassFIFOF
mkSizedBypassFIFOF

√ √

mkBypassFIFOLevel
√ √

For creating a FIFOF interface (providing explicit notFull and notEmpty methods) use the "F"
version of the module, for example use mkFIFOF instead of mkFIFO.

Module Name BSV Module Declaration
For all modules, width_any may be 0

FIFO or FIFOF of depth 2.

mkFIFO
mkFIFOF

module mkFIFO (FIFO#(element_type))
provisos (Bits#(element_type, width_any));

FIFO or FIFOF of depth 1

mkFIFO1
mkFIFOF1

module mkFIFO1(FIFO#(element_type))
provisos (Bits#(element_type, width_any));
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FIFO or FIFOF of given depth n

mkSizedFIFO
mkSizedFIFOF

module mkSizedFIFO(Integer n)(FIFO#(element_type))
provisos (Bits#(element_type, width_any));

FIFO or FIFOF of given depth n where n is a Verilog parameter or computed from
compile-time constants and Verilog parameters.

mkDepthParamFIFO
mkDepthParamFIFOF

module mkDepthParamFIFO(UInt#(32) n)(FIFO#(element_type))
provisos (Bits#(element_type, width_any));

Unguarded (UG) versions of FIFOF are available for the rare cases when implicit conditions are not
desired. When using an unguarded FIFO, the implicit conditions for correct FIFO operations are
NOT considered during rule and method processing, making it possible to enqueue when full, and
to dequeue when empty. The These mdoules provide the FIFOF interface.

Unguarded FIFOF of depth 2
mkUGFIFOF

module mkUGFIFOF (FIFOF#(element_type))
provisos (Bits#(element_type, width_any));

Unguarded FIFOF of depth 1
mkUGFIFOF1

module mkUGFIFO1(FIFOF#(element_type))
provisos (Bits#(element_type, width_any));

Unguarded FIFOF of given depth n
mkUGSizedFIFOF

module mkUGSizedFIFOF(Integer n)(FIFOF#(element_type))
provisos (Bits#(element_type, width_any));

Unguarded FIFO of given depth n where n is a Verilog parameter or computed from
compile-time constants and Verilog parameters.
mkUGDepthParamFIFOF

module mkUGDepthParamFIFOF(UInt#(32) n)
(FIFOF#(element_type))

provisos (Bits#(element_type, width_any));

The guarded (G) versions of each of the FIFOFs allow you to specify which implicit condition you want
to guard. These modules takes two Boolean parameters; ugenq and ugdeq. Setting either parameter
TRUE indicates the relevant methods (enq for ugenq, first and deq for ugdeq) are unguarded. If
both are TRUE the FIFOF behaves the same as an unguarded FIFOF. If both are FALSE the behavior
is the same as a regular FIFOF.
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Guarded FIFOF of depth 2.

mkGFIFOF module mkGFIFOF (Bool ugenq, Bool ugdeq)(FIFOF#(element_type))
provisos (Bits#(element_type, width_any));

Guarded FIFOF of depth 1

mkGFIFOF1 module mkGFIFOF1(Bool ugenq, Bool ugdeq)(FIFOF#(element_type))
provisos (Bits#(element_type, width_any));

Guarded FIFOF of given depth n

mkGSizedFIFOF module mkGSizedFIFOF(Bool ugenq, Bool ugdeq, Integer n)
(FIFOF#(element_type))

provisos (Bits#(element_type, width_any));

Guarded FIFOF of given depth n where n is a Verilog parameter or computed from
compile-time constants and Verilog parameters.

mkGDepthParamFIFOF module mkGDepthParamFIFOF
(Bool ugenq, Bool ugdeq, UInt#(32) n)
(FIFOF#(element_type))

provisos (Bits#(element_type, width_any));

The LFIFOs (pipeline FIFOs) allow enq and deq in the same clock cycle when the FIFO is full.
Additional BSV versions of the pipeline FIFO and also bypass FIFOs (allowing simultaneous enq
and deq when the FIFO is empty) are provided in the SpecialFIFOs package (Section C.2.7). Both
unguarded and guarded versions of the LFIFO are provided in the FIFOF package.

Pipeline FIFO of depth 1. deq and enq can be simultaneously applied in the same clock
cycle when the FIFO is full.

mkLFIFO
mkLFIFOF
mkUGLFIFOF

module mkLFIFO (FIFO#(element_type))
provisos (Bits#(element_type, width_any));

Guarded pipeline FIFOF of depth 1. deq and enq can be simultaneously applied in the same
clock cycle when the FIFOF is full.

mkGLFIFOF module mkGLFIFOF (Bool ugenq, Bool ugdeq)(FIFOF#(element_type))
provisos (Bits#(element_type, width_any));
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Functions

The FIFO package provides a function fifofToFifo to convert an interface of type FIFOF to an
interface of type FIFO.

Converts a FIFOF interface to a FIFO interface.

fifofToFifo function FIFO#(a) fifofToFifo (FIFOF#(a) f);

Example using the FIFO package

This example creates 2 input FIFOs and moves data from the input FIFOs to the output FIFOs.

import FIFO::*;

typedef Bit#(24) DataT;

// define a single interface into our example block
interface BlockIFC;

method Action push1 (DataT a);
method Action push2 (DataT a);
method ActionValue#(DataT) get();

endinterface

module mkBlock1( BlockIFC );
Integer fifo_depth = 16;

// create the first inbound FIFO instance
FIFO#(DataT) inbound1 <- mkSizedFIFO(fifo_depth);

// create the second inbound FIFO instance
FIFO#(DataT) inbound2 <- mkSizedFIFO(fifo_depth);

// create the outbound instance
FIFO#(DataT) outbound <- mkSizedFIFO(fifo_depth);

// rule for enqueue of outbound from inbound1
// implicit conditions ensure correct behavior
rule enq1 (True);

DataT in_data = inbound1.first;
DataT out_data = in_data;
outbound.enq(out_data);
inbound1.deq;

endrule: enq1

// rule for enqueue of outbound from inbound2
// implicit conditions ensure correct behavior
rule enq2 (True);

DataT in_data = inbound2.first;
DataT out_data = in_data;
outbound.enq(out_data);
inbound2.deq;

endrule: enq2

//Add an entry to the inbound1 FIFO
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method Action push1 (DataT a);
inbound1.enq(a);

endmethod

//Add an entry to the inbound2 FIFO
method Action push2 (DataT a);

inbound2.enq(a);
endmethod

//Remove first value from outbound and return it
method ActionValue#(DataT) get();

outbound.deq();
return outbound.first();

endmethod
endmodule

Scheduling Annotations

Scheduling constraints describe how methods interact within the schedule. For example, a clear to
a given FIFO must be sequenced after (SA) an enq to the same FIFO. That is, when both enq and
clear execute in the same cycle, the resulting FIFO state is empty. For correct rule behavior the
rule executing enq must be scheduled before the rule calling clear.

The table below lists the scheduling annotations for the FIFO modules mkFIFO, mkSizedFIFO, and
mkFIFO1.

Scheduling Annotations
mkFIFO, mkSizedFIFO, mkFIFO1

enq first deq clear
enq C CF CF SB
first CF CF SB SB
deq CF SA C SB
clear SA SA SA SBR

The table below lists the scheduling annotations for the pipeline FIFO module, mkLFIFO. The pipeline
FIFO has a few more restrictions since there is a combinational path between the deq side and the
enq side, thus restricting deq calls before enq.

Scheduling Annotations
mkLFIFO
enq first deq clear

enq C SA SAR SB
first SB CF SB SB
deq SBR SA C SB
clear SA SA SA SBR

The FIFOF modules add the notFull and notEmpty methods. These methods have SB annotations
with the Action methods that change FIFO state. These SB annotations model the atomic behavior
of a FIFO, that is when enq, deq, or clear are called the state of notFull and notEmpty are
changed. This is no different than the annotations on mkReg (which is read SB write), where
actions are atomic and the execution module is one rule fires at a time. This does differ from a pure
hardware module of a FIFO or register where the state does not change until the clock edge.
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Scheduling Annotations
mkFIFOF, mkSizedFIFOF, mkFIFOF1

enq notFull first deq notEmpty clear
enq C SA CF CF SA SB
notFull SB CF CF SB CF SB
first CF CF CF SB CF SB
deq CF SA SA C SA SB
notEmpty SB CF CF SB CF SB
clear SA SA SA SA SA SBR

Verilog Modules

FIFO and FIFOF modules correspond to the following Verilog modules, which are found in the Blue-
spec Verilog library, $BLUESPECDIR/Verilog/.

BSV Module Name Verilog Module Names Comments

mkFIFO
mkFIFOF
mkUGFIFOF
mkGFIFOF

FIFO2.v FIFO20.v

mkFIFO1
mkFIFOF1
mkUGFIFOF1
mkGFIFOF1

FIFO1.v FIFO10.v

mkSizedFIFO
mkSizedFIFOF
mkUGSizedFIFOF
mkGSizedFIFOF

SizedFIFO.v
FIFO1.v
FIFO2.v

SizedFIFO0.v
FIFO10.v
FIFO20.v

If the depth of the FIFO = 1,
then FIFO1.v and FIFO10.v
are used, if the depth = 2,
then FIFO2.v and FIFO20.v
are used.

mkDepthParamFIFOF
mkUGDepthParamFIFOF
mkGDepthParamFIFOF

SizedFIFO.v SizedFIFO0.v

mkLFIFO
mkLFIFOF
mkUGLFIFOF
mkGLFIFOF

FIFOL1.v FIFOL10.v

C.2.3 FIFOLevel

Package

import FIFOLevel :: * ;
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Description

The BSV FIFOLevel library provides enhanced FIFO interfaces and modules which include methods
to indicate the level or the current number of items stored in the FIFO. Both single clock and dual
clock (separate clocks for the enqueue and dequeue sides) versions are included in this package.

Interfaces and methods

The FIFOLevelIfc interface defines methods to compare the current level to Integer constants for
a single clock. The SyncFIFOLevelIfc defines the same methods for dual clocks; thus it provides
methods for both the source (enqueue) and destination (dequeue) clock domains. Instead of methods
to compare the levels, the FIFOCountIfc and SyncFIFOCountIfc define methods to return counts
of the FIFO contents, for single clocks and dual clocks respectively.

Interface Name Parameter
name

Parameter Description Requirements of modules
implementing the ifc

FIFOLevelIfc element type type of the elements stored
in the FIFO

must be in Bits class

fifoDepth the depth of the FIFO must be numeric type and
>2

FIFOCountIfc element type type of the elements stored
in the FIFO

must be in Bits class

fifoDepth the depth of the FIFO must be numeric type and
>2

SyncFIFOLevelIfc element type type of the elements stored
in the FIFO

must be in Bits class

fifoDepth the depth of the FIFO must be numeric type and
must be a power of 2 and
>=2

SyncFIFOCountIfc element type type of the elements stored
in the FIFO

must be in Bits class

fifoDepth the depth of the FIFO must be numeric type and
must be a power of 2 and
>=2

In addition to common FIFO methods, the FIFOLevelIfc interface defines methods to compare the
current level to Integer constants. See Section C.2.2 for details on enq, deq, first, clear, notFull,
and notEmpty. Note that FIFOLevelIfc interface has a type parameter for the fifoDepth. This
numeric type parameter is needed, since the width of the counter is dependent on the FIFO depth.
The fifoDepth parameter must be > 2.

FIFOLevelIfc
Method Argument

Name Type Description Name Description
isLessThan Bool Returns True if the depth

of the FIFO is less than the
Integer constant, c1.

c1 an Integer compile-
time constant

isGreaterThan Bool Returns True if the depth of
the FIFO is greater than the
Integer constant, c1.

c1 an Integer compile-
time constant

interface FIFOLevelIfc#( type element_type, numeric type fifoDepth ) ;
method Action enq( element_type x1 );
method Action deq();
method element_type first();
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method Action clear();

method Bool notFull ;
method Bool notEmpty ;

method Bool isLessThan ( Integer c1 ) ;
method Bool isGreaterThan( Integer c1 ) ;

endinterface

In addition to common FIFO methods, the FIFOCountIfc interface defines a method to return the
current number of elements as an bit-vector. See Section C.2.2 for details on enq, deq, first,
clear, notFull, and notEmpty. Note that the FIFOCountIfc interface has a type parameter for the
fifoDepth. This numeric type parameter is needed, since the width of the counter is dependent on
the FIFO depth. The fifoDepth parameter must be > 2.

FIFOCountIfc
Method

Name Type Description
count UInt#(TLog#(TAdd#(fifoDepth,1))) Returns the number of items in the FIFO.

interface FIFOCountIfc#( type element_type, numeric type fifoDepth) ;
method Action enq ( element_type sendData ) ;
method Action deq () ;
method element_type first () ;

method Bool notFull ;
method Bool notEmpty ;

method UInt#(TLog#(TAdd#(fifoDepth,1))) count;

method Action clear;
endinterface

The interfaces SyncFIFOLevelIfc and SyncFIFOCountIfc are dual clock versions of the FIFOLevelIfc
and FIFOCountIfc. Methods are provided for both source and destination clock domains. The fol-
lowing table describes the dual clock notFull and notEmpty methods, as well as the dual clock
clear methods, which are common to both interfaces. Note that the SyncFIFOLevelIfc and
SyncFIFOCountIfc interfaces each have a type parameter for fifoDepth. This numeric type pa-
rameter is needed, since the width of the counter is dependent on the FIFO depth. The fifoDepth
parameter must be a power of 2 and >= 2.

Common Dual Clock Methods
Name Type Description
sNotFull Bool Returns True if the FIFO appears as not full from the

source side clock.
sNotEmpty Bool Returns True if the FIFO appears as not empty from the

source side clock.
dNotFull Bool Returns True if the FIFO appears as not full from the des-

tination side clock.
dNotEmpty Bool Returns True if the FIFO appears as not empty from the

destination side clock.
sClear Action Clears the FIFO from the source side.
dClear Action Clears the FIFO from the destination side.
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In addition to common FIFO methods (Section C.2.2) and the common dual clock methods above,
the SyncFIFOLevelIfc interface defines methods to compare the current level to Integer constants.
Methods are provided for both the source (enqueue side) and destination (dequeue side) clock do-
mains.

SyncFIFOLevelIfc Methods
Method Argument

Name Type Description Name Description
sIsLessThan Bool Returns True if the depth of

the FIFO, as appears on the
source side clock, is less than the
Integer constant, c1.

c1 an Integer compile-
time constant

sIsGreaterThan Bool Returns True if the depth of the
FIFO, as it appears on the source
side clock, is greater than the
Integer constant, c1.

c1 an Integer compile-
time constant.

dIsLessThan Bool Returns True if the depth of the
FIFO, as it appears on the desti-
nation side clock, is less than the
Integer constant, c1.

c1 an Integer compile-
time constant

dIsGreaterThan Bool Returns True if the depth of the
FIFO, as appears on the destina-
tion side clock, is greater than the
Integer constant, c1.

c1 an Integer compile-
time constant.

interface SyncFIFOLevelIfc#( type element_type, numeric type fifoDepth ) ;
method Action enq ( element_type sendData ) ;
method Action deq () ;
method element_type first () ;

method Bool sNotFull ;
method Bool sNotEmpty ;
method Bool dNotFull ;
method Bool dNotEmpty ;

method Bool sIsLessThan ( Integer c1 ) ;
method Bool sIsGreaterThan( Integer c1 ) ;
method Bool dIsLessThan ( Integer c1 ) ;
method Bool dIsGreaterThan( Integer c1 ) ;

method Action sClear;
method Action dClear;

endinterface

In addition to common FIFO methods (Section C.2.2) and the common dual clock methods above,
the SyncFIFOCountIfc interface defines methods to return the current number of elements. Methods
are provided for both the source (enqueue side) and destination (dequeue side) clock domains.

SyncFIFOCountIfc
Method

Name Type Description
sCount UInt#(TLog#(TAdd#(fifoDepth,1))) Returns the number of items in the FIFO

from the source side.
dCount UInt#(TLog#(TAdd#(fifoDepth,1))) Returns the number of items in the FIFO

from the destination side.
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interface SyncFIFOCountIfc#( type element_type, numeric type fifoDepth) ;
method Action enq ( element_type sendData ) ;
method Action deq () ;
method element_type first () ;

method Bool sNotFull ;
method Bool sNotEmpty ;
method Bool dNotFull ;
method Bool dNotEmpty ;

method UInt#(TLog#(TAdd#(fifoDepth,1))) sCount;
method UInt#(TLog#(TAdd#(fifoDepth,1))) dCount;

method Action sClear;
method Action dClear;

endinterface

The FIFOLevelIFC, SyncFIFOLevelIfc, FIFOCountIfc, and SyncFIFOCountIfc interfaces belong
to the ToGet and ToPut typeclasses. You can use the toGet and toPut functions to convert these
interfaces to Get and Put interfaces (Section C.7.1).

Modules

The module mkFIFOLevel provides the FIFOLevelIfc interface. Note that the implementation allows
any number of isLessThan and isGreaterThan method calls. Each call with a unique argument
adds an additional comparator to the design.

There is also available a guarded (G) version of FIFOLevel which takes three Boolean parameters;
ugenq, ugdeq, and ugcount. Setting any of the parameters to TRUE indicates the method (enq for
ugenq, deq for ugdeq, and isLessThan, isGreaterThan for ugcount) is unguarded. If all three are
FALSE the behavior is the same as a regular FIFOLevel.

Module Name BSV Module Declaration
mkFIFOLevel

module mkFIFOLevel (
FIFOLevelIfc#(element_type, fifoDepth) )

provisos( Bits#(element_type, width_element )
Log#(TAdd#(fifoDepth,1),cntSize) ) ;

Comment: width_element may be 0

Module Name BSV Module Declaration
mkGFIFOLevel

module mkGFIFOLevel#(Bool ugenq, Bool ugdeq, Bool ugcount)
( FIFOLevelIfc#(element_type, fifoDepth) )

provisos( Bits#(element_type, width_element ),
Log#(TAdd#(fifoDepth,1),cntSize));

Comment: width_element may be 0

The module mkFIFOCount provides the interface FIFOCountIfc. There is also available a guarded (G)
version of FIFOCount which takes three Boolean parameters; ugenq, ugdeq, and ugcount. Setting
any of the parameters to TRUE indicates the method (enq for ugenq, deq for ugdeq, and count for
ugcount) is unguarded. If all three are FALSE the behavior is the same as a regular FIFOCount.
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Module Name BSV Module Declaration
mkFIFOCount

module mkFIFOCount(
FIFOCountIfc#(element_type, fifoDepth) ifc )

provisos (Bits#(element_type, width_element));

Comment: width_element may be 0

Module Name BSV Module Declaration
mkGFIFOCount

module mkGFIFOCount#(Bool ugenq, Bool ugdeq, Bool ugcount)
( FIFOCountIfc#(element_type, fifoDepth) ifc )

provisos (Bits#(element_type, width_element));

Comment: width_element may be 0

The modules mkSyncFIFOLevel and mkSyncFIFOCount are dual clock FIFOs, where enqueue and
dequeue methods are in separate clocks domains, sClkIn and dClkIn respectively. Because of the
synchronization latency, the flag indicators will not necessarily be identical between the source and
the destination clocks. Note however, that the sNotFull and dNotEmpty flags always give proper
(pessimistic) indications for the safe use of enq and deq methods; these are automatically included
as implicit condition in the enq and deq (and first) methods.

The module mkSyncFIFOLevel provides the SyncFIFOLevelIfc interface.

Module Name BSV Module Declaration
mkSyncFIFOLevel

module mkSyncFIFOLevel(
Clock sClkIn, Reset sRstIn,
Clock dClkIn,
SyncFIFOLevelIfc#(element_type, fifoDepth) ifc )

provisos( Bits#(element_type, width_element),
Log#(TAdd#(fifoDepth,1),cntSize));

Comment: width_element may be 0

The module mkSyncFIFOCount, as shown in Figure 3 provides the SyncFIFOCountIfc interface.
Because of the synchronization latency, the count reports may be different between the source and
the destination clocks. Note however, that the sCount and dCount reports give pessimistic values
with the appropriate side. That is, the count sCount (on the enqueue clock) will report the exact
count of items in the FIFO or a larger count. The larger number is due to the synchronization
delay in observing the dequeue action. Likewise, the dCount (on the dequeue clock) returns the
exact count or a smaller count. The maximum disparity between sCount and dCount depends on
the difference in clock periods between the source and destination clocks.

The module provides sClear and dClear methods, both of which cause the contents of the FIFO
to be removed. Since the clears must be synchronized and acknowledged from one domain to the
other, there is a non-trivial delay before the FIFO recovers from the clear and can accept additional
enqueues or dequeues (depending on which side is cleared). The calling of either method immediately
disables other activity in the calling domain. That is, calling sClear in cycle n causes the enqueue
to become unready in the next cycle, n+1. Likewise, calling dClear in cycle n causes the dequeue to
become unready in the next cycle, n+1.
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Figure 3: SyncFIFOCount

After the sClear method is called, the FIFO appears empty on the dequeue side after three dClock
edges. Three sClock edges later, the FIFO returns to a state where new items can be enqueued. The
latency is due to the full handshaking synchronization required to send the clear signal to dClock
and receive the acknowledgement back.

For the dClear method call, the enqueue side is cleared in three sClkIn edges and items can be
enqueued at the fourth edge. All items enqueued at or before the clear are removed from the FIFO.

Note that there is a ready signal associated with both sClear and dClear methods to ensure that
the clear is properly sent between the clock domains. Also, sRstIn must be synchronized with the
sClkIn.

Module Name BSV Module Declaration
mkSyncFIFOCount

module mkSyncFIFOCount(
Clock sClkIn, Reset sRstIn,
Clock dClkIn,
SyncFIFOCountIfc#(element_type, fifoDepth) ifc )

provisos( Bits#(element_type, width_element));

Comment: width_element may be 0

Example

The following example shows the use of SyncFIFOLevel as a way to collect data into a FIFO, and
then send it out in a burst mode. The portion of the design shown, waits until the FIFO is almost
full, and then sets a register, burstOut which indicates that the FIFO should dequeue. When the
FIFO is almost empty, the flag is cleared, and FIFO fills again.
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. . .
// Define a fifo of Int(#23) with 128 entries
SyncFIFOLevelIfc#(Int#(23),128) fifo <- mkSyncFIFOLevel(sclk, rst, dclk ) ;

// Define some constants
let sFifoAlmostFull = fifo.sIsGreaterThan( 120 ) ;
let dFifoAlmostFull = fifo.dIsGreaterThan( 120 ) ;
let dFifoAlmostEmpty = fifo.dIsLessThan( 12 ) ;

// a register to indicate a burst mode
Reg#(Bool) burstOut <- mkReg( False, clocked_by (dclk)) ;

. . .
// Set and clear the burst mode depending on fifo status
rule timeToDeque( dFifoAlmostFull && ! burstOut ) ;

burstOut <= True ;
endrule

rule moveData ( burstOut ) ;
let dataToSend = fifo.first ;
fifo.deq ;
...
burstOut <= !dFifoAlmostEmpty;

endrule

Scheduling Annotations

Scheduling constraints describe how methods interact within the schedule. The annotations for
mkFIFOLevel and mkSyncFIFOLevel are the same, except that methods in different domains (source
and destination) are always conflict free.

Scheduling Annotations
mkFIFOLevel, mkSyncFIFOLevel

enq first deq clear notFull notEmpty isLessThan isGreaterThan
enq C CF CF SB SA SA SA SA
first CF CF SB SB CF CF CF CF
deq CF SA C SB SA SA SA SA
clear SA SA SA SBR SA SA SA SA

notFull SB CF SB SB CF CF CF CF
notEmpty SB CF SB SB CF CF CF CF
isLessThan SB CF SB SB CF CF CF CF

isGreaterThan SB CF SB SB CF CF CF CF

The annotations for mkFIFOCount and mkSyncFIFOCount are the same, except that methods in
different domains (source and destination) are always conflict free.
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Scheduling Annotations
mkFIFOCount, mkSyncFIFOCount

enq first deq clear notFull notEmpty count
enq C CF CF SB SA SA SA
first CF CF SB SB CF CF CF
deq CF SA C SB SA SA SA
clear SA SA SA SBR SA SA SA

notFull SB CF SB SB CF CF CF
notEmpty SB CF SB SB CF CF CF

count SB CF SB SB CF CF CF

Verilog Modules

The modules described in this section correspond to the following Verilog modules, which are found
in the Bluespec Verilog library, $BLUESPECDIR/Verilog/.

BSV Module Name Verilog Module Names

mkFIFOLevel
mkFIFOCount

SizedFIFO.v SizedFIFO0.v

mkSyncFIFOLevel
mkSyncFIFOCount

SyncFIFOLevel.v

C.2.4 BRAM

Package

import BRAM :: * ;

Description

The BRAM package provides types, interfaces, and modules to support FPGA BlockRams. The
BRAM modules include FIFO wrappers to provide implicit conditions for proper flow control for
the BRAM latency. Specific tools may determine whether modules are mapped to appropriate
BRAM cells during synthesis.

The BRAM package is open-sourced and can be modified by the user. The low-level wrappers to
the BRAM Verilog and Bluesim modules, which are not open-sourced and cannot be modified, are
provided in the BRAMCore package, Section C.2.5.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Types and type classes
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BRAM Configure The BRAM_Configure structure specifies the underlying modules and their at-
tributes for instantiation. Default values for the BRAM are defined with the DefaultValue instance
and can easily be modified.

BRAM Configure Structure
Field Type Description Allowed or

Recommended Values
memorySize Integer Number of words in the BRAM
latency Integer Number of stages in the read 1 (address is registered)

2 (address and data are
registered)

loadFormat LoadFormat Describes the load file None
tagged Hex filename
tagged Binary filename

outFIFODepth Integer The depth of the BypassFIFO af-
ter the BRAM for the BRAMServer
module

latency+2

allowWriteResponseBypass
Bool Determines if write responses can di-

rectly be enqueued in the output fifo
(latency = 0 for write).

The size of the BRAM is determined by the memorySize field given in number of words. The width
of a word is determined by the polymorphic type data specified in the BRAM interface. If the
memorySize field is 0, then memory size = 2n, where n is the number of address bits determined
from the address type.

The latency field has two valid values; 1 indicates that the address on the read is registered, 2
indicates that both the address on the read input and the data on the read output are registered.
When latency = 2, the components in the dotted box in Figure 4 are included.

The outFIFODepth is used to determine the depth of the Bypass FIFO after the BRAM in the
mkBRAMServer module. This value should be latency + 2 to allow full pipeline behavior.

The allowWriteResponseBypass field, when True, specifies that the write response is issued on the
same cycle as the write request. If False, the write reponse is pipelined, which is the same behavior
as the read request. When True, the schedule constraints between put and get are put SBR get.
Otherwise, the annotation is get CF put (no constraint).

typedef struct {Integer memorySize ;
Integer latency ; // 1 or 2 can extend to 3
LoadFormat loadFormat; // None, Hex or Binary
Integer outFIFODepth;
Bool allowWriteResponseBypass;
} BRAM_Configure ;

The LoadFormat defines the type of the load file (None, Hex or Binary). The type None is used
when there is no load file. When the type is Hex or Binary, the name of the load file is provided as
a String.

typedef union tagged {
void None;
String Hex;
String Binary;

} LoadFormat
deriving (Eq, Bits);
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The default values are defined in this package using the DefaultValue instance for BRAM_Configure.
You can modify the default values by changing this instance or by modifying specific fields in your
design.

Values defined in defaultValue
Field Type Value Meaning
memorySize Integer 0 2n, where n is the number of address

bits
latency Integer 1 address is registered
outFIFODepth Integer 3 latency + 2
loadFormat LoadFormat None no load file is used
allowWriteResponseBypass Bool False the write response is pipelined

instance DefaultValue #(BRAM_Configure);
defaultValue = BRAM_Configure {memorySize : 0

,latency : 1 // No output reg
,outFIFODepth : 3
,loadFormat : None
,allowWriteResponseBypass : False };

endinstance

To modify a default configuration for your design, set the field you want to change to the new value.
Example:

BRAM_Configure cfg = defaultValue ; //declare variable cfg
cfg.memorySize = 1024*32 ; //new value for memorySize
cfg.loadFormat = tagged Hex "ram.txt"; //value for loadFormat

BRAM2Port#(UInt#(15), Bit#(16)) bram <- mkBRAM2Server (cfg) ;
//instantiate 32K x 16 bits BRAM module

BRAMRequest The BRAM package defines 2 structures for a BRAM request: BRAMRequest, and
the byte enabled version BRAMRequestBE.

BRAMRequest Structure
Field Type Description
write Bool Indicates whether this operation is a write (True) or

a read (False).
responseOnWrite Bool Indicates whether a response should be received from

this write command
address addr Word address of the read or write
datain data Data to be written. This field is ignored for reads.

typedef struct {Bool write;
Bool responseOnWrite;
addr address;
data datain;
} BRAMRequest#(type addr, type data) deriving(Bits, Eq);
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BRAMRequestBE The structure BRAMRequestBE allows for the byte enable signal.

BRAMRequestBE Structure
Field Type Description
writeen Bit#(n) Byte-enable indicating whether this operation is a

write (n != 0) or a read (n = 0).
responseOnWrite Bool Indicates whether a response should be received from

this write command
address addr Word address of the read or write
datain data Data to be written. This field is ignored for reads.

typedef struct {Bit#(n) writeen;
Bool responseOnWrite;
addr address;
data datain;
} BRAMRequestBE#(type addr, type data, numeric type n) deriving (Bits, Eq);

Interfaces and Methods

The interfaces for the BRAM are built on the Server interface defined in the ClientServer package,
Section C.7.3. Some type aliases specific to the BRAM are defined here.

BRAM Server and Client interface types :

typedef Server#(BRAMRequest#(addr, data), data) BRAMServer#(type addr, type data);
typedef Client#(BRAMRequest#(addr, data), data) BRAMClient#(type addr, type data);

Byte-enabled BRAM Server and Client interface types:

typedef Server#(BRAMRequestBE#(addr, data, n), data)
BRAMServerBE#(type addr, type data, numeric type n);

typedef Client#(BRAMRequestBE#(addr, data, n), data)
BRAMClientBE#(type addr, type data, numeric type n);

The BRAM package defines 1 and 2 port interfaces, with write-enabled and byte-enabled versions.
Each BRAM port interface contains a BRAMServer#(addr, data) subinterface and a clear action,
which clears the output FIFO of any pending requests. The data in the BRAM is not cleared.

BRAM1Port Interface
1 Port BRAM Interface

Name Type Description
portA BRAMServer#(addr, data) Server subinterface
portAClear Action Method to clear the portA output FIFO

interface BRAM1Port#(type addr, type data);
interface BRAMServer#(addr, data) portA;
method Action portAClear;

endinterface: BRAM1Port

BRAM1PortBE Interface
Byte enabled 1 port BRAM Interface

Name Type Description
portA BRAMServerBE#(addr, data, n) Byte-enabled server subinterface
portAClear Action Method to clear the portA output FIFO
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interface BRAM1PortBE#(type addr, type data, numeric type n);
interface BRAMServerBE#(addr, data, n) portA;
method Action portAClear;

endinterface: BRAM1PortBE

BRAM2Port Interface
2 port BRAM Interface

Name Type Description
portA BRAMServer#(addr, data) Server subinterface for port A
portB BRAMServer#(addr, data) Server subinterface for port B
portAClear Action Method to clear the port A output FIFO
portBClear Action Method to clear the port B output FIFO

interface BRAM2Port#(type addr, type data);
interface BRAMServer#(addr, data) portA;
interface BRAMServer#(addr, data) portB;
method Action portAClear;
method Action portBClear;

endinterface: BRAM2Port

BRAM2PortBE Interface
Byte enabled 2 port BRAM Interface

Name Type Description
portA BRAMServerBE#(addr, data, n) Byte-enabled server subinterface for port A
portB BRAMServerBE#(addr, data, n) Byte-enabled server subinterface for port B
portAClear Action Method to clear the portA output FIFO
portBClear Action Method to clear the portB output FIFO

interface BRAM2PortBE#(type addr, type data, numeric type n);
interface BRAMServerBE#(addr, data, n) portA;
interface BRAMServerBE#(addr, data, n) portB;
method Action portAClear;
method Action portBClear;

endinterface: BRAM2PortBE

Modules

The BRAM modules defined in the BRAMCore package (Section C.2.5) are wrapped with control
logic to turn the BRAM into a server, as shown in Figure 4. The BRAM Server modules include
an output FIFO and logic to control its loading and to avoid overflow. A single port, single clock
byte-enabled version is provided as well as 2 port and dual clock write-enabled versions.

mkBRAM1Server BRAM Server module including an output FIFO and logic to control
loading and to avoid overflow.

module mkBRAM1Server #( BRAM_Configure cfg )
( BRAM1Port #(addr, data) )

provisos(Bits#(addr, addr_sz),
Bits#(data, data_sz),
DefaultValue#(data) );
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Figure 4: 1 port of a BRAM Server

mkBRAM1ServerBE Byte-enabled BRAM Server module.

module mkBRAM1ServerBE #( BRAM_Configure cfg )
( BRAM1PortBE #(addr, data, n) )

provisos(Bits#(addr, addr_sz),
Bits#(data, data_sz),
Div#(data_sz, n, chunk_sz),
Mul#(chunk_sz, n, data_sz),
DefaultValue#(data) );

mkBRAM2Server 2 port, BRAM Server module.

module mkBRAM2Server #( BRAM_Configure cfg )
( BRAM2Port #(addr, data) )

provisos(Bits#(addr, addr_sz),
Bits#(data, data_sz),
DefaultValue#(data) );

mkSyncBRAM2Server 2 port, dual clock, BRAM Server module. The portA subinterface and
portAClear methods are in the clkA domain; the portB subinterface
and portBClear methods are in the clkB domain.

(* no_default_clock, no_default_reset *)
module mkSyncBRAM2Server #( BRAM_Configure cfg,

Clock clkA, Reset rstNA,
Clock clkB, Reset rstNB
) (BRAM2Port #(addr, data) )

provisos(Bits#(addr, addr_sz),
Bits#(data, data_sz),
DefaultValue#(data) );

Example: Using a BRAM

import BRAM::*;
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import StmtFSM::*;
import Clocks::*;

function BRAMRequest#(Bit#(8), Bit#(8)) makeRequest(Bool write, Bit#(8) addr, Bit#(8) data);
return BRAMRequest{

write: write,
responseOnWrite:False,
address: addr,
datain: data
};

endfunction

(* synthesize *)
module sysBRAMTest();

BRAM_Configure cfg = defaultValue;
cfg.allowWriteResponseBypass = False;
BRAM2Port#(Bit#(8), Bit#(8)) dut0 <- mkBRAM2Server(cfg);
cfg.loadFormat = tagged Hex "bram2.txt";
BRAM2Port#(Bit#(8), Bit#(8)) dut1 <- mkBRAM2Server(cfg);

//Define StmtFSM to run tests
Stmt test =
(seq

delay(10);
...
action

dut1.portA.request.put(makeRequest(False, 8’h02, 0));
dut1.portB.request.put(makeRequest(False, 8’h03, 0));

endaction
action

$display("dut1read[0] = %x", dut1.portA.response.get);
$display("dut1read[1] = %x", dut1.portB.response.get);

endaction
...
delay(100);

endseq);
mkAutoFSM(test);

endmodule

C.2.5 BRAMCore

Package

import BRAMCore :: * ;

Description

The BRAMCore package, along with the BRAM package (Section C.2.4) provides types, interfaces, and
modules to support FPGA BlockRAMS. Specific tools may determine whether modules are mapped
to appropriate BRAM cells during synthesis.

Most designs should use the the BRAM package instead of BRAMCore, as the BRAM package provides
implicit conditions provided by FIFO wrappers. The BRAMCore package should be used only if you
want the low-level core BRAM modules without implicit conditions.
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The BRAMCore package contains the low-level wrappers to the BRAM Verilog and Bluesim modules.
Components are provided for single and dual port, byte-enabled, loadable, and dual clock versions.

Interfaces and Methods

The BRAMCore package defines four variations of a BRAM interface to support single and dual port
BRAMs, as well as byte-enabled BRAMs.

The BRAM_PORT interface declares two methods; an Action method put, and a value method read.

The BRAM_DUAL_PORT interface is defined as two BRAM_PORT subinterfaces, one for each port.

BRAM PORT Interface
Method Arguments

Name Type Description Name Description
put Action Read or write values

in the BRAM.
write Write enable for the port; if True the ac-

tion is write, if False, the action is read.
address Index of the element, with a datatype of

addr.
datain Value to be written, with a datatype of

data. This value is ignored if the action
is read.

read data Returns a value of
type data.

interface BRAM_PORT#(type addr, type data);
method Action put(Bool write, addr address, data datain);
method data read();

endinterface: BRAM_PORT

interface BRAM_DUAL_PORT#(type addr, type data);
interface BRAM_PORT#(addr, data) a;
interface BRAM_PORT#(addr, data) b;

endinterface

Byte-enabled Interfaces

The BRAM_PORT_BE and BRAM_DUAL_PORT_BE interfaces are the byte-enabled versions of the BRAM
interfaces. In this version, the argument writen is of type Bit#(n), where n is the number of byte-
enables. Your synthesis tools and targeted technology determine the restriction of data size and byte
enable size. If n = 0, the action is a read.

The BRAM_DUAL_PORT_BE interface is defined as two BRAM_PORT_BE subinterfaces, one for each port.

BRAM PORT BE Interface
Method Arguments

Name Type Description Name Description
put Action Read or write values

in the BRAM.
writeen Byte-enable for the port; if n != 0 write

the specified bytes, if n = 0 read.
address Index of the elements to be read or writ-

ten, with a datatype of addr.
datain Value to be written, with a datatype of

data. This value is ignored if the action
is read.

read data Returns a value of
type data.
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(* always_ready *)
interface BRAM_PORT_BE#(type addr, type data, numeric type n);

method Action put(Bit#(n) writeen, addr address, data datain);
method data read();

endinterface: BRAM_PORT_BE

interface BRAM_DUAL_PORT_BE#(type addr, type data, numeric type n);
interface BRAM_PORT_BE#(addr, data, n) a;
interface BRAM_PORT_BE#(addr, data, n) b;

endinterface

Modules

The BRAMCore package provides 1 and 2 port BRAM core modules, in both write-enabled and byte-
enabled versions. Note that there are no implicit conditions on the methods of these modules; if
these are required consider using the modules in the BRAM package (Section C.2.4).

The BRAMCore package requires the caller to ensure the correct cycle to capture the read data, as
determined by the hasOutputRegister flag. If hasOutputRegister is True, both the read address
and the read data are registered; if False, only the read address is registered.

• If the output is registered (hasOutputRegister is True), the latency is 2; the read data is
available 2 cycles after the request.

• If the output is not registered (hasOutputRegister is False), the latency is 1; the read data
is available 1 cycle after the request.

The other argument required is memSize, an Integer specifying the memory size in number of words
of type data.

The loadable BRAM modules require two additional arguments:

• file is a String containing the name of the load file.

• binary is a Bool indicating whether the data type of the load file is binary (True) or hex
(False).

mkBRAMCore1 Single port BRAM

module mkBRAMCore1#(Integer memSize,
Bool hasOutputRegister)
(BRAM_PORT#(addr, data))

provisos(Bits#(addr, addr_sz), Bits#(data, data_sz));

mkBRAMCore1BE Byte-enabled, single port BRAM.

module mkBRAMCore1BE#(Integer memSize,
Bool hasOutputRegister )
(BRAM_PORT_BE#(addr, data, n))

provisos(Bits#(addr, addr_sz), Bits#(data, data_sz),
Div#(data_sz, n, chunk_sz),
Mul#(chunk_sz, n, data_sz));
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mkBRAMCore1Load Loadable, single port BRAM where the initial contents are in file.
The parameter binary indicates whether the contents of file are
binary (True) or hex (False).

module mkBRAMCore1Load#(Integer memSize,
Bool hasOutputRegister,
String file, Bool binary )
(BRAM_PORT#(addr, data))

provisos(Bits#(addr, addr_sz), Bits#(data, data_sz) );

mkBRAMCore1BELoad Loadable, single port, byte-enabled BRAM.

module mkBRAMCore1BELoad#(Integer memSize,
Bool hasOutputRegister,
String file, Bool binary)
(BRAM_PORT_BE#(addr, data, n))

provisos(Bits#(addr, addr_sz), Bits#(data, data_sz),
Div#(data_sz, n, chunk_sz),
Mul#(chunk_sz, n, data_sz) );

mkBRAMCore2 Dual port, single clock BRAM.

module mkBRAMCore2#(Integer memSize,
Bool hasOutputRegister )
(BRAM_DUAL_PORT#(addr, data))

provisos(Bits#(addr, addr_sz), Bits#(data, data_sz) );

mkSyncBRAMCore2 Dual port, dual clock BRAM.

module mkSyncBRAMCore2#(Integer memSize,
Bool hasOutputRegister,
Clock clkA, Reset rstNA,
Clock clkB, Reset rstNB )
(BRAM_DUAL_PORT#(addr, data))

provisos(Bits#(addr, addr_sz),Bits#(data, data_sz));

mkBRAMCore2Load Dual port, single clock, BRAM where the initial contents are in file.
The parameter binary indicates whether the contents of file are
binary (True) or hex (False).

module mkBRAMCore2Load#(Integer memSize,
Bool hasOutputRegister,
String file, Bool binary)
(BRAM_DUAL_PORT#(addr, data))

provisos(Bits#(addr, addr_sz),Bits#(data, data_sz));
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mkSyncBRAMCore2Load Dual port, dual clock BRAM with initial contents in file.

module mkSyncBRAMCore2Load#(Integer memSize,
Bool hasOutputRegister,
Clock clkA, Reset rstNA,
Clock clkB, Reset rstNB,
String file, Bool binary)
(BRAM_DUAL_PORT#(addr, data))

provisos(Bits#(addr, addr_sz), Bits#(data, data_sz));

Verilog Modules

BRAM modules correspond to the following Verilog modules, which are found in the Bluespec Verilog
library, $BLUESPECDIR/Verilog/.

BSV Module Name Verilog Module Names

mkBRAMCore1 BRAM1.v
mkBRAMCore1Load BRAM1Load.v
mkBRAMCore1BE BRAM1BE.v
mkBRAMCore1BELoad BRAM1BELoad.v
mkBRAMCore2 BRAM2.v
mkSyncBRAMCore2
mkBRAMCore2Load BRAM2Load.v
mkSyncBRAMCore2Load

C.2.6 BRAMFIFO

Package

import BRAMFIFO :: * ;

Description

The BRAMFIFO package provides FIFO interfaces and are built around a BRAM memory. The BRAM
is provided in the BRAMCore package described in Section C.2.5.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Interfaces

The BRAMFIFO package provides FIFOF, FIFO, and SyncFIFOIfc interfaces, as defined in the FIFOF,
FIFO, (both in Section C.2.2) and Clocks (Section C.9.7) packages.

Modules

mkSizedBRAMFIFOF Provides a FIFOF interface of a given depth, n.

module mkSizedBRAMFIFOF#(Integer n) (FIFOF#(element_type))
provisos (Bits(element_type, width_any),

Add#(1,z,width_any));
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mkSizedBRAMFIFO Provides a FIFO interface of a given depth, n.

module mkSizedBRAMFIFO#(Integer n)(FIFO#(element_type))
provisos(Bits#(t, width_element),

Add#(1, z, width_element) );

mkSyncBRAMFIFO Provides a SyncFIFOIfc interface to send data across clock domains.
The enq method is in the source sClkIn domain, while the deq and
first methods are in the destination dClkIn domain. The input and
output clocks, along with the input and output resets, are explicitly
provided. The default clock and reset are ignored.

module mkSyncBRAMFIFO#(Integer depth,
Clock sClkIn, Reset sRstIn,
Clock dClkIn, Reset dRstIn)
(SyncFIFOIfc#(element_type))

provisos(Bits#(element_type, width_element),
Add#(1, z, width_element));

mkSyncBRAMFIFOToCC Provides a SyncFIFOIfc interface to send data from a second clock
domain into the current clock domain. The output clock and reset are
the current clock and reset.

module mkSyncBRAMFIFOToCC#(Integer depth,
Clock sClkIn, Reset sRstIn)
(SyncFIFOIfc#(element_type))

provisos(Bits#(element_type, width_element),
Add#(1, z, width_element));

mkSyncBRAMFIFOFromCC Provides a SyncFIFOIfc interface to send data from the current clock
domain into a second clock domain. The input clock and reset are the
current clock and reset.

module mkSyncBRAMFIFOFromCC#(Integer depth,
Clock dClkIn, Reset dRstIn)
(SyncFIFOIfc#(element_type))

provisos(Bits#(element_type, width_element),
Add#(1, z, width_element));

C.2.7 SpecialFIFOs

Package

import SpecialFIFOs :: * ;

Description

The SpecialFIFOs package contains various FIFOs provided as BSV source code, allowing users to
easily modify them to their own specifications. Included in the SpecialFIFOs package are pipeline
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and bypass FIFOs. The pipeline FIFOs are equivalent to the mkLFIFO (Section C.2.2); they allow
simultaneous enqueue and dequeue operations in the same clock cycle when full. The bypass FIFOs
allow simultaneous enqueue and dequeue in the same clock cycle when empty. FIFOF versions, with
explicit full and empty signals, are provided for both pipeline and bypass FIFOs.

FIFOs in Special FIFOs package
Module name Interface Description
mkPipelineFIFO FIFO 1 element pipeline FIFO; can enq and deq simultane-

ously when full.
mkPipelineFIFOF FIFOF 1 element pipeline FIFO with explicit full and empty

signals.
mkBypassFIFO FIFO 1 element bypass FIFO; can enq and deq simultane-

ously when empty.
mkBypassFIFOF FIFOF 1 element bypass FIFO with explicit full and empty

signals.
mkSizedBypassFIFOF FIFOF Bypass FIFO of given depth, with explicit full and

empty signals.
mkBypassFIFOLevel FIFOLevelIfc Same as a FIFOLevel (Section C.2.3), but can enq

and deq when empty.

Allowed Simultaneous enq and deq
by FIFO type

FIFO Condition
FIFO type empty not empty full

not full
mkPipelineFIFO NA

√

mkPipelineFIFOF
mkBypassFIFO

√
NA

mkBypassFIFOF
mkSizedBypassFIFOF

√ √

mkBypassFIFOLevel
√ √

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Interfaces and methods

The modules defined in the SpecialFIFOs package provide the FIFO, FIFOF, and FIFOLevelIfc
interfaces, as shown in the table above. These interfaces are described in Section C.2.2 (FIFO
package) and Section C.2.3 (FIFOLevel package).

Modules

Module Name BSV Module Declaration
1-element pipeline FIFO; can enq and deq simultaneously when full.

mkPipelineFIFO module mkPipelineFIFO (FIFO#(element_type))
provisos (Bits#(element_type, width_any));
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1-element pipeline FIFOF; can enq and deq simultaneously when full.
Has explicit full and empty signals.

mkPipelineFIFOF module mkPipelineFIFOF (FIFOF#(element_type))
provisos (Bits#(element_type, width_any));

1-element bypass FIFO; can enq and deq simultaneously when empty.

mkBypassFIFO module mkBypassFIFO (FIFO#(element_type))
provisos (Bits#(element_type, width_any));

1-element bypass FIFOF; can enq and deq simultaneously when empty.
Has explicit full and empty signals.

mkBypassFIFOF module mkBypassFIFOF (FIFOF#(element_type))
provisos (Bits#(element_type, width_any));

Bypass FIFOF of given depth fifoDepth with explicit full and empty signals.

mkSizedBypassFIFOF module mkSizedBypassFIFOF#(Integer fifoDepth)
(FIFOF#(element_type))

provisos (Bits#(element_type, width_any));

Bypass FIFOLevel of given depth fifoDepth

mkBypassFIFOLevel module mkBypassFIFOLevel(FIFOLevelIfc#(element_type,
fifoDepth))

provisos( Bits#(element_type, width_any),
Log#(TAdd#(fifoDepth,1), cntSize));

C.2.8 AlignedFIFOs

Package

import AlignedFIFOs :: * ;

Description

The AlignedFIFOs package contains a parameterized FIFO module intended for creating synchro-
nizing FIFOs between clock domains with aligned edges for both types of clock domain crossings:
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• slow-to-fast crossing - every edge in the source domain implies the existence of a simultaneous
edge in the destination domain

• fast-to-slow crossing - every edge in the destination domain implies the existence of a simulta-
neous edge in the source domain

The FIFO is parameterized on the type of store used to hold the FIFO data, which is itself param-
eterized on the index type, value type, and read latency. Modules to construct stores based on a
single register, a vector of registers and a BRAM are provided, and the user can supply their own
store implementation as well.

The FIFO allows the user to control whether or not outputs are held stable during the full slow
clock cycle or allowed to transition mid-cycle. Holding the outputs stable is the safest option but it
slightly increases the minimum latency through the FIFO.

A primary design goal of this FIFO is to provide an efficient and flexible family of synchronizing
FIFOs between aligned clock domains which are written in BSV and are fully compatible with
Bluesim. These FIFOs (particularly ones using vectors of registers) may not be the best choice for
ASIC synthesis due to the muxing to select the head value in the first method.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Interfaces and methods

Store Interface The AlignedFIFO is parameterized on the type of store used to hold the FIFO
data. The three types of stores provided in the AlignedFIFO package (single-element, vector-of-
registers, and BRAM) all return a Store interface.

The Store interface has a prefetch method which is used by some modules (the mkBRAMStore in
this package). If a prefetch is used, the read method returns the value at the previously fetched
index; the value of idx should be ignored. If a prefetch is not used, the read method index value
determines the returned value.

Store Interface Methods
Name Type Description
write Action Writes the value at index idx.
prefetch Action Initiates a prefetch of the value at index idx.
read a Returns the value of type a. If prefetch is not used, returns

the value at index idx. When prefetch is used, returns the
value at the previously fetched index; the value of idx
should be ignored.

interface Store#(type i, type a, numeric type n);
method Action write(i idx, a value);
method Action prefetch(i idx);
method a read(i idx);

endinterface: Store

AlignedFIFO Interface The AlignedFIFO interface provides methods for both source (enqueue)
and destination (dequeue) clock domains.

223



Reference Guide Bluespec SystemVerilog

AlignedFIFO Interface Methods
Name Type Description
enq Action Adds an entry to the FIFO from the source clock domain.
first a Returns the first entry from the FIFO in the destination

clock domain.
deq Action Removes the first entry from the FIFO in the destination

clock domain.
dNotFull Bool Returns True if the FIFO appears not full from the desti-

nation clock domain.
dNotEmpty Bool Returns True if the FIFO appears not empty from the

destination clock domain.
sNotFull Bool Returns True if the FIFO appears not full from the source

clock domain.
sNotEmpty Bool Returns True if the FIFO appears not empty from the

source clock domain.
dClear Action Clears the FIFO from the destination side.
sClear Action Clears the FIFO from the source side.

interface AlignedFIFO#(type a);
method Action enq(a x);
method a first();
method Action deq();
method Bool dNotFull();
method Bool dNotEmpty();
method Bool sNotFull();
method Bool sNotEmpty();
method Action dClear();
method Action sClear();

endinterface: AlignedFIFO

Modules

The AlignedFIFO module is parameterized on the type of store used to hold the FIFO data. The
AlignedFIFOs package contains modules to construct stores based on a single register (mkRegStore),
a vector of registers (mkRegVectorStore), and a BRAM (mkBRAMStore). Users can supply their own
store implementation as well.

The mkRegStore instantiates a single-element store. The module returns a Store interface and does
not use a prefetch.

Module Name BSV Module Declaration
Implementation of a single-element store

mkRegStore module mkRegStore(Clock sClock, Clock dClock,
Store#(UInt#(0),a,0) ifc)

provisos(Bits#(a,a_sz) );

The mkRegVectorStore module instantiates a vector-of-registers store. The module returns a Store
interface and does not use a prefetch.
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Implementation of a vector-of-registers store

mkRegVectorStore module mkRegVectorStore(Clock sClock, Clock dClock,
Store#(UInt#(w),a,0) ifc)

provisos( Bits#(a,a_sz) );

The mkBRAMStore2W1R module returns a Store interface and uses a prefetch. This model assumes
the read clock is a 2x divided version of the write clock.

A BRAM-based store where the read clock is a 2x divided version of the write clock.

mkBRAMStore2W1R module mkBRAMStore2W1R(Clock sClock, Reset sReset,
Clock dClock, Reset dReset,
Store#(i,a,1) ifc)

provisos( Bits#(a,a_sz), Bits#(i,w), Eq#(i) );

The mkBRAMStore1W2R module returns a Store interface and uses a prefetch. This model assumes
the write clock is a 2x divided version of the read clock.

A BRAM-based store where the write clock is a 2x divided version of read clock.

mkBRAMStore1W2R module mkBRAMStore1W2R(Clock sClock, Reset sReset,
Clock dClock, Reset dReset,
Store#(i,a,1) ifc)

provisos( Bits#(a,a_sz), Bits#(i,w), Eq#(i) );

The mkAlignedFIFO module makes a synchronizing FIFO for aligned clocks, based on the given
backing store (determined by the type of store instantiated). The store is assumed to have 2w slots
addressed from 0 to 2w − 1. The store will be written in the source clock domain and read in the
destination clock domain.

The enq and deq methods will only be callable when the allow_enq and allow_deq inputs are high.
For a slow-to-fast crossing use:

allow_enq = constant True
allow_deq = pre-edge signal

For a fast-to-slow crossing, use:

allow_enq = pre-edge signal
allow_deq = constant True

The pre-edge signal is True when the slow clock will rise in the next clock cycle. The ClockNextRdy
from the ClockDividerIfc (Section C.9.3) can be used as the pre-edge signal.

These settings ensure that the outputs in the slow clock domain are stable for the entire cycle.
Setting both inputs to constant True reduces the minimum latency through the FIFO, but allows
outputs in the slow domain to transition mid-cycle. This is less safe and can interact badly with the
$displays in a Verilog simulation.

It is not advisable to call both dClear and sClear simultaneously.

225



Reference Guide Bluespec SystemVerilog

Implementation of an aligned FIFO

mkAlignedFIFO (* no_default_clock, no_default_reset *)
module mkAlignedFIFO( Clock sClock

, Reset sReset
, Clock dClock
, Reset dReset
, Store#(i,a,n) store
, Bool allow_enq
, Bool allow_deq
, AlignedFIFO#(a) ifc
)
provisos( Bits#(a,sz_a), Bits#(i,w),

Eq#(i), Arith#(i) );

C.2.9 Gearbox

Package

import Gearbox :: *

Description

This package defines FIFO-like converters that convert N-wide data to and from 1-wide data at
N-times the frequency. These converters change the frequency and the data width, while the overall
data rate stays the same. The data width on the fast side is always 1, while the data width on the
slow side is N. The converters are intended to be used between clock domains with aligned edges for
both types of clock domain crossings (fast to slow and slow to fast). For example:

300 MHz at 8-bits converted to 100 MHz at 24-bits (fast to slow)
100 MHz at 24-bits converted to 300 MHz at 8-bits (slow to fast)

In both of these examples, the data type a is Bit#(8) and N=3.

These modules are written in pure BSV using a style that utilzies only mkNullCrossingReg to cross
registered values between clock domains. Restricting the form of clock crossings is important to
ensure that the module preserves atomic semantics and also that it is compatible with both Verilog
and Bluesim backends.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Interfaces and methods

The Gearbox interface provides the following methods: enq, deq, first, notFull and notEmpty.
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Gearbox Interface
Method
Name

Type Description

enq Action Adds an entry to the converter of type Vector#(in, a),
where a is the datatype. If the input is the fast domain then
in = 1, if the input is the slow domain, in = N.

deq Action Removes the first entry from the converter.
first Vector#(out, a) Returns the first entry from the converter. If the output

domain is the fast side, out = 1, if the output domain is the
slow side, out = N.

notFull Bool Returns a True value if there is space to enqueue an entry
into the FIFO.

notEmpty Bool Returns a True value if there is are elements in the FIFO
and you can dequeue from the FIFO.

interface Gearbox#(numeric type in, numeric type out, type a);
method Action enq(Vector#(in, a) din);
method Action deq();
method Vector#(out, a) first();
method Bool notFull();
method Bool notEmpty();

endinterface

Modules

The package provides two modules: mkNto1Gearbox for slow to fast domain crossings, and mk1toNGearbox
to for fast to slow domain crossings. These are intended for use between clock domains with aligned
edges for both types of clock domain crossings.

Note: for both modules the resets in the source and destination domains (sReset and dReset)
should be asserted together, otherwise only half the unit will be in reset.

With the mkNto1Gearbox module, 2xN elements of data storage are provided, grouped into 2 blocks
of N elements each. Each block is writable in the source (slow) domain and readable in the destination
(fast) domain.

mkNto1Gearbox Moves data from a slow domain to a fast domain, changing the data width
from a larger width to a smaller width. The data rate stays the same.
The width of the output is 1, the width of the input is N.

module mkNto1Gearbox(Clock sClock, Reset sReset,
Clock dClock, Reset dReset,
Gearbox#(in, out, a) ifc)

provisos(Bits#(a, a_sz), Add#(out, 0, 1),
Add#(out, z, in) );

With the mk1toNGearbox module, 2xN elements of data storage are provided, grouped into 2 blocks
of N elements each. Each block is writable in the source (fast) domain and readable in the destination
(slow) domain.
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mk1toNGearbox Moves data from a fast domain to a slow domain, changing the data width
from a smaller width to a larger width. The data rate stays the same.
The width of the input is 1, the width of the output is N.

module mk1toNGearbox(Clock sClock, Reset sReset,
Clock dClock, Reset dReset,
Gearbox#(in, out, a) ifc)

provisos(Bits#(a, a_sz), Add#(in, 0, 1),
Add#(in, z, out), Mul#(2, out, elements),
Add#(1, w, elements), Add#(out, x, elements) );

C.3 Aggregation: Vectors

Package

import Vector :: * ;

Description

The Vector package defines an abstract data type which is a container of a specific length, holding
elements of one type. Functions which create and operate on this type are also defined within this
package. Because it is abstract, there are no constructors available for this type (like Cons and Nil
for the List type).

typedef struct Vector#(type numeric vsize, type element_type);

Here, the type variable element_type represents the type of the contents of the elements while the
numeric type variable vsize represents the length of the vector.

If the elements are in the Bits class, then the vector is as well. Thus a vector of these elements can
be stored into Registers or FIFOs; for example a Register holding a vector of type int. Note that a
vector can also store abstract types, such as a vector of Rules or a vector of Reg interfaces. These
are useful during static elaboration although they have no hardware implementation.

Typeclasses

Type Classes for Vector
Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit

Reduction Extend
Vector

√ √ √

A vector can be turned into bits if the individual elements can be turned into bits. When packed
and unpacked, the zeroth element of the vector is stored in the least significant bits. The size of the
resulting bits is given by tsize = vsize ∗ SizeOf#(element type) which is specified in the provisos.
instance Bits #( Vector#(vsize, element_type), tsize)

provisos (Bits#(element_type, sizea),
Mul#(vsize, sizea, tsize));

Vectors are zero-indexed; the first element of a vector v, is v[0]. When vectors are packed, they are
packed in order from the LSB to the MSB.

Example. Vector#(5, Bit#(7)) v1;

From the type, you can see that this will back into a 35-bit vector (5 elements, each with 7 bits).

MSB
34 bit positions 0
v1[4] v1[3] v1[2] v1[1] v1[0]

LSB

Example. A vector with a structure:
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typedef struct { Bool a, UInt#(5) b} Newstruct deriving (Bits);
Vector#(3, NewStruct) v2;

The structure, Newstruct packs into 6 bits. Therefore v2 will pack into an 18-bit vector. And its
structure would look as follows:

MSB
17 16 - 12 11 10 - 6 5 0

v2[2].a v2[2].b v2[1].a v2[1].b v2[0].a v2[0].b
v2[2] v2[1] v2[0]

LSB

Vectors can be compared for equality if the elements can. That is, the operators == and != are
defined.

Vectors are bounded if the elements are.

C.3.1 Creating and Generating Vectors

The following functions are used to create new vectors, with and without defined elements. There
are no Bluespec SystemVerilog constructors available for this abstract type (and hence no pattern-
matching is available for this type) but the following functions may be used to construct values of
the Vector type.

newVector Generate a vector with undefined elements, typically used when vectors are de-
clared.

function Vector#(vsize, element_type) newVector();

genVector Generate a vector containing integers 0 through n-1, vector[0] will have value 0.

function Vector#(vsize, Integer) genVector();

replicate Generate a vector of elements by replicating the given argument (c).

function Vector#(vsize, element_type) replicate(element_type c);

genWith Generate a vector of elements by applying the given function to 0 through n-1.
The argument to the function is another function which has one argument of type
Integer and returns an element_type.

function Vector#(vsize, element_type)
genWith(function element_type func(Integer x1));
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cons Adds an element to a vector creating a vector one element larger. The new element
will be at the 0th position. This function can lead to large compile times, so it
can be an inefficient way to create and populate a vector. Instead, the designer
should build a vector, then set each element to a value.

function Vector#(vsize1, element_type)
cons (element_type elem, Vector#(vsize, element_type) vect)

provisos (Add#(1, vsize, vsize1));

nil Defines a vector of size zero.

function Vector#(0, element_type) nil;

append Append two vectors containing elements of the same type, returning the com-
bined vector. The resulting vector result will contain all the elements of vecta
followed by all the elements of vectb. result[0] = vecta[0], result[vsize-1]
= vectb[v1size-1].

function Vector#( vsize, element_type )
append( Vector#(v0size,element_type) vecta,

Vector#(v1size,element_type) vectb)
provisos (Add#(v0size, v1size, vsize)); //vsize = v0size + v1size

concat Append (concatenate) many vectors, that is a vector of vectors into one vector.
concat(xss)[0]will be xss[0][0], provided m and n are non-zero.

function Vector#(mvsize,element_type)
concat(Vector#(m,Vector#(n,element_type)) xss)

provisos (Mul#(m,n,mvsize));

Examples - Creating and Generating Vectors

Create a new vector, my_vector, of 5 elements of datatytpe Int#(32), with elements which are
undefined.

Vector #(5, Int#(32)) my_vector;

Create a new vector, my_vector, of 5 elements of datatytpe Integer with elements 0, 1, 2, 3 and 4.

Vector #(5, Integer) my_vector = genVector;
// my_vector is a 5 element vector {0,1,2,3,4}

Create a vector, my vector, of five 1’s.
Vector #(5,Int #(32)) my_vector = replicate (1);
// my_vector is a 5 element vector {1,1,1,1,1}

Create a vector, my_vector, by applying the given function add2 to 0 through n-1.
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function Integer add2 (Integer a);
Integer c = a + 2;

return(c);
endfunction

Vector #(5,Integer) my_vector = genWith(add2);

// a is the index of the vector, 0 to n-1
// my_vector = {2,3,4,5,6,}

Add an element to my_vector, creating a bigger vector my_vector1.
Vector#(3, Integer) my_vector = genVector();
// my_vector = {0, 1, 2, 3}

let my_vector1 = cons(4, a);
// my_vector1 = {4, 0, 1, 2, 3}

Append vectors, my_vector and my_vector1, resulting in a vector my_vector2.
Vector#(3, Integer) my_vector = genVector();
// my_vector = {0, 1, 2, 3}

Vector#(3, Integer) my_vector1 = genVector();
// my_vector1 = {5, 6, 7, 8}

let my_vector2 = append(my_vector, my_vector1);
// my_vector2 = {0, 1, 2, 3, 5, 6, 7, 8}

Obtain a vector, my_vector, from a two dimensions vector, matrix.
Vector#(3, Vector#(3, Integer)) matrix;
for (Integer i = 0; i < 3; i = i + 1)
matrix[i] = genVector;

// matrix[0] = {0, 1, 2}
// matrix[1] = {3, 4, 5}
// matrix[2] = {6, 7, 8}

let my_vector = concat (matrix);
// my_vector = {0, 1, 2, 3, 4, 5, 6, 7, 8}

C.3.2 Extracting Elements and Sub-Vectors

These functions are used to select elements or vectors from existing vectors, while retaining the input
vector.

[i] The square-bracket notation is available to extract an element from a vector or
update an element within it. Extracts or updates the ith element, where the
first element is [0]. Index i must be of an acceptable index type (e.g. Integer,
Bit#(n), Int#(n) or UInt#(n)). The square-bracket notation for vectors can also
be used with register writes.

anyVector[i];
anyVector[i] = newValue;
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select The select function is another form of the subscript notation ([i]), mainly provided
for backwards-compatibility. The select function is also useful as an argument to
higher-order functions. The subscript notation is generally recommended because
it will report a more useful position for any selection errors.

function element_type
select(Vector#(vsize,element_type) vect, idx_type index);

update Update an element in a vector returning a new vector with one element
changed/updated. This function does not change the given vector. This is an-
other form of the subscript notation (see above), mainly provided for backwards
compatibility. The update function may also be useful as an argument to a higher-
order function. The subscript notation is generally recommended because it will
report a more useful position for any update errors.

function Vector#(vsize, element_type)
update(Vector#(vsize, element_type) vectIn,

idx_type index,
element_type newElem);

head Extract the zeroth (head) element of a vector. The vector must have at least one
element.

function element_type
head (Vector#(vsize, element_type) vect)

provisos(Add#(1,xxx,vxize)); // vsize >= 1

last Extract the highest (tail) element of a vector. The vector must have at least one
element.

function element_type
last (Vector#(vsize, element_type) vect)

provisos(Add#(1,xxx,vxize)); // vsize >= 1

tail Remove the head element of a vector leaving its tail in a smaller vector.

function Vector#(vsize,element_type)
tail (Vector#(vsize1, element_type) xs)

provisos (Add#(1, vsize, vsize1));
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init Remove the last element of a vector leaving its initial part in a smaller vector.

function Vector#(vsize,element_type)
init (Vector#(vsize1, element_type) xs)

provisos (Add#(1, vsize, vsize1));

take Take a number of elements from a vector starting from index 0. The number of
elements to take is indicated by the type of the context where this is called, and
is not specified as an argument to the function.

function Vector#(vxize2,element_type)
take (Vector#(vsize,element_type) vect)

provisos (Add#(vsize2,xxx,vsize)); // vsize2 <= vsize.

drop
takeTail

Drop a number of elements from the vector starting at the 0th position. The
elements in the result vector will be in the same order as the input vector.

function Vector#(vxize2,element_type)
drop (Vector#(vsize,element_type) vect)

provisos (Add#(vsize2,xxx,vsize)); // vsize2 <= vsize.

function Vector#(vxize2,element_type)
takeTail (Vector#(vsize,element_type) vect)

provisos (Add#(vsize2,xxx,vsize)); // vsize2 <= vsize.

takeAt Take a number of elements starting at startPos. startPos must be a compile-
time constant. If the startPos plus the output vector size extend beyond the end
of the input vector, an error will be returned.

function Vector#(vsize2,element_type)
takeAt (Integer startPos, Vector#(vsize,element_type) vect)

provisos (Add#(vsize2,xxx,vsize)); // vsize2 <= vsize

Examples - Extracting Elements and Sub-Vectors

Extract the element from a vector, my_vector, at the position of index.

// my_vector is a vector of elements {6,7,8,9,10,11}
// index = 3
// select or [ ] will generate a MUX

newvalue = select (my_vector, index);
newvalue = myvalue[index];
// newvalue = 9

Update the element of a vector, my_vector, at the position of index.
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// my_vector is a vector of elements {6,7,8,9,10,11}
// index = 3

my_vector = update (my_vector, index, 0);
my_vector[index] = 0;
// my_vector = {6,7,8,0,10,11}

Extract the zeroth element of the vector my_vector.
// my_vector is a vector of elements {6,7,8,9,10,11}

newvalue = head(my_vector);
// newvalue = 6

Extract the last element of the vector my_vector.
// my_vector is a vector of elements {6,7,8,9,10,11}

newvalue = last(my_vector);
// newvalue = 11

Create a vector, my_vector2, of size 4 by removing the head (zeroth) element of the vector my_vector1.

// my_vector1 is a vector with 5 elements {0,1,2,3,4}

Vector #(4, Int#(32)) my_vector2 = tail (my_vector1);
// my_vector2 is a vector of 4 elements {1,2,3,4}

Create a vector, my_vector2, of size 4 by removing the tail (last) element of the vector my_vector1.

// my_vector1 is a vector with 5 elements {0,1,2,3,4}

Vector #(4, Int#(32)) my_vector2 = init (my_vector1);
// my_vector2 is a vector of 4 elements {0,1,2,3}

Create a 2 element vector, my_vector2, by taking the first two elements of the vector my_vector1.
// my_vector1 is vector with 5 elements {0,1,2,3,4}

Vector #(2, Int#(4)) my_vector2 = take (my_vector1);
// my_vector2 is a 2 element vector {0,1}

Create a 3 element vector, my_vector2, by taking the last 3 elements of vector, my_vector1. using
takeTail

// my_vector1 is Vector with 5 elements {0,1,2,3,4}

Vector #(3,Int #(4)) my_vector2 = takeTail (my_vector1);
// my_vector2 is a 3 element vector {2,3,4}

Create a 3 element vector, my_vector2, by taking the 1st - 3rd elements of vector, my_vector1.
using takeAt

// my_vector1 is Vector with 5 elements {0,1,2,3,4}

Vector #(3,Int #(4)) my_vector2 = takeAt (1, my_vector1);
// my_vector2 is a 3 element vector {1,2,3}
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C.3.3 Vector to Vector Functions

The following functions generate a new vector by changing the position of elements within the vector.

rotate Move the zeroth element to the highest and shift each element lower by one. For
example, the element at index n moves to index n-1.

function Vector#(vsize,element_type)
rotate (Vector#(vsize,element_type) vect);

rotateR Move last element to the zeroth element and shift each element up by one. For
example, the element at index n moves to index n+1.

function Vector#(vsize,element_type)
rotateR (Vector#(vsize,element_type) vect);

rotateBy Shift each element n places. The last n elements are moved to the begining, the
element at index 0 moves to index n, index 1 to index n+1, etc.

function Vector#(vsize, element_type)
rotateBy (Vector#(vsize,element_type) vect, UInt#(log(v)) n)

provisos (Log#(vsize, logv);

shiftInAt0 Shift a new element into the vector at index 0, bumping the index of all other
element up by one. The highest element is dropped.

function Vector#(vsize,element_type)
shiftInAt0 (Vector#(vsize,element_type) vect,

element_type newElement);

shiftInAtN Shift a new element into the vector at index n, bumping the index of all other
elements down by one. The 0th element is dropped.

function Vector#(vsize,element_type)
shiftInAtN (Vector#(vsize,element_type) vect,

element_type newElement);
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shiftOutFrom0 Shifts out amount number of elements from the vector starting at index 0,
bumping the index of all remaining elements down by amount. The shifted
elements are replaced with the value default. This function is similar to a
>> bit operation. amt_type must be of an acceptable index type (Integer,
Bit#(n), Int#(n) or UInt#(n)).

function Vector#(vsize,element_type)
shiftOutFrom0 (element_type default,

Vector#(vsize,element_type) vect,
amt_type amount);

shiftOutFromN Shifts out amount number of elements from the vector starting at index
vsize-1 bumping the index of remaining elements up by amount. The shifted
elements are replaced with the value default. This function is similar to a
<< bit operation. amt_type must be of an acceptable index type (Integer,
Bit#(n), Int#(n) or UInt#(n)).

function Vector#(vsize,element_type)
shiftOutFromN (element_type default,

Vector#(vsize,element_type) vect,
amt_type amount);

reverse Reverse element order

function Vector#(vsize,element_type)
reverse(Vector#(vsize,element_type) vect);

transpose Matrix transposition of a vector of vectors.

function Vector#(m,Vector#(n,element_type))
transpose ( Vector#(n,Vector#(m,element_type)) matrix );

transposeLN Matrix transposition of a vector of Lists.

function Vector#(vsize, List#(element_type))
transposeLN( List#(Vector#(vsize, element_type)) lvs );

Examples - Vector to Vector Functions

Create a vector by moving the last element to the first, then shifting each element to the right.
// my_vector1 is a vector of elements with values {1,2,3,4,5}

my_vector2 = rotateR (my_vector1);
// my_vector2 is a vector of elements with values {5,1,2,3,4}
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Create a vector which is the input vector rotated by 2 places.
// my_vector1 is a vector of elements {1,2,3,4,5}

my_vector2 = rotateBy {my_vector1, 2};
// my_vector2 = {4,5,1,2,3}

Create a vector which shifts out 3 elements starting from 0, replacing them with the value F
// my_vector1 is a vector of elements {5,4,3,2,1,0}

my_vector2 = shiftOutFrom0 (F, my_vector1, 3);
// my_vector2 is a vector of elements {F,F,F,5,4,3}

Create a vector which shifts out 3 elements starting from n-1, replacing them with the value F
// my_vector1 is a vector of elements {5,4,3,2,1,0}

my_vector2 = shiftOutFromN (F, my_vector1, 3);
// my_vector2 is a vector of elements {2,1,0,F,F,F}

Create a vector which is the reverse of the input vector.
// my_vector1 is a vector of elements {1,2,3,4,5}

my_vector2 = reverse (my_vector1);
// my_vector2 is a vector of elements {5,4,3,2,1}

Use transpose to create a new vector.
// my_vector1 is a Vector#(3, Vector#(5, Int#(8)))
// the result, my_vector2, is a Vector #(5,Vector#(3,Int #(8)))

// my_vector1 has the values:
// {{0,1,2,3,4},{5,6,7,8,9},{10,11,12,13,14}}

my_vector2 = transpose(my_vector1);
// my_vector2 has the values:
// {{0,5,10},{1,6,11},{2,7,12},{3,8,13},{4,9,14}}

C.3.4 Tests on Vectors

The following functions are used to test vectors. The first set of functions are Boolean functions,
i.e. they return True or False values.

elem Check if a value is an element of a vector.

function Bool elem (element_type x,
Vector#(vsize,element_type) vect )

provisos (Eq#(element_type));

any Test if a predicate holds for any element of a vector.

function Bool any(function Bool pred(element_type x1),
Vector#(vsize,element_type) vect );

237



Reference Guide Bluespec SystemVerilog

all Test if a predicate holds for all elements of a vector.

function Bool all(function Bool pred(element_type x1),
Vector#(vsize,element_type) vect );

or Combine all elements in a vector of Booleans with a logical or. Returns True if
any elements in the Vector are True.

function Bool or (Vector#(vsize, Bool) vect );

and Combine all elements in a vector of Booleans with a logical and. Returns True if
all elements in the Vector are True.

function Bool and (Vector#(vsize, Bool) vect );

The following two functions return the number of elements in the vector which match a condition.

countElem Returns the number of elements in the vector which are equal to a given value.
The return value is in the range of 0 to vsize.

function UInt#(logv1) countElem (element_type x,
Vector#(vsize, element_type) vect)

provisos (Eq#(element_type), Add#(vsize, 1, vsize1),
Log#(vsize1, logv1));

countIf Returns the number of elements in the vector which satisfy a given predicate
function. The return value is in the range of 0 to vsize.

function UInt#(logv1) countIf (function Bool pred(element_type x1)
Vector#(vsize, element_type) vect)

provisos (Add#(vsize, 1, vsize1), Log#(vsize1, logv1));

find Returns the first element that satisfies the predicate or Nothing if there is none.

function Maybe#(element_type)
find (function Bool pred(element_type),

Vector#(vsize, element_type) vect);

The following two functions return the index of an element.
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findElem Returns the index of the first element in the vector which equals a given value.
Returns an Invalid if not found or Valid with a value of 0 to vsize-1 if found.

function Maybe#(UInt#(logv)) findElem (element_type x,
Vector#(vsize, element_type) vect)

provisos (Eq#(element_type), Add#(xx1, 1, vsize),
Log#(vsize, logv));

findIndex Returns the index of the first element in the vector which satisfies a given predicate.
Returns an Invalid if not found or Valid with a value of 0 to vsize-1 if found.

function Maybe#(UInt#(logv)) findIndex
(function Bool pred(element_type x1)
Vector#(vsize, element_type) vect)

provisos (Add#(xx1,1,vsize), Log#(vsize, logv));

Examples -Tests on Vectors

Test that all elements of the vector my_vector1 are positive integers.
function Bool isPositive (Int #(32) a);

return (a > 0)
endfunction

// function isPositive checks that "a" is a positive integer
// if my_vector1 has n elements, n instances of the predicate
// function isPositive will be generated.

if (all(isPositive, my_vector1))
$display ("Vector contains all negative values");

Test if any elements in the vector are positive integers.
// function isPositive checks that "a" is a positive integer
// if my_vector1 has n elements, n instances of the predicate
// function isPositive will be generated.

if (any(isPositive, my_vector1))
$display ("Vector contains some negative values");

Check if the integer 5 is in my_vector.
// if my_vector contains n elements, elem will generate n copies
// of the eq test
if (elem(5,my_vector))

$display ("Vector contains the integer 5");

Count the number of elements which match the integer provided.
// my_vector1 is a vector of {1,2,1,4,3}
x = countElem ( 1, my_vector1);
// x = 2
y = countElem (4, my_vector1);
// y = 1
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Find the index of an element which equals a predicate.
let f = findIndex ( beIsGreaterThan( 3 ) , my_vector );
if ( f matches tagged Valid .indx )

begin
printBE ( my_vector[indx] ) ;
$display ("Found data > 3 at index %d ", indx ) ;

else
begin

$display ( "Did not find data > 3" ) ;
end

C.3.5 Bit-Vector Functions

The following functions operate on bit-vectors.

rotateBitsBy Shift each bit to a higher index by n places. The last n bits are moved to the
begininng and the bit at index (0) moves to index (n).

function Bit#(n) rotateBitsBy (Bit#(n) bvect, UInt#(logn) n)
provisos (Log#(n,logn), Add#(1,xxx,n));

countOnesAlt Returns the number of elements equal to 1 in a bit-vector. (This function
differs slightly from the Prelude version of countOnes and has fewer provisos.)

function UInt#(logn1) countOnesAlt (Bit#(n) bvect)
provisos (Add#(1,n,n1), Log#(n1,logn1));

C.3.6 Functions on Vectors of Registers

readVReg Returns the values from reading a vector of registers (interfaces).

function Vector#(n,a) readVReg ( Vector#(n, Reg#(a)) vrin) ;

writeVReg Returns an Action which is the write of all registers in vr with the data from
vdin.

function Action writeVReg ( Vector#(n, Reg#(a)) vr,
Vector#(n,a) vdin) ;

C.3.7 Combining Vectors with Zip

The family of zip functions takes two or more vectors and combines them into one vector of Tuples.
Several variations are provided for different resulting Tuples, as well as support for mis-matched
vector sizes.
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zip Combine two vectors into a vector of Tuples.

function Vector#(vsize,Tuple2 #(a_type, b_type))
zip( Vector#(vsize, a_type) vecta,

Vector#(vsize, b_type) vectb);

zip3 Combine three vectors into a vector of Tuple3.

function Vector#(vsize,Tuple3 #(a_type, b_type, c_type))
zip3( Vector#(vsize, a_type) vecta,

Vector#(vsize, b_type) vectb,
Vector#(vsize, c_type) vectc);

zip4 Combine four vectors into a vector of Tuple4.

function Vector#(vsize,Tuple4 #(a_type, b_type, c_type, d_type))
zip4( Vector#(vsize, a_type) vecta,

Vector#(vsize, b_type) vectb,
Vector#(vsize, c_type) vectc,
Vector#(vsize, d_type) vectd);

zipAny Combine two vectors into one vector of pairs (2-tuples); result is as long as the
smaller vector.

function Vector#(vsize,Tuple2 #(a_type, b_type))
zipAny(Vector#(m,a_type) vect1,

Vector#(n,b_type) vect2);
provisos (Max#(m,vsize,m), Max#(n, vsize, n));

unzip Separate a vector of pairs (i.e. a Tuple2#(a,b)) into a pair of two vectors.

function Tuple2#(Vector#(vsize,a_type), Vector#(vsize, b_type))
unzip(Vector#(vsize,Tuple2 #(a_type, b_type)) vectab);

Examples - Combining Vectors with Zip

Combine two vectors into a vector of Tuples.

// my_vector1 is a vector of elements {0,1,2,3,4}
// my_vector2 is a vector of elements {5,6,7,8,9}

my_vector3 = zip(my_vector1, my_vector2);
// my_vector3 is a vector of Tuples {(0,5),(1,6),(2,7),(3,8),(4,9)}

Separate a vector of pairs into a Tuple of two vectors.
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// my_vector3 is a vector of pairs {(0,5),(1,6),(2,7),(3,8),(4,9)}

Tuple2#(Vector #(5,Int #(5)),Vector #(5,Int #(5))) my_vector4 =
unzip(my_vector3);

// my_vector4 is ({0,1,2,3,4},{5,6,7,8,9})

C.3.8 Mapping Functions over Vectors

A function can be applied to all elements of a vector, using high-order functions such as map. These
functions take as an argument a function, which is applied to the elements of the vector.

map Map a function over a vector, returning a new vector of results.

function Vector#(vsize,b_type)
map (function b_type func(a_type x),

Vector#(vsize, a_type) vect);

Example - Mapping Functions over Vectors

Consider the following code example which applies the extend function to each element of avector
into a new vector, resultvector.

Vector#(13,Bit#(5)) avector;
Vector#(13,Bit#(10)) resultvector;
...
resultvector = map( extend, avector ) ;

This is equivalent to saying:

for (Integer i=0; i<13; i=i+1)
resultvector[i] = extend(avector[i]);

Map a negate function over a Vector

// my_vector1 is a vector of 5 elements {0,1,2,3,4}
// negate is a function which makes each element negative

Vector #(5,Int #(32)) my_vector2 = map (negate, my_vector1);

// my_vector2 is a vector of 5 elements {0,-1,-2,-3,-4}

C.3.9 ZipWith Functions

The zipWith functions combine two or more vectors with a function and generate a new vector.
These functions combine features of map and zip functions.

zipWith Combine two vectors with a function.

function Vector#(vsize,c_type)
zipWith (function c_type func(a_type x, b_type y),

Vector#(vsize,a_type) vecta,
Vector#(vsize,b_type) vectb );
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zipWithAny Combine two vectors with a function; result is as long as the smaller vector.

function Vector#(vsize,c_type)
zipWithAny (function c_type func(a_type x, b_type y),

Vector#(m,a_type) vecta,
Vector#(n,b_type) vectb )

provisos (Max#(n, vsize, n), Max#(m, vsize, m));

zipWith3 Combine three vectors with a function.

function Vector#(vsize,d_type)
zipWith3(function d_type func(a_type x, b_type y, c_type z),

Vector#(vsize,a_type) vecta,
Vector#(vsize,b_type) vectb,
Vector#(vsize,c_type) vectc );

zipWithAny3 Combine three vectors with a function; result is as long as the smallest vector.

function Vector#(vsize,c_type)
zipWithAny3(function d_type func(a_type x, b_type y, c_type z),

Vector#(m,a_type) vecta,
Vector#(n,b_type) vectb,
Vector#(o,c_type) vectc )

provisos (Max#(n, vsize, n), Max#(m, vsize, m), Max#(o, vsize, o));

Examples - ZipWith

Create a vector by applying a function over the elements of 3 vectors.

// the function add3 adds 3 values
function Int#(n) add3 (Int #(n) a,Int #(n) b,Int #(n) c);

Int#(n) d = a + b +c ;
return d;

endfunction

// Create the vector my_vector4 by adding the ith element of each of
// 3 vectors (my_vector1, my_vector2, my_vector3) to generate the ith
// element of my_vector4.

// my_vector1 = {0,1,2,3,4}
// my_vector2 = {5,6,7,8,9}
// my_vector3 = {10,11,12,13,14}

Vector #(5,Int #(8)) my_vector4 = zipWith3(add3, my_vector1, my_vector2, my_vector3);
// creates 5 instances of the add3 function in hardware.
// my_vector4 = {15,18,21,24,27}

// This is equivalent to saying:
for (Integer i=0; i<5; i=i+1)
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my_vector4[i] = my_vector1[i] + my_vector2[i] + my_vector3[i];

C.3.10 Fold Functions

The fold family of functions reduces a vector to a single result by applying a function over all its
elements. That is, given a vector of element_type, V0, V1, V2, ..., Vn−1, a seed of type b_type, and
a function func, the reduction for foldr is given by

func(V0, func(V1, ..., func(Vn−2, func(Vn−1, seed))));

Note that foldr start processing from the highest index position to the lowest, while foldl starts
from the lowest index (zero), i.e. foldl is:

func(...(func(func(seed, V0), V1), ...)Vn−1)

foldr Reduce a vector by applying a function over all its elements. Start processing
from the highest index to the lowest.

function b_type foldr(function b_type func(a_type x, b_type y),
b_type seed, Vector#(vsize,a_type) vect);

foldl Reduce a vector by applying a function over all its elements. Start processing
from the lowest index (zero).

function b_type foldl (function b_type func(b_type y, a_type x),
b_type seed, Vector#(vsize,a_type) vect);

The functions foldr1 and foldl1 use the first element as the seed. This means they only work on
vectors of at least one element. Since the result type will be the same as the element type, there is
no b_type as there is in the foldr and foldl functions.

foldr1 foldr function for a non-zero sized vector, using element Vn−1 as a seed. Vector
must have at least 1 element. If there is only one element, it is returned.

function element_type foldr1(
function element_type func(element_type x, element_type y),
Vector#(vsize,element_type) vect)

provisos (Add#(1, xxx, vsize));

foldl1 foldl function for a non-zero sized vector, using element V0as a seed. Vector must
have at least 1 element. If there is only one element, it is returned.

function element_type foldl1 (
function element_type func(element_type y, element_type x),
Vector#(vsize,element_type) vect)

provisos (Add#(1, xxx, vsize));
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The fold function also operates over a non-empty vector, but processing is accomplished in a binary
tree-like structure. Hence the depth or delay through the resulting function will be O(log2(vsize)
rather than O(vsize).

fold Reduce a vector by applying a function over all its elements, using a binary tree-
like structure. The function returns the same type as the arguments.

function element_type fold (
function element_type func(element_type y, element_type x),
Vector#(vsize,element_type) vect )

provisos (Add#(1, xxx, vsize));

mapPairs Map a function over a vector consuming two elements at a time. Any straggling
element is processed by the second function.

function Vector#(vsize2,b_type)
mapPairs (

function b_type func1(a_type x, a_type y),
function b_type func2(a_type x),
Vector#(vsize,a_type) vect )

provisos (Div#(vsize, 2, vsize2));

joinActions Join a number of actions together. joinActions is used for static elaboration
only, no hardware is generated.

function Action joinActions (Vector#(vsize,Action) vactions);

joinRules Join a number of rules together.joinRules is used for static elaboration only,
no hardware is generated.

function Rules joinRules (Vector#(vsize,Rules) vrules);

Example - Folds

Use fold to find the sum of the elements in a vector.

// my_vector1 is a vector of five integers {1,2,3,4,5}
// \+ is a function which returns the sum of the elements
// make sure you leave a space after the \+ and before the ,

// This will build an adder tree, instantiating 4 adders, with a maximum
// depth or delay of 3. If foldr1 or foldl1 were used, it would
// still instantiate 4 adders, but the delay would be 4.

my_sum = fold (\+ , my_vector1));
// my_sum = 15

Use fold to find the element with the maximum value.
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// my_vector1 is a vector of five integers {2,45,5,8,32}

my_max = fold (max, my_vector1);
// my_max = 45

Create a new vector using mapPairs. The function sum is applied to each pair of elements (the first
and second, the third and fourth, etc.). If there is an uneven number of elements, the function pass
is applied to the remaining element.

// sum is defined as c = a+b
function Int#(4) sum (Int #(4) a,Int #(4) b);

Int#(4) c = a + b;
return(c);

endfunction

// pass is defined as a
function Int#(4) pass (Int #(4) a);

return(a);
endfunction

// my_vector1 has the elements {0,1,2,3,4}

my_vector2 = mapPairs(sum,pass,my_vector1);
// my_vector2 has the elements {1,5,4}
// my_vector2[0] = 0 + 1
// my_vector2[1] = 2 + 3
// my_vector2[3] = 4

C.3.11 Scan Functions

The scan family of functions applies a function over a vector, creating a new vector result. The
scan function is similar to fold, but the intermediate results are saved and returned in a vector,
instead of returning just the last result. The result of a scan function is a vector. That is, given a
vector of element_type, V0, V1, ..., Vn−1, an initial value initb of type b_type, and a function func,
application of the scanr functions creates a new vector W , where

Wn = init;
Wn−1 = func(Vn−1,Wn);
Wn−2 = func(Vn−2,Wn−1);

...

W1 = func(V1,W2);
W0 = func(V0,W1);
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scanr Apply a function over a vector, creating a new vector result. Processes elements
from the highest index position to the lowest, and fill the resulting vector in the
same way. The result vector is 1 element longer than the input vector.

function Vector#(vsize1,b_type)
scanr(function b_type func(a_type x1, b_type x2),

b_type initb,
Vector#(vsize,a_type) vect)

provisos (Add#(1, vsize, vsize1));

sscanr Apply a function over a vector, creating a new vector result. The elements are pro-
cessed from the highest index position to the lowest. The Wn element is dropped
from the result. Input and output vectors are the same size.

function Vector#(vsize,b_type)
sscanr(function b_type func(a_type x1, b_type x2),

b_type initb,
Vector#(vsize,a_type) vect );

The scanl function creates the resulting vector in a similar way as scanr except that the processing
happens from the zeroth element up to the nth element.

W0 = init;
W1 = func(W0, V0);
W2 = func(W1, V1);
...

Wn−1 = func(Wn−2, Vn−2);
Wn = func(Wn−1, Vn−1);

The sscanl function drops the first result, init, shifting the result index by one.

scanl Apply a function over a vector, creating a new vector result. Processes elements
from the zeroth element up to the nth element. The result vector is 1 element
longer than the input vector.

function Vector#(vsize1,a_type)
scanl(function a_type func(a_type x1, b_type x2),

a_type q,
Vector#(vsize, b_type) vect)

provisos (Add#(1, vsize, vsize1));
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sscanl Apply a function over a vector, creating a new vector result. Processes elements
from the zeroth element up to the nth element. The first result, init, is dropped,
shifting the result index up by one. Input and output vectors are the same size.

function Vector#(vsize,a_type)
sscanl(function a_type func(a_type x1, b_type x2),

a_type q,
Vector#(vsize, b_type) vect );

mapAccumL Map a function, but pass an accumulator from head to tail.

function Tuple2 #(a_type, Vector#(vsize,c_type))
mapAccumL (function Tuple2 #(a_type, c_type)

func(a_type x, b_type y), a_type x0,
Vector#(vsize,b_type) vect );

mapAccumR Map a function, but pass an accumulator from tail to head.

function Tuple2 #(a_type, Vector#(vsize,c_type))
mapAccumR(function Tuple2 #(a_type, c_type)

func(a_type x, b_type y), a_type x0,
Vector#(vsize,b_type) vect );

Examples - Scan

Create a vector of factorials.

// \* is a function which returns the result of a multiplied by b
function Bit #(16) \* (Bit #(16) b, Bit #(8) a);

return (extend (a) * b);
endfunction

// Create a vector of factorials by multiplying each input list element
// by the previous product (the output list element), to generate
// the next product. The seed is a Bit#(16) with a value of 1.
// The elements are processed from the zeroth element up to the $n^{th}$ element.

// my_vector1 = {1,2,3,4,5,6,7}
Vector#(8,Bit #(16)) my_vector2 = scanl (\*, 16’d1, my_vector1);
// 7 multipliers are generated

// my_vector2 = {1,1,2,6,24,120,720,5040}
// foldr with the same arguments would return just 5040.

C.3.12 Monadic Operations

Within Bluespec, there are some functions which can only be invoked in certain contexts. Two
common examples are: ActionValue, and module instantiation. ActionValues can only be invoked
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within an Action context, such as a rule block or an Action method, and can be considered as two
parts - the action and the value. Module instantiation can similarly be considered, modules can only
be instantiated in the module context, while the two parts are the module instantiation (the action
performed) and the interface (the result returned). These situations are considered monadic.

When a monadic function is to be applied over a vector using map-like functions such as map,
zipWith, or replicate, the monadic versions of these functions must be used. Moreover, the context
requirements of the applied function must hold. The common application for these functions is in
the generation (or instantiation) of vectors of hardware components.

mapM Takes a monadic function and a vector, and applies the function to all vector
elements returning the vector of corresponding results.

function m#(Vector#(vsize, b_type))
mapM ( function m#(b_type) func(a_type x),

Vector#(vsize, a_type) vecta )
provisos (Monad#(m));

mapM_ Takes a monadic function and a vector, applies the function to all vector elements,
and throws away the resulting vector leaving the action in its context.

function m#(void) mapM_(function m#(b_type) func(a_type x),
Vector#(vsize, a_type) vect)

provisos (Monad#(m));

zipWithM Take a monadic function (which takes two arguments) and two vectors; the func-
tion applied to the corresponding element from each vector would return an action
and result. Perform all those actions and return the vector of corresponding re-
sults.

function m#(Vector#(vsize, c_type))
zipWithM( function m#(c_type) func(a_type x, b_type y),

Vector#(vsize, a_type) vecta,
Vector#(vsize, b_type) vectb )

provisos (Monad#(m));

zipWithM_ Take a monadic function (which takes two arguments) and two vectors; the func-
tion is applied to the corresponding element from each vector. This is the same as
zipWithM but the resulting vector is thrown away leaving the action in its context.

function m#(void)
zipWithM_(function m#(c_type) func(a_type x, b_type y),

Vector#(vsize, a_type) vecta,
Vector#(vsize, b_type) vectb )

provisos (Monad#(m));
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zipWith3M Same as zipWithM but combines three vectors with a function. The function is
applied to the corresponding element from each vector and returns an action and
the vector of corresponding results.

function m#(Vector#(vsize, c_type))
zipWith3M( function m#(d_type)

func(a_type x, b_type y, c_type z),
Vector#(vsize, a_type) vecta,
Vector#(vsize, b_type) vectb,
Vector#(vsize, c_type) vectc )

provisos (Monad#(m));

genWithM Generate a vector of elements by applying the given monadic function to 0 through
n-1.

function m#(Vector#(vsize, element_type))
genWithM(function m#(element_type) func(Integer x))

provisos (Monad#(m));

replicateM Generate a vector of elements by using the given monadic value repeatedly.

function m#(Vector#(vsize, element_type))
replicateM( m#(element_type) c)

provisos (Monad#(m));

Examples - Creating a Vector of Registers

The following example shows some common uses of the Vector type. We first create a vector of
registers, and show how to populate this vector. We then continue with some examples of accessing
and updating the registers within the vector, as well as alternate ways to do the same.

// First define a variable to hold the register interfaces.
// Notice the variable is really a vector of Interfaces of type Reg,
// not a vector of modules.
Vector#(10,Reg#(DataT)) vectRegs ;

// Now we want to populate the vector, by filling it with Reg type
// interfaces, via the mkReg module.
// Notice that the replicateM function is used instead of the
// replicate function since mkReg function is creating a module.
vectRegs <- replicateM( mkReg( 0 ) ) ;

// ...

// A rule showing a read and write of one register within the
// vector.
// The readReg function is required since the selection of an
// element from vectRegs returns a Reg#(DType) interface, not the
// value of the register. The readReg functions converts from a
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// Reg#(DataT) type to a DataT type.
rule zerothElement ( readReg( vectRegs[0] ) > 20 ) ;

// set 0 element to 0
// The parentheses are required in this context to give
// precedence to the selection over the write operation.
(vectRegs[0]) <= 0 ;

// Set the 1st element to 5
// An alternate syntax
vectRegs[1]._write( 5 ) ;

endrule

rule lastElement ( readReg( vectRegs[9] ) > 200 ) ;
// Set the 9th element to -10000
(vectRegs[9]) <= -10000 ;

endrule

// These rules defined above can execute simultaneously, since
// they touch independent registers

// Here is an example of dynamic selection, first we define a
// register to be used as the selector.
Reg#(UInt#(4)) selector <- mkReg(0) ;

// Now define another Reg variable which is selected from the
// vectReg variable. Note that no register is created here, just
// an alias is defined.
Reg#(DataT) thisReg = select(vectRegs, selector ) ;

//The above statement is equivalent to:
//Reg#(DataT) thisReg = vectRegs[selector] ;

// If the selected register is greater than 20’h7_0000, then its
// value is reset to zero. Note that the vector update function is
// not required since we are changing the contents of a register
// not the vector vectReg.
rule reduceReg( thisReg > 20’h7_0000 ) ;

thisReg <= 0 ;
selector <= ( selector < 9 ) ? selector + 1 : 0 ;

endrule

// As an alternative, we can define N rules which each check the
// value of one register and update accordingly. This is done by
// generating each rule inside an elaboration-time for-loop.

Integer i; // a compile time variable
for ( i = 0 ; i < 10 ; i = i + 1 ) begin

rule checkValue( readReg( vectRegs[i] ) > 20’h7_0000 ) ;
(vectRegs[i]) <= 0 ;

endrule
end
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C.3.13 Converting to and from Vectors

There are functions which convert between Vectors and other types.

toList Convert a Vector to a List.

function List#(element_type)
toList (Vector#(vsize, element_type) vect);

toVector Convert a List to a Vector.

function Vector#(vsize, element_type)
toVector ( List#(element_type) lst);

arrayToVector Convert an array to a Vector.

function Vector#(vsize, element_type)
arrayToVector ( element_type[ ] arr);

vectorToArray Convert a Vector to an array.

function element_type[ ]
vectorToArray (Vector#(vsize, element_type) vect);

toChunks Convert a value to a Vector of chunks, possibly padding the final chunk. The
input type and size as well as the chunk type and size are determined from
their types.

function Vector#(n_chunk, chunk_type) toChunks(type_x x)
provisos( Bits#(chunk_type, chunk_sz), Bits#(type_x, x_sz)

, Div#(x_sz, chunk_sz, n_chunk) );

Example - Converting to and from Vectors

Convert the vector my_vector to a list named my_list.

Vector#(5,Int#(13)) my_vector;
List#(Int#(13)) my_list = toList(my_vector);

C.3.14 ListN

Package name

import ListN :: * ;
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Description

ListN is an alternative implementation of Vector which is preferred for sequential list processing
functions, such as head, tail, map, fold, etc. All Vector functions are available, by substituting ListN
for Vector. See the Vector documentation (C.3) for details. If the implementation requires random
access to items in the list, the Vector construct is recommended. Using ListN where Vectors is
recommended (and visa-versa) can lead to very long static elaboration times.

The ListN package defines an abstract data type which is a ListN of a specific length. Functions
which create and operate on this type are also defined within this package. Because it is abstract,
there are no constructors available for this type (like Cons and Nil for the List type).

struct ListN#(vsize,a_type)
· · · abstract · · ·

Here, the type variable “a_type” represents the type of the contents of the listN while type variable
“vsize” represents the length of the ListN.

C.4 Aggregation: Lists

Package

import List :: * ;

Description

The List package defines a data type and functions which create and operate on this data type. Lists
are similar to Vectors, but are used when the number of items on the list may vary at compile-time
or need not be strictly enforced by the type system. All elements of a list must be of the same type.
The list type is defined as a tagged union as follows.

typedef union tagged {
void Nil;
struct {

a head;
List #(a) tail;

} Cons;
} List #(type a);

A list is tagged Nil if it has no elements, otherwise it is tagged Cons. Cons is a structure of a single
element and the rest of the list.

Lists are most often used during static elaboration (compile-time) to manipulate collections of ob-
jects. Since List#(element_type) is not in the Bits typeclass, lists cannot be stored in registers
or other dynamic elements. However, one can have a list of registers or variables corresponding to
hardware functions.

C.4.1 Creating and Generating Lists

cons Adds an element to a list. The new element will be at the 0th position.

function List#(element_type)
cons (element_type x, List#(element_type) xs);
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upto Create a list of Integers counting up over a range of numbers, from m to n. If m
> n, an empty list (Nil) will be returned.

List#(Integer) upto(Integer m, Integer n);

replicate Generate a list of n elements by replicating the given argument, elem.

function List#(element_type)
replicate(Integer n, element_type elem);

append Append two lists, returning the combined list. The elements of both lists must be
the same datatype, element_type. The combined list will contain all the elements
of xs followed in order by all the elements of ys.

function List#(element_type)
append(List#(element_type) xs, List#(element_type) ys);

concat Append (concatenate) many lists, that is a list of lists, into one list.

function List# (element_type)
concat (List#(List#(element_type)) xss);

Examples - Creating and Generating Lists

Create a new list, my_list, of elements of datatytpe Int#(32) which are undefined

List #(Int#(32)) my_list;

Create a list, my_list, of five 1’s

List #(Int #(32)) my_list = replicate (5,32’d1);

//my_list = {1,1,1,1,1}

Create a new list using the upto function

List #(Integer) my_list2 = upto (1, 5);

//my_list2 = {1,2,3,4,5}
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C.4.2 Extracting Elements and Sub-Lists

[i] The square-bracket notation is available to extract an element from a list or update
an element within it. Extracts or updates the ith element, where the first element
is [0]. Index i must be of an acceptable index type (e.g. Integer, Bit#(n),
Int#(n) or UInt#(n)). The square-bracket notation for lists can also be used
with register writes.

anyList[i];
anyList[i] = newValue;

select The select function is another form of the subscript notation ([i]), mainly provided
for backwards-compatibility. The select function is also useful as an argument to
higher-order functions. The subscript notation is generally recommended because
it will report a more useful position for any selection errors.

function element_type
select(List#(element_type) alist, idx_type index);

update Update an element in a list returning a new list with one element
changed/updated. This function does not change the given list. This is another
form of the subscript notation (see above), mainly provided for backwards compat-
ibility. The update function may also be useful as an argument to a higher-order
function. The subscript notation is generally recommended because it will report
a more useful position for any update errors.

function List#(element_type)
update(List#(element_type) alist,

idx_type index,
element_type newElem);

oneHotSelect Select a list element with a Boolean list. The Boolean list should have exactly
one element that is True, otherwise the result is undefined. The returned
element is the one in the corresponding position to the True element in the
Boolean list.

function element_type
oneHotSelect (List#(Bool) bool_list,

List#(element_type) alist);
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head Extract the first element of a list. The input list must have at least 1 element, or
an error will be returned.

function element_type head (List#(element_type) listIn);

last Extract the last element of a list. The input list must have at least 1 element, or
an error will be returned.

function element_type last (List#(element_type) alist);

tail Remove the head element of a list leaving the remaining elements in a smaller list.
The input list must have at least 1 element, or an error will be returned.

function List#(element_type) tail (List#(element_type) alist);

init Remove the last element of a list the remaining elements in a smaller list. The
input list must have at least one element, or an error will be returned.

function List#(element_type) init (List#(element_type) alist);

take Take a number of elements from a list starting from index 0. The number to take
is specified by the argument n. If the argument is greater than the number of
elements on the list, the function stops taking at the end of the list and returns
the entire input list.

function List#(element_type)
take (Integer n, List#(element_type) alist);

drop Drop a number of elements from a list starting from index 0. The number to drop
is specified by the argument n. If the argument is greater than the number of
elements on the list, the entire input list is dropped, returning an empty list.

function List#(element_type)
drop (Integer n, List#(element_type) alist);
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filter Create a new list from a given list where the new list has only the elements which
satisfy the predicate function.

function List#(element_type)
filter (function Bool pred(element_type),

List#(element_type) alist);

find Return the first element that satisfies the predicate or Nothing if there is none.

function Maybe#(element_type)
find (function Bool pred(element_type),

List#(element_type) alist);

lookup Returns the value in an association list or Nothing if there is no matching value.

function Maybe#(b_type)
lookup (a_type key, List#(Tuple2#(a_type, b_type)) alist)

provisos(Eq#(a_type));

takeWhile Returns the first set of elements of a list which satisfy the predicate function.

function List#(element_type)
takeWhile (function Bool pred(element_type x),

List#(element_type) alist);

takeWhileRev Returns the last set of elements on a list which satisfy the predicate function.

function List#(element_type)
takeWhileRev (function Bool pred(element_type x),

List#(element_type) alist);

dropWhile Removes the first set of elements on a list which satisfy the predicate function,
returning a list with the remaining elements.

function List#(element_type)
dropWhile (function Bool pred(element_type x),

List#(element_type) alist);
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dropWhileRev Removes the last set of elements on a list which satisfy the predicate function,
returning a list with the remaining elements.

function List#(element_type)
dropWhileRev (function Bool pred(element_type x),

List#(element_type) alist);

Examples - Extracting Elements and Sub-Lists

Extract the element from a list, my_list, at the position of index.
//my_list = {1,2,3,4,5}, index = 3

newvalue = select (my_list, index);

//newvalue = 4

Extract the zeroth element of the list my_list.
//my_list = {1,2,3,4,5}

newvalue = head(my_list);

//newvalue = 1

Create a list, my_list2, of size 4 by removing the head (zeroth) element of the list my_list1.
//my_list1 is a list with 5 elements, {0,1,2,3,4}

List #(Int #(32)) my_list2 = tail (my_list1);
List #(Int #(32)) my_list3 = tail(tail(tail(tail(tail(my_list1);

//my_list2 = {1,2,3,4}
//my_list3 = Nil

Create a 2 element list, my_list2, by taking the first two elements of the list my_list1.
//my_list1 is list with 5 elements, {0,1,2,3,4}
List #(Int #(4)) my_list2 = take (2,my_list1);

//my_list2 = {0,1}

The number of elements specified to take in take can be greater than the number of elements on
the list, in which case the entire input list will be returned.

//my_list1 is list with 5 elements, {0,1,2,3,4}
List #(Int #(4)) my_list2 = take (7,my_list1);

//my_list2 = {0,1,2,3,4}

Select an element based on a boolean list.
//my_list1 is a list of unsigned integers, {1,2,3,4,5}
//my_list2 is a list of Booleans, only one value in my_list2 can be True.
//my_list2 = {False, False, True, False,False, False, False}.

result = oneHotSelect (my_list2, my_list1));

//result = 3
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Create a list by removing the initial segment of a list that meets a predicate.

//the predicate function is a < 2

function Bool lessthan2 (Int #(4) a);
return (a < 2);

endfunction

//my_list1 = {0,1,2,0,1,7,8}

List #(Int #(4)) my_result = (dropWhile(lessthan2, my_list1));

//my_result = {2,0,1,7,8}

C.4.3 List to List Functions

rotate Move the first element to the last and shift each element to the next higher index.

function List#(element_type) rotate (List#(element_type) alist);

rotateR Move last element to the beginning and shift each element to the next lower index.

function List#(element_type) rotateR (List#(element_type) alist);

reverse Reverse element order

function List#(element_type) reverse(List#(element_type) alist);

transpose Matrix transposition of a list of lists.

function List#(List#(element_type))
transpose ( List#(List#(element_type)) matrix );

sort Uses the ordering defined for the element_type data type to return a list in ascending
order. The type element_type must be in the Ord type class.

function List#(element_type) sort(List#(element_type) alist)
provisos(Ord#(element_type)) ;
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sortBy Generalizes the sort function to use an arbitrary ordering function defined by the
comparison function comparef in place of the Ord instance for element_type.

function List#(element_type)
sortBy(function Ordering comparef(element_type x, element_type y),

List#(element_type) alist);

group Returns a list of the contiguous subsequences of equal elements (according to the Eq
instance for element_type) found in its input list. Every element in the input list
will appear in exactly one sublist of the result. Every sublist will be a non-empty list
of equal elements. For any list, x, concat(group(x)) == x.

function List#(List#(element_type)) group (List#(element_type) alist)
provisos(Eq#(element_type)) ;

groupBy Generalizes the group function to use an arbitrary equivalence relation defined by
the comparison function eqf in place of the Eq instance for element_type.

function List#(List#(element_type))
groupBy(function element_type eqf(element_type x, element_type y),

List#(element_type) alist);

Examples - List to List Functions

Create a list by moving the last element to the first, then shifting each element to the right.

//my_list1 is a List of elements with values {1,2,3,4,5}

my_list2 = rotateR (my_list1);

//my_list2 is a List of elements with values {5,1,2,3,4}

Create a list which is the reverse of the input List
//my_list1 is a List of elements {1,2,3,4,5}

my_list2 = reverse (my_list1);

//my_list2 is a List of elements {5,4,3,2,1}

Use transpose to create a new list
//my_list1 has the values:
//{{0,1,2,3,4},{5,6,7,8,9},{10,11,12,13,14}}

my_list2 = transpose(my_list1);

//my_list2 has the values:
//{{0,5,10},{1,6,11},{2,7,12},{3,8,13},{4,9,14}}

Use sort to create a new list
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//my_list1 has the values: {3,2,5,4,1}

my_list2 = sort(my_list1);

//my_list2 has the values: {1,2,3,4,5}

Use group to create a list of lists

//my_list1 is a list of elements {Mississippi}

my_list2 = group(my_list1);

//my_list2 is a list of lists:
{{M},{i},{ss},{i},{ss},{i},{pp},{i}}

C.4.4 Tests on Lists

==
!=

Lists can be compared for equality if the elements in the list can be compared.

instance Eq #( List#(element_type) )
provisos( Eq#( element_type ) ) ;

elem Check if a value is an element in a list.

function Bool elem (element_type x, List#(element_type) alist )
proviso (Eq#(element_type));

length Determine the length of a list. Can be done at elaboration time only.

function Integer length (List#(element_type) alist );

any Test if a predicate holds for any element of a list.

function Bool any(function Bool pred(element_type x1),
List#(element_type) alist );

all Test if a predicate holds for all elements of a list.

function Bool all(function Bool pred(element_type x1),
List#(element_type) alist );
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or Combine all elements in a Boolean list with a logical or. Returns True if any
elements in the list are True.

function Bool or (List# (Bool) bool_list);

and Combine all elements in a Boolean list with a logical and. Returns True if all
elements in the list are true.

function Bool and (List# (Bool) bool_list);

Examples - Tests on Lists

Test that all elements of the list my_list1 are positive integers
function Bool isPositive (Int #(32) a);

return (a > 0)
endfunction

// function isPositive checks that "a" is a positive integer
// if my_list1 has n elements, n instances of the predicate
// function isPositive will be generated.

if (all(isPositive, my_list1))
$display ("List contains all negative values");

Test if any elements in the list are positive integers.
// function isPositive checks that "a" is a positive integer
// if my_list1 has n elements, n instances of the predicate
// function isPositive will be generated.

if (any(pos, my_list1))
$display ("List contains some negative values");

Check if the integer 5 is in my_list
// if my_list contains n elements, elem will generate n copies
// of the eqt Test
if (elem(5,my_list))

$display ("List contains the integer 5");

C.4.5 Combining Lists with Zip Functions

The family of zip functions takes two or more lists and combines them into one list of Tuples.
Several variations are provided for different resulting Tuples. All variants can handle input lists of
different sizes. The resulting lists will be the size of the smallest list.

zip Combine two lists into a list of Tuples.

function List#(Tuple2 #(a_type, b_type))
zip( List#(a_type) lista,

List#(b_type) listb);
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zip3 Combine 3 lists into a list of Tuple3.

function List#(Tuple3 #(a_type, b_type, c_type))
zip3( List#(a_type) lista,

List#(b_type) listb,
List#(c_type) listc);

zip4 Combine 4 lists into a list of Tuple4.

function List#(Tuple4 #(a_type, b_type, c_type, d_type))
zip4( List#(a_type) lista,

List#(b_type) listb,
List#(c_type) listc,
List#(d_type) listd);

unzip Separate a list of pairs (i.e. a Tuple2#(a,b)) into a pair of two lists.

function Tuple2#(List#(a_type), List#(b_type))
unzip(List#(Tuple2 #(a_type, b_type)) listab);

Examples - Combining Lists with Zip

Combine two lists into a list of Tuples
//my_list1 is a list of elements {0,1,2,3,4,5,6,7}
//my_list2 is a list of elements {True,False,True,True,False}

my_list3 = zip(my_list1, my_list2);

//my_list3 is a list of Tuples {(0,True),(1,False),(2,True),(3,True),(4,False)}

Separate a list of pairs into a Tuple of two lists
//my_list is a list of pairs {(0,5),(1,6),(2,7),(3,8),(4,9)}

Tuple2#(List#(Int#(5)),List#(Int#(5))) my_list2 = unzip(my_list);

//my_list2 is ({0,1,2,3,4},{5,6,7,8,9})

C.4.6 Mapping Functions over Lists

A function can be applied to all elements of a list, using high-order functions such as map. These
functions take as an argument a function, which is applied to the elements of the list.

map Map a function over a list, returning a new list of results.

function List#(b_type) map (function b_type func(a_type),
List#(a_type) alist);
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Example - Mapping Functions over Lists

Consider the following code example which applies the extend function to each element of alist
creating a new list, resultlist.

List#(Bit#(5)) alist;
List#(Bit#(10)) resultlist;
...
resultlist = map( extend, alist ) ;

This is equivalent to saying:

for (Integer i=0; i<13; i=i+1)
resultlist[i] = extend(alist[i]);

Map a negate function over a list

//my_list1 is a list of 5 elements {0,1,2,3,4}
//negate is a function which makes each element negative

List #(Int #(32)) my_list2 = map (negate, my_list1);

//my_list2 is a list of 5 elements {0,-1,-2,-3,-4}

C.4.7 ZipWith Functions

The zipWith functions combine two or more lists with a function and generate a new list. These
functions combine features of map and zip functions.

zipWith Combine two lists with a function. The lists do not have to have the same number
of elements.

function List#(c_type)
zipWith (function c_type func(a_type x, b_type y),

List#(a_type) listx,
List#(b_type) listy );

zipWith3 Combine three lists with a function. The lists do not have to have the same
number of elements.

function List#(d_type)
zipWith3(function d_type func(a_type x, b_type y, c_type z),

List#(a_type) listx,
List#(b_type) listy,
List#(c_type) listz );
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zipWith4 Combine four lists with a function. The lists do not have to have the same number
of elements.

function List#(e_type) zipWith4
(function e_type func(a_type x, b_type y, c_type z, d_type w),
List#(a_type) listx,
List#(b_type) listy,
List#(c_type) listz
List#(d_type) listw );

Examples - ZipWith

Create a list by applying a function over the elements of 3 lists.

//the function add3 adds 3 values
function Int#(8) add3 (Int #(8) a,Int #(8) b,Int #(8) c);

Int#(8) d = a + b +c ;
return(d);

endfunction

//Create the list my_list4 by adding the ith element of each of
//3 lists (my_list1, my_list2, my_list3) to generate the ith
//element of my_list4.

//my_list1 = {0,1,2,3,4}
//my_list2 = {5,6,7,8,9}
//my_list3 = {10,11,12,13,14}

List #(Int #(8)) my_list4 = zipWith3(add3, my_list1, my_list2, my_list3);

//my_list4 = {15,18,21,24,27}

// This is equivalent to saying:
for (Integer i=0; i<5; i=i+1)

my_list4[i] = my_list1[i] + my_list2[i] + my_list3[i];

C.4.8 Fold Functions

The fold family of functions reduces a list to a single result by applying a function over all its
elements. That is, given a list of element_type, L0, L1, L2, ..., Ln−1, a seed of type b_type, and a
function func, the reduction for foldr is given by

func(L0, func(L1, ..., func(Ln−2, func(Ln−1, seed))));

Note that foldr start processing from the highest index position to the lowest, while foldl starts
from the lowest index (zero), i.e.,

func(...(func(func(seed, L0), L1), ...)Ln−1)
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foldr Reduce a list by applying a function over all its elements. Start processing from
the highest index to the lowest.

function b_type foldr(b_type function func(a_type x, b_type y),
b_type seed,
List#(a_type) alist);

foldl Reduce a list by applying a function over all its elements. Start processing from
the lowest index (zero).

function b_type foldl (b_type function func(b_type y, a_type x),
b_type seed,
List#(a_type) alist);

The functions foldr1 and foldl1 use the first element as the seed. This means they only work on
lists of at least one element. Since the result type will be the same as the element type, there is no
b_type as there is in the foldr and foldl functions.

foldr1 foldr function for a non-zero sized list. Uses element Ln−1 as the seed. List must
have at least 1 element.

function element_type foldr1
(element_type function func(element_type x, element_type y),
List#(element_type) alist);

foldl1 foldl function for a non-zero sized list. Uses element L0 as the seed. List must
have at least 1 element.

function element_type foldl1
(element_type function func(element_type y, element_type x),
List#(element_type) alist);

The fold function also operates over a non-empty list, but processing is accomplished in a binary
tree-like structure. Hence the depth or delay through the resulting function will be O(log2(lsize)
rather than O(lsize).

fold Reduce a list by applying a function over all its elements, using a binary tree-like
structure. The function returns the same type as the arguments.

function element_type fold
(element_type function func(element_type y, element_type x),
List#(element_type) alist );
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joinActions Join a number of actions together.

function Action joinActions (List#(Action) list_actions);

joinRules Join a number of rules together.

function Rules joinRules (List#(Rules) list_rules);

mapPairs Map a function over a list consuming two elements at a time. Any straggling
element is processed by the second function.

function List#(b_type)
mapPairs (

function b_type func1(a_type x, a_type y),
function b_type func2(a_type x),
List#(a_type) alist );

Example - Folds
// my_list1 is a list of five integers {1,2,3,4,5}
// \+ is a function which returns the sum of the elements

my_sum = foldr (\+ , 0, my_list1));

// my_sum = 15

Use fold to find the element with the maximum value
// my_list1 is a list of five integers {2,45,5,8,32}

my_max = fold (max, my_list1);

// my_max = 45

Create a new list using mapPairs. The function sum is applied to each pair of elements (the first
and second, the third and fourth, etc.). If there is an uneven number of elements, the function pass
is applied to the remaining element.

//sum is defined as c = a+b
function Int#(4) sum (Int #(4) a,Int #(4) b);

Int#(4) c = a + b;
return(c);

endfunction

//pass is defined as a
function Int#(4) pass (Int #(4) a);

return(a);
endfunction

//my_list1 has the elements {0,1,2,3,4}
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my_list2 = mapPairs(sum,pass,my_list1);

//my_list2 has the elements {1,5,4}
//my_list2[0] = 0 + 1
//my_list2[1] = 2 + 3
//my_list2[3] = 4

C.4.9 Scan Functions

The scan family of functions applies a function over a list, creating a new List result. The scan
function is similar to fold, but the intermediate results are saved and returned in a list, instead
of returning just the last result. The result of a scan function is a list. That is, given a list
of element_type, L0, L1, ..., Ln−1, an initial value initb of type b_type, and a function func,
application of the scanr functions creates a new list W , where

Wn = init;
Wn−1 = func(Ln−1,Wn);
Wn−2 = func(Ln−2,Wn−1);

...

W1 = func(L1,W2);
W0 = func(L0,W1);

scanr Apply a function over a list, creating a new list result. Processes elements from
the highest index position to the lowest, and fills the resulting list in the same
way. The result list is one element longer than the input list.

function List#(b_type)
scanr(function b_type func(a_type x1, b_type x2),

b_type initb,
List#(a_type) alist);

sscanr Apply a function over a list, creating a new list result. The elements are processed
from the highest index position to the lowest. Drops the Wn element from the
result. Input and output lists are the same size.

function List#(b_type)
sscanr(function b_type func(a_type x1, b_type x2),

b_type initb,
List#(a_type) alist );

The scanl function creates the resulting list in a similar way as scanr except that the processing
happens from the zeroth element up to the nth element.

W0 = init;
W1 = func(W0, L0);
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W2 = func(W1, L1);
...

Wn−1 = func(Wn−2, Ln−2);
Wn = func(Wn−1, Ln−1);

The sscanl function drops the first result, init, shifting the result index by one.

scanl Apply a function over a list, creating a new list result. Processes elements from
the zeroth element up to the nth element. The result list is 1 element longer than
the input list.

function List#(a_type)
scanl(function a_type func(a_type x1, b_type x2),

a_type inita,
List#(b_type) alist);

sscanl Apply a function over a list, creating a new list result. Processes elements from
the zeroth element up to the nth element. Drop the first result, init, shifting the
result index by one. The length of the input and output lists are the same.

function List#(a_type)
sscanl(function a_type func(a_type x1, b_type x2),

a_type inita,
List#(b) alist );

mapAccumL Map a function, but pass an accumulator from head to tail.

function Tuple2 #(a_type, List#(c_type))
mapAccumL (function Tuple2 #(a_type, c_type)

func(a_type x, b_type y),a_type x0,
List#(b_type) alist );

mapAccumR Map a function, but pass an accumulator from tail to head.

function Tuple2 #(a_type, List#(c_type))
mapAccumR(function Tuple2 #(a_type, c_type)

func(a_type x, b_type y),a_type x0,
List#(b_type) alist );

Examples - Scan

Create a list of factorials
//the function my_mult multiplies element a by element b
function Bit #(16) my_mult (Bit #(16) b, Bit #(8) a);

return (extend (a) * b);
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endfunction

// Create a list of factorials by multiplying each input list element
// by the previous product (the output list element), to generate
// the next product. The seed is a Bit#(16) with a value of 1.
// The elements are processed from the zeroth element up to the nth element.
//my_list1 = {1,2,3,4,5,6,7}

List #(Bit #(16)) my_list2 = scanl (my_mult, 16’d1, my_list1);

//my_list2 = {1,1,2,6,24,120,720,5040}

C.4.10 Monadic Operations

Within Bluespec, there are some functions which can only be invoked in certain contexts. Two
common examples are: ActionValue, and module instantiation. ActionValues can only be invoked
within an Action context, such as a rule block or an Action method, and can be considered as two
parts - the action and the value. Module instantiation can similarly be considered, modules can only
be instantiated in the module context, while the two parts are the module instantiation (the action
performed) and the interface (the result returned). These situations are considered monadic.

When a monadic function is to be applied over a list using map-like functions such as map, zipWith,
or replicate, the monadic versions of these functions must be used. Moreover, the context require-
ments of the applied function must hold.

mapM Takes a monadic function and a list, and applies the function to all list elements
returning the list of corresponding results.

function m#(List#(b_type))
mapM ( function m#(b_type) func(a_type x),

List#(a_type) alist )
provisos (Monad#(m));

mapM_ Takes a monadic function and a list, applies the function to all list elements, and
throws away the resulting list leaving the action in its context.

function m#(List#(b_type) mapM_(m#(b_type) c_type)
provisos (Monad#(m));

zipWithM Take a monadic function (which takes two arguments) and two lists; the function
applied to the corresponding element from each list would return an action and
result. Perform all those actions and return the list of corresponding results.

function m#(List#(c_type))
zipWithM( function m#(c_type) func(a_type x, b_type y),

List#(a_type) alist,
List#(b_type) blist )

provisos (Monad#(m));
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zipWith3M Same as zipWithM but combines three lists with a function. The function is
applied to the corresponding element from each list and returns an action and the
list of corresponding results.

function m#(List#(d_type))
zipWith3M( function m#(d_type)

func(a_type x, b_type y, c_type z),
List#(a_type) alist ,
List#(b_type) blist,
List#(c_type) clist )

provisos (Monad#(m));

replicateM Generate a list of elements by using the given monadic value repeatedly.

function m#(List#(element_type))
replicateM( Integer n, m#(element_type) c)

provisos (Monad#(m));

C.5 Math

C.5.1 Real

Package

import Real :: * ;

Description

The Real library package defines functions to operate on and manipulate real numbers. Real numbers
are numbers with a fractional component. They are also of limited precision. The Real data type
is described in section B.2.6.

Constants

The constant pi (π) is defined.

pi The value of the constant pi (π).

Real pi;

Trigonometric Functions

The following trigonometric functions are provided: sin, cos, tan, sinh, cosh, tanh, asin, acos,
atan, asinh, acosh, atanh, and atan2.

sin Returns the sine of x.

function Real sin (Real x);
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cos Returns the cosine of x.

function Real cos (Real x);

tan Returns the tangent of x.

function Real tan (Real x);

sinh Returns the hyperbolic sine of x.

function Real sinh (Real x);

cosh Returns the hyperbolic cosine of x.

function Real cosh (Real x);

tanh Returns the hyperbolic tangent of x.

function Real tanh (Real x);

asinh Returns the inverse hyperbolic sine of x.

function Real asinh (Real x);

acosh Returns the inverse hyperbolic cosine of x.

function Real acosh (Real x);
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atanh Returns the inverse hyperbolic tangent of x.

function Real atanh (Real x);

atan2 Returns atan(x/y). atan2(1,x) is equivalent to atan(x), but provides more
precision when required by the division of x/y.

function Real atan2 (Real y, Real x);

Arithmetic Functions

pow The element x is raised to the y power. An alias for **. pow(x,y) = x**y =
xy.

function Real pow (Real x, Real y);

sqrt Returns the square root of x. Returns an error if x is negative.

function Real sqrt (Real x);

Conversion Functions

The following four functions are used to convert a Real to an Integer.

trunc Converts a Real to an Integer by removing the fractional part of x, which
can be positive or negative. trunc(1.1) = 1, trunc(-1.1)= -1.

function Integer trunc (Real x);

round Converts a Real to an Integer by rounding to the nearest whole number. .5
rounds up in magnitude. round(1.5) = 2, round(-1.5)= -2.

function Integer round (Real x);
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ceil Converts a Real to an Integer by rounding to the higher number, regardless
of sign. ceil(1.1) = 2, ceil(-1.1) = -1.

function Integer ceil (Real x);

floor Converts a Real to an Integer by rounding to the lower number, regardless
of sign. floor(1.1) = 1, floor(-1.1) = -2.

function Integer floor (Real x);

There are also two system functions $realtobits and $bitstoreal, defined in the Prelude (section
B.2.6) which provide conversion to and from IEEE 64-bit vectors (Bit#(64)).

Introspection Functions

isInfinite Returns True if the value of x is infinite, False if x is finite.

function Bool isInfinite (Real x);

isNegativeZero Returns True if the value of x is negative zero.

function Bool isNegativeZero (Real x);

splitReal Returns a Tuple containing the whole (n) and fractional (f) parts of x such
that n + f = x. Both values have the same sign as x. The absolute value of
the fractional part is guaranteed to be in the range [0,1).

function Tuple2#(Integer, Real) splitReal (Real x);

decodeReal Returns a Tuple3 containing the sign, the fraction, and the exponent of a real
number. The Bool represents the sign and is True for positive and False for
negative. The second part (the first Integer) represents the fractional part as
a signed Integer value. This can be converted to an Int#(54) (52 bits, plus
hidden plus sign). The last value is a signed Integer representing the exponent,
which can be be converted to an Int#(12) . The real number is represented
exactly as (fractional × 2exp).

function Tuple3#(Bool, Integer, Integer) decodeReal (Real x);
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C.5.2 Complex

Package

import Complex :: * ;

Description

The Complex package provides a representation for complex numbers plus functions to operate on
variables of this type. The basic representation is the Complex structure, which is polymorphic
on the type of data it holds. For example, one can have complex numbers of type Int or of type
FixedPoint. A Complex number is represented in two part, the real part (rel) and the imaginary
part (img). These fields are accessible though standard structure addressing, i.e., foo.rel and
foo.img where foo is of type Complex.

typedef struct {
any_t rel ;
any_t img ;
} Complex#(type any_t)

deriving ( Bits, Eq ) ;

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Types and type classes

The Complex type belongs to the Arith, Literal, SaturatingArith, and FShow type classes. Each
type class definition includes functions which are then also defined for the data type. The Prelude
library definitions (Section B) describes which functions are defined for each type class.

Type Classes used by Complex

Bits Eq Literal Arith Ord Bounded Bit Bit Bit
wise Reduction Extend

Complex
√ √ √ √

Arith The type Complex belongs to the Arith type class, hence the common infix operators (+,
-, *, and /) are defined and can be used to manipulate variables of type Complex. The remaining
arithmetic operators are not defined for the Complex type. Note however, that some functions
generate more hardware than may be expected. The complex multiplication (*) produces four
multipliers in a combinational function; some other modules could accomplish the same function with
less hardware but with greater latency. The complex division operator (/) produces 6 multipliers,
and a divider and may not always be synthesizable with downstream tools.

instance Arith#( Complex#(any_type) )
provisos( Arith#(any_type) ) ;

Literal The Complex type is a member of the Literal class, which defines a conversion from the
compile-time Integer type to Complex type with the fromInteger function. This function converts
the Integer to the real part, and sets the imaginary part to 0.

instance Literal#( Complex#(any_type) )
provisos( Literal#(any_type) );
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SaturatingArith The SaturatingArith class provides the functions satPlus, satMinus, boundedPlus,
and boundedMinus. These are modified plus and minus functions which saturate to values defined
by the SaturationMode when the operations would otherwise overflow or wrap-around. The type
of the complex value (any_type) must be in the SaturatingArith class.

instance SaturatingArith#(Complex#(any_type))
provisos (SaturatingArith#(any_type));

FShow The FShow class provides the function fshow which can be applied to a type to create an
associated Fmt representation.

instance FShow#(Complex#(a))
provisos (FShow#(a));

Functions

cmplx A simple constructor function is provided to set the fields.

function Complex#(a_type) cmplx( a_type realA, a_type imagA ) ;

cmplxMap Applies a function to each part of the complex structure. This is useful for
operations such as extend, truncate, etc.

function Complex#(b_type) cmplxMap(
function b_type mapFunc( a_type x),
Complex#(a_type) cin ) ;

cmplxSwap Exchanges the real and imaginary parts.

function Complex#(a_type) cmplxSwap( Complex#(a_type) cin ) ;

cmplxWrite Displays a complex number given a prefix string, an infix string, a postscript
string, and an Action function which writes each part. cmplxWrite is of type
Action and can only be invoked in Action contexts such as Rules and Actions
methods.

function Action cmplxWrite(String pre,
String infix,
String post,
function Action writeaFunc( a_type x ),
Complex#(a_type) cin );
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Examples - Complex Numbers

// The following utility function is provided for writing data
// in decimal format. An example of its use is show below.

function Action writeInt( Int#(n) ain ) ;
$write( "%0d", ain ) ;

endfunction

// Set the fields of the complex number using the constructor function cmplx
Complex#(Int#(6)) complex_value = cmplx(-2,7) ;

// Display complex_value as ( -2 + 7i ).
// Note that writeInt is passed as an argument to the cmplxWrite function.
cmplxWrite( "( ", " + ", "i)", writeInt, complex_value );

// Swap the real and imaginary parts.
swap_value = cmplxSwap( complex_value ) ;

// Display the swapped values. This will display ( -7 + 2i).
cmplxWrite( "( ", " + ", "i)", writeInt, swap_value );

C.5.3 FixedPoint

Package

import FixedPoint :: * ;

Description

The FixedPoint library package defines a type for representing fixed-point numbers and correspond-
ing functions to operate and manipulate variables of this type.

A fixed-point number represents signed numbers which have a fixed number of binary digits (bits)
before and after the binary point. The type constructor for a fixed-point number takes two numeric
types as argument; the first (isize) defines the number of bits to the left of the binary point (the
integer part), while the second (fsize) defines the number of bits to the right of the binary point,
(the fractional part).

The following data structure defines this type, while some utility functions provide the reading of
the integer and fractional parts.

typedef struct {
Bit#(isize) i;
Bit#(fsize) f;
}

FixedPoint#(numeric type isize, numeric type fsize )
deriving( Eq ) ;

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Types and type classes
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The FixedPoint type belongs to the following type classes; Bits, Eq, Literal, RealLiteral, Arith,
Ord, Bounded, Bitwise, SaturatingArith, and FShow. Each type class definition includes functions
which are then also defined for the data type. The Prelude library definitions (Section B) describes
which functions are defined for each type class.

Type Classes used by FixedPoint

Bits Eq Literal Real Arith Ord Bounded Bit Bit Bit
Literal wise Reduce Extend

FixedPoint
√ √ √ √ √ √ √ √

Bits The type FixedPoint belongs to the Bits type class, which allows conversion from type Bits
to type FixedPoint.

instance Bits#( FixedPoint#(isize, fsize), bsize )
provisos ( Add#(isize, fsize, bsize) );

Literal The type FixedPoint belongs to the Literal type class, which allows conversion from
(compile-time) type Integer to type FixedPoint. Note that only the integer part is assigned.

instance Literal#( FixedPoint#(isize, fsize) )
provisos( Add#(isize, fsize, bsize) );

RealLiteral The type FixedPoint belongs to the RealLiteral type class, which allows conversion
from type Real to type FixedPoint.

instance RealLiteral#( FixedPoint# (isize, fsize) )

Example:
FixedPoint#(4,10) mypi = 3.1415926; //Implied fromReal
FixedPoint#(2,14) cx = fromReal(cos(pi/4));

Arith The type FixedPoint belongs to the Arith type class, hence the common infix operators (+,
-, and *) are defined and can be used to manipulate variables of type FixedPoint. The arithmetic
operators / and % are not defined.

instance Arith#( FixedPoint#(isize, fsize) )
provisos( Add#(isize, fsize, bsize) ) ;

Ord In addition to equality and inequality comparisons, FixedPoint variables can be compared
by the relational operators provided by the Ord type class. i.e., <, >, <=, and >=.

instance Ord#( FixedPoint#(isize, fsize) )
provisos( Add#(isize, fsize, bsize) ) ;

Bounded The type FixedPoint belongs to the Bounded type class. The range of values, v, rep-
resentable with a signed fixed-point number of type FixedPoint#(isize, fsize) is +(2isize−1 −
2−fsize) ≤ v ≤ −2isize−1. The function epsilon returns the smallest representable quantum by
a specific type, 2−fsize. For example, a variable v of type FixedPoint#(2,3) type can repre-
sent numbers from 1.875 (1 7

8 ) to −2.0 in intervals of 1
8 = 0.125, i.e. epsilon is 0.125. The type

FixedPoint#(5,0) is equivalent to Int#(5).

instance Bounded#( FixedPoint#(isize, fsize) )
provisos( Add#(isize, fsize, bsize) ) ;
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epsilon Returns the value of epsilon which is the smallest representable
quantum by a specific type, 2−fsize.

function FixedPoint#(isize, fsize) epsilon () ;

Bitwise Left and right shifts are provided for FixedPoint variables as part of the Bitwise type
class. Note that the shift right (>>) function does an arithmetic shift, thus preserving the sign of
the operand. Note that a right shift of 1 is equivalent to a division by 2, except when the operand is
equal to −epsilon. The functions msb and lsb are also provided. The other methods of Bitwise
type class are not provided since they have no operational meaning on FixedPoint variables; the
use of these generates an error message.

instance Bitwise#( FixedPoint#(isize, fsize) )
provisos( Add#(isize, fsize, bsize) );

SaturatingArith The SaturatingArith class provides the functions satPlus, satMinus, boundedPlus,
and boundedMinus. These are modified plus and minus functions which saturate to values defined
by the SaturationMode when the operations would otherwise overflow or wrap-around.

instance SaturatingArith#(FixedPoint#(isize, fsize));

FShow The FShow class provides the function fshow which can be applied to a type to create an
associated Fmt representation.

instance FShow#(FixedPoint#(i,f));

Functions

Utility functions are provided to extract the integer and fractional parts.

fxptGetInt Extracts the integer part of the FixedPoint number.

function Int#(isize) fxptGetInt ( FixedPoint#(isize, fsize) x );

fxptGetFrac Extracts the fractional part of the FixedPoint number.

function UInt#(fsize) fxptGetFrac ( FixedPoint#(isize, fsize) x );

To convert run-time Int and UInt values to type FixedPoint, the following conversion functions
are provided. Both of these functions invoke the necessary extension of the source operand.

fromInt Converts run-time Int values to type FixedPoint.

function FixedPoint#(ir,fr) fromInt( Int#(ia) inta )
provisos ( Add#(ia, xxA, ir ) // ir >= ia

) ;
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fromUInt Converts run-time UInt values to type FixedPoint.

function FixedPoint#(ir,fr) fromUInt( UInt#(ia) uinta )
provisos ( Add#(ia, 1, ia1), // ia1 = ia + 1

Add#(ia1,xxB, ir ) ); // ir >= ia1

Non-integer compile time constants may be specified by a rational number which is a ratio of two
integers. For example, one-third may be specified by fromRational(1,3).

fromRational Specify a FixedPoint with a rational number which is the ratio of two
integers.

function FixedPoint#(isize, fsize) fromRational(
Integer numerator, Integer denominator)

provisos ( Add#(isize, fsize, bsize ) ) ;

At times, a full precision multiplication may be required, where the result is sum of the field sizes
of the operands. Note that the operand do not have to be the same type (sizes), as is required for
the infix multiplication (*) operator.

fxptMult Function for full precision multiplication, where the result is the sum of the
field sizes of the operands.

function FixedPoint#(ri,rf) fxptMult( FixedPoint#(ai,af) x,
FixedPoint#(bi,bf) y )

provisos ( Add#(ai,bi,ri) // ri = ai + bi
,Add#(af,bf,rf) // rf = af + bf
,Add#(ai,af,ab)
,Add#(bi,bf,bb)
,Add#(ab,bb,rb)
,Add#(ri,rf,rb) ) ;

fxptTruncate is a general truncate function which converts variables to FixedPoint#(ai,af) to
type FixedPoint#(ri,rf), where ai ≥ ri and af ≥ rf . This function truncates bits as appropriate
from the most significant integer bits and the least significant fractional bits.

fxptTruncate Truncates bits as appropriate from the most significant integer bits and the
least significant fractional bits.

function FixedPoint#(ri,rf) fxptTruncate(
FixedPoint#(ai,af) a )

provisos( Add#(xxA,ri,ai), // ai >= ri
Add#(xxB,rf,af)); // af >= rf
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Two saturating fixed-point truncation functions are provided: fxptTruncateSat and fxptTruncateRoundSat.
They both use the SaturationMode, defined in Section B.1.12, to determine the final result.

typedef enum { Sat_Wrap
,Sat_Bound
,Sat_Zero
,Sat_Symmetric

} SaturationMode deriving (Bits, Eq);

fxptTruncateSat A saturating fixed point truncation. If the value cannot be represented in
its truncated form, an alternate value, minBound or maxBound, is selected
based on smode.

function FixedPoint#(ri,rf) fxptTruncateSat (
SaturationMode smode, FixedPoint#(ai,af) din)

provisos (Add#(ri,idrop,ai)
,Add#(rf,_f,af) );

The function fxptTruncateRoundSat rounds the saturated value, as determined by the value of
rmode of type RoundMode. The rounding only applies to the truncation of the fractional component
of the fixed-point number, though it may cause a wrap or overflow to the integer component which
requires saturation.

fxptTruncateRoundSat A saturating fixed point truncate function which rounds the truncated frac-
tional component as determined by the value of rmode (RoundMode). If
the final value cannot be represented in its truncated form, the minBound
or maxBound value is returned.

function FixedPoint#(ri,rf) fxptTruncateRoundSat
(RoundMode rmode, SaturationMode smode,
FixedPoint#(ai,af) din)

provisos (Add#(ri,idrop,ai)
,Add#(rf,fdrop,af) );

typedef enum {
Rnd_Plus_Inf
,Rnd_Zero
,Rnd_Minus_Inf
,Rnd_Inf
,Rnd_Conv
,Rnd_Truncate
,Rnd_Truncate_Zero

} RoundMode deriving (Bits, Eq);

These modes are equivalent to the SystemC values shown in the table below. The rounding mode de-
termines how the value is rounded when the truncated value is equidistant between two representable
values.
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Rounding Modes
RoundMode SystemC Description Action when truncated value

Equivalent equidistant between values
Rnd_Plus_Inf SC RND Round to plus infinity Always increment
Rnd_Zero SC RND ZERO Round to zero Move towards reduced mag-

nitude (decrement positive
value, increment negative
value)

Rnd_Minus_Inf SC RND MIN INF Round to minus infinity Always decrement
Rnd_Inf SC RND INF Round to infinity Always increase magnitude
Rnd_Conv SC RND CONV Round to convergence Alternate increment and

decrement based on even and
odd values

Rnd_Truncate SC TRN Truncate, no rounding
Rnd_Truncate_Zero SC TRN ZERO Truncate to zero Move towards reduced magni-

tude

Consider what happens when you apply the function fxptTruncateRoundSat to a fixed-point num-
ber. The least significant fractional bits are dropped. If the dropped bits are non-zero, the remaining
fractional component rounds towards the nearest representable value. If the remaining component
is exactly equidistant between two representable values, the rounding mode (rmode) determines
whether the value rounds up or down.

The following table displays the rounding value added to the LSB of the remaining fractional com-
ponent. When the value is equidistant (1/2), the algorithm may be dependent on whether the value
of the variable is positive or negative.

Rounding Value added to LSB of Remaining Fractional Component
RoundMode Value of Truncated Bits

< 1/2 1/2 > 1/2
Pos Neg

Rnd_Plus_Inf 0 1 1 1
Rnd_Zero 0 0 1 1
Rnd_Minus_Inf 0 0 0 1
Rnd_Inf 0 1 0 1
Rnd_Conv
Remaining LSB = 0 0 0 0 1
Remaining LSB = 1 0 1 1 1

The final two modes are truncates and are handled differently. The Rnd_Truncate mode simply drops
the extra bits without changing the remaining number. The Rnd_Truncate_Zero mode decreases
the magnitude of the variable, moving the value closer to 0. If the number is positive, the function
simply drops the extra bits, if negative, 1 is added.

RoundMode Sign of Argument Description
Positive Negative

Rnd_Truncate 0 0 Truncate extra bits, no rounding
Rnd_Truncate_Zero 0 1 Add 1 to negative number if trun-

cated bits are non-zero

Example: Truncated values by Round type, where argument is FixedPoint#(2,3) type and result
is a FixedPoint#(2,1) type. In this example, we’re rounding to the nearest 1/2, as determined by
RoundMode.
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Result by RoundMode when SaturationMode = Sat Wrap
Argument RoundMode

Binary Decimal Plus_Inf Zero Minus_Inf Inf Conv Trunc Trunc_Zero
10.001 -1.875 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.5
10.110 -1.250 -1.0 -1.0 -1.5 -1.5 -1.0 -1.5 -1.0
11.101 -0.375 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.0
00.011 0.375 0.5 0.5 0.5 0.5 0.5 0.0 0.0
01.001 1.250 1.5 1.0 1.0 1.5 1.0 1.0 1.0
01.111 1.875 -2.0 -2.0 -2.0 -2.0 -2.0 1.5 1.5

fxptSignExtend A general sign extend function which converts variables of type
FixedPoint#(ai,af) to type FixedPoint#(ri,rf), where ai ≤ ri and
af ≤ rf . The integer part is sign extended, while additional 0 bits are
added to least significant end of the fractional part.

function FixedPoint#(ri,rf) fxptSignExtend(
FixedPoint#(ai,af) a )

provisos( Add#(xxA,ai,ri), // ri >= ai
Add#(fdiff,af,rf)); // rf >= af

fxptZeroExtend A general zero extend function.

function FixedPoint#(ri,rf) fxptZeroExtend(
FixedPoint#(ai,af) a )

provisos( Add#(xxA,ai,ri), // ri >= ai
Add#(xxB,af,rf)); // rf >= af

Displaying FixedPoint values in a simple bit notation would result in a difficult to read pattern.
The following write utility function is provided to ease in their display. Note that the use of this
function adds many multipliers and adders into the design which are only used for generating the
output and not the actual circuit.

fxptWrite Displays a FixedPoint value in a decimal format, where fwidth give the
number of digits to the right of the decimal point. fwidth must be in
the inclusive range of 0 to 10. The displayed result is truncated without
rounding.

function Action fxptWrite( Integer fwidth,
FixedPoint#(isize, fsize) a )

provisos( Add#(i, f, b),
Add#(33,f,ff)); // 33 extra bits for computations.

Examples - Fixed Point Numbers
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// The following code writes "x is 0.5156250"
FixedPoint#(1,6) x = half + epsilon ;
$write( "x is " ) ; fxptWrite( 7, x ) ; $display("" ) ;

A Real value can automatically be converted to a FixedPoint value:

FixedPoint#(3,10) foo = 2e-3;

FixedPoint#(2,3) x = 1.625 ;

C.5.4 OInt

Package

import OInt :: * ;

Description

The OInt#(n) type is an abstract type that can store a number in the range “0..n-1”. The repre-
sentation of a OInt#(n) takes up n bits, where exactly one bit is a set to one, and the others are
zero, i.e., it is a one-hot decoded version of the number. The reason to use a OInt number is that
the select operation is more efficient than for a binary-encoded number; the code generated for
select takes advantage of the fact that only one of the bits may be set at a time.

Types and type classes

Definition of OInt

typedef ... OInt #(numeric type n) ... ;

Type Classes used by OInt

Bits Eq Literal Arith Ord Bounded Bit Bit Bit
wise Reduction Extend

OInt
√ √ √ √

Functions

A binary-encoded number can be converted to an OInt.

toOInt Converts from a bit-vector in unsigned binary format to an OInt.
An out-of-range number gives an unspecified result.

function OInt#(n) toOInt(Bit#(k) k)
provisos( Log#(n,k)) ;

An OInt can be converted to a binary-encoded number.

fromOInt Converts an OInt to a bit-vector in unsigned binary format.

function Bit#(k) fromOInt(OInt#(n) o)
provisos( Log#(n,k)) ;

An OInt can be used to select an element from a Vector in an efficient way.
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select The Vector select function, where the type of the index is an
OInt.

function a_type select(Vector#(vsize, a_type) vecta,
OInt#(vsize) index)

provisos (Bits#(a_type, sizea));

C.5.5 NumberTypes

Package

import NumberTypes :: * ;

Description

The NumberTypes package defines two new number types for use as index types: BuffIndex and
WrapNumber.

A BuffIndex#(sz, ln) is an unsigned integer which wraps around, where sz is the number of bits
in its representation and ln is the size of the buffer it is to index. Often sz will be TLog#(ln).
BuffIndex is intended to be used as the index type for buffers of arbitrary size. The values of
BuffIndex are not ordered; you cannot determine which of two values is ahead of the other because
of the wrap-around.

A WrapNumber#(sz) is an unsigned integer which wraps around, where sz is the number of bits in
its representation. The range is the entire value space (i.e.2sz), but should be used in situations
where at any time all valid values are in at most half of that space. The ordering of values can
be defined taking wrap-around into account, so that the nearer distance apart is used to determine
which value is ahead of the other.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Types and type classes

A BuffIndex has two numeric type parameters: the size in bits of the representation (sz), and the
length of the buffer it is to index (ln).

typedef struct { UInt#(sz) bix; } BuffIndex#(numeric type sz, numeric type ln)
deriving (Bits, Eq);

A WrapNumber#(sz) has a single numeric type parameter, sz, which is the size in bits of the repre-
sentation.

typedef struct { UInt#(sz) wn; } WrapNumber#(numeric type sz)
deriving (Bits, Eq, Arith, Literal, Bounded);

Both types belong to the Bits, Eq, Arith, and Literal typeclasses. The WrapNumber type also
belongs to the Ord typeclass. Each type class definition includes functions which are then also
defined for the data type. The Prelude library definitions (Section B) describes which functions are
defined for each type class.
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Type Classes used by BuffIndex and WrapNumber

Bits Eq Literal Arith Ord Bounded Bit Bit Bit
wise Reduction Extend

WrapNumber
√ √ √ √ √ √

BuffIndex
√ √ √ √

Literal Both BuffIndex and WrapNumber belong to the Literal typeclass, which allows conversion
from (compile-time) type Integer to these types.

For the BuffIndex type, the fromInteger and inLiteralRange functions are defined as:

instance Literal#(BuffIndex#(sz,ln));
function fromInteger(i) = BuffIndex {bix: fromInteger(i) };
function inLiteralRange(x,i) = (i>=0 && i < valueof(ln));

endinstance

Arith The type class Arith defines the common infix operators. Addition and subtraction are the
only meaningful arithmetic operations for WrapNumber and BuffIndex.

Ord WrapNumber belongs to the Ord typeclass, so values of WrapNumber can be compared by the
relational operators <, >, <=, and >=. Since the ordering of WrapNumber types takes into account
wrap-around, the nearer distance apart is used to determine which value is ahead of the other.

Functions

Utility functions to convert a BuffIndex to a UInt and for adding and subtracting BuffIndex and
UInt values are provided.

unwrapBI Converts a BuffIndex to a UInt

function UInt#(sz) unwrapBI(BuffIndex#(sz,ln) x);

addBIUInt Adds a UInt to a BuffIndex, returning a BuffIndex

function BuffIndex#(sz,ln) addBIUInt(BuffIndex#(sz,ln) bin,
UInt#(sz) i);

sbtrctBIUInt Subtracts a UInt from a BuffIndex, returning a BuffIndex

function BuffIndex#(sz,ln) sbtrctBIUInt(BuffIndex#(sz,ln) bin,
UInt#(sz) i);

Utility functions to convert between a WrapNumber and a UInt, and a function to add a UInt to a
WrapNumber are provided.

wrap Converts a UInt to a WrapNumber

function WrapNumber#(sz) wrap(UInt#(sz) x) ;
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unwrap Converts a WrapNumber to a UInt

function UInt#(sz) unwrap (WrapNumber#(sz) x);

addUInt Adds a UInt to a WrapNumber, returning a WrapNumber

function WrapNumber#(sz) addUInt(WrapNumber#(sz) wn,
UInt#(sz) i) ;

C.6 FSM

C.6.1 StmtFSM

Package

import StmtFSM :: * ;

Description

The StmtFSM package provides a procedural way of defining finite state machines (FSMs) which are
automatically synthesized.

First, one uses the Stmt sublanguage to compose the actions of an FSM using sequential, parallel,
conditional and looping structures. This sublanguage is within the expression syntactic category,
i.e., a term in the sublanguage is an expression whose value is of type Stmt. This value can be bound
to identifiers, passed as arguments and results of functions, held in static data structures, etc., like
any other value. Finally, the FSM can be instantiated into hardware, multiple times if desired, by
passing the Stmt value to the module constructor mkFSM. The resulting module interface has type
FSM, which has methods to start the FSM and to wait until it completes.

The Stmt sublanguage

The state machine is automatically constructed from the procedural description given in the Stmt
definition. Appropriate state counters are created and rules are generated internally, corresponding
to the transition logic of the state machine. The use of rules for the intermediate state machine
generation ensures that resource conflicts are identified and resolved, and that implicit conditions
are properly checked before the execution of any action.

The names of generated rules (which may appear in conflict warnings) have suffixes of the form
“l<nn>c<nn>”, where the <nn> are line or column numbers, referring to the statement which gave
rise to the rule.

A term in the Stmt sublanguage is an expression, introduced at the outermost level by the keywords
seq or par. Note that within the sublanguage, if, while and for statements are interpreted
as statements in the sublanguage and not as ordinary statements, except when enclosed within
action/endaction keywords.

exprPrimary ::= seqFsmStmt | parFsmStmt

fsmStmt ::= exprFsmStmt
| seqFsmStmt
| parFsmStmt
| ifFsmStmt
| whileFsmStmt
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| repeatFsmStmt
| forFsmStmt
| returnFsmStmt

exprFsmStmt ::= regWrite ;
| expression ;

seqFsmStmt ::= seq fsmStmt { fsmStmt } endseq

parFsmStmt ::= par fsmStmt { fsmStmt } endpar

ifFsmStmt ::= if expression fsmStmt
[ else fsmStmt ]

whileFsmStmt ::= while ( expression )
loopBodyFsmStmt

forFsmStmt ::= for ( fsmStmt ; expression ; fsmStmt )
loopBodyFsmStmt

returnFsmStmt ::= return ;

repeatFsmStmt ::= repeat ( expression )
loopBodyFsmStmt

loopBodyFsmStmt ::= fsmStmt
| break ;
| continue ;

The simplest kind of statement is an exprFsmStmt, which can be a register assignment or, more
generally, any expression of type Action (including action method calls and action-endaction
blocks or of type Stmt. Statements of type Action execute within exactly one clock cycle, but of
course the scheduling semantics may affect exactly which clock cycle it executes in. For example, if
the actions in a statement interfere with actions in some other rule, the statement may be delayed
by the schedule until there is no interference. In all the descriptions of statements below, the
descriptions of time taken by a construct are minimum times; they could take longer because of
scheduling semantics.

Statements can be composed into sequential, parallel, conditional and loop forms. In the sequential
form (seq-endseq), the contained statements are executed one after the other. The seq block
terminates when its last contained statement terminates, and the total time (number of clocks) is
equal to the sum of the individual statement times.

In the parallel form (par-endpar), the contained statements (“threads”) are all executed in parallel.
Statements in each thread may or may not be executed simultaneously with statements in other
threads, depending on scheduling conflicts; if they cannot be executed simultaneously they will be
interleaved, in accordance with normal scheduling. The entire par block terminates when the last
of its contained threads terminates, and the minimum total time (number of clocks) is equal to the
maximum of the individual thread times.

In the conditional form (if (b) s1 else s2), the boolean expression b is first evaluated. If true,
s1 is executed, otherwise s2 (if present) is executed. The total time taken is t cycles, if the chosen
branch takes t cycles.

In the while (b) s loop form, the boolean expression b is first evaluated. If true, s is executed, and
the loop is repeated. Each time the condition evaluates true , the loop body is executed, so the total
time is n× t cycles, where n is the number of times the loop is executed (possibly zero) and t is the
time for the loop body statement.

The for (s1;b;s2) sB loop form is equivalent to:

s1; while (b) seq sB; s2 endseq
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i.e., the initializer s1 is executed first. Then, the condition b is executed and, if true, the loop body
sB is executed followed by the “increment” statement s2. The b, sB , s2 sequence is repeated as long
as b evaluates true.

Similarly, the repeat (n) sB loop form is equivalent to:

while (repeat_count < n) seq sB; repeat_count <= repeat_count+ 1 endseq

where the value of repeat count is initialized to 0. During execution, the condition (repeat count <
n) is executed and, if true, the loop body sB is executed followed by the “increment” statement
repeat count <= repeat count+ 1. The sequence is repeated as long as repeat count < n evaluates
true.

In all the loop forms, the loop body statements can contain the keywords continue or break, with
the usual semantics, i.e., continue immediately jumps to the start of the next iteration, whereas
break jumps out of the loop to the loop sequel.

It is important to note that this use of loops, within a Stmt context, expresses time-based (temporal)
behavior.

Interfaces and Methods

Two interfaces are defined with this package, FSM and Once. The FSM interface defines a basic state
machine interface while the Once interface encapsulates the notion of an action that should only be
performed once. A Stmt value can be instatiated into a module that presents an interface of type
FSM.

Interfaces
Name Description
FSM The state machine interface
Once Used when an action should only be performed once

• FSM Interface

The FSM interface provides four methods; start, waitTillDone, done and abort. Once in-
stantiated, the FSM can be started by calling the start method. One can wait for the FSM to
stop running by waiting explicitly on the boolean value returned by the done method. Alter-
natively, one can use the waitTillDone method in any action context (including from within
another FSM), which (because of an implicit condition) cannot execute until this FSM is done.
The user must not use waitTillDone until after the FSM has been started because the FSM
comes out of a reset as done. The abort method immediately exits the execution of the FSM.

interface FSM;
method Action start();
method Action waitTillDone();
method Bool done();
method Action abort();

endinterface: FSM

FSM Interface
Methods

Name Type Description
start Action Begins state machine execution. This can only be called

when the state machine is not executing.
waitTillDone Action Does not do any action, but is only ready when the state

machine is done.
done Bool Asserted when the state machine is done and is ready to

rerun.
abort Action Exits execution of the state machine.
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• Once Interface

The Once interface encapsulates the notion of an action that should only be performed once.
The start method performs the action that has been encapuslated in the Once module. After
start has been called start cannot be called again (an implicit condition will enforce this).
If the clear method is called, the start method can be called once again.

interface Once;
method Action start();
method Action clear();
method Bool done() ;

endinterface: Once

Once Interface
Methods

Name Type Description
start Action Performs the action that has been encapsulated in the

Once module, but once start has been called it cannot
be called again (an implicit condition will enforce this).

clear Action If the clear method is called, the start method can be
called once again.

done Bool Asserted when the state machine is done and is ready to
rerun.

Modules

Instantiation is performed by passing a Stmt value into the module constructor mkFSM. The state
machine is automatically constructed from the procedural decription given in the definition described
by state machine of type Stmt named seq_stmt. During construction, one or more registers of
appropriate widths are created to track state execution. Upon start action, the registers are loaded
and subsequent state changes then decrement the registers.

module mkFSM#( Stmt seq_stmt ) ( FSM );

The mkFSMWithPred module is like mkFSM above, except that the module constructor takes an ad-
ditional boolean argument (the predicate). The predicate condition is added to the condition of
each rule generated to create the FSM. This capability is useful when using the FSM in conjuction
with other rules and/or FSMs. It allows the designer to explicitly specify to the compiler the condi-
tions under which the FSM will run. This can be used to eliminate spurious rule conflict warnings
(between rules in the FSM and other rules in the design).

module mkFSMWithPred#( Stmt seq_stmt, Bool pred ) ( FSM );

The mkAutoFSM module is also like mkFSM above, except the state machine runs automatically im-
mediately after reset and a $finish(0) is called upon completion. This is useful for test benches.
Thus, it has no interface, that is, it has an empty interface.

module mkAutoFSM#( seq_stmt ) ();

The mkOnce function is used to create a Once interface where the action argument has been encap-
sulated and will be performed when start is called.

module mkOnce#( Action a ) ( Once );
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The implementation for Once is a 1 bit state machine (with a state register named onceReady)
allowing the action argument to occur only one time. The ready bit is initially True and then
cleared when the action is performed. It might not be performed right away, because of implicit
conditions or scheduling conflicts.

Name BSV Module Declaration Description
mkFSM

module mkFSM#(Stmt seq_stmt)(FSM);

Instantiate a Stmt value into a mod-
ule that presents an interface of type
FSM.

mkFSMWithPred

module mkFSMWithPred#(Stmt seq_stmt,
Bool pred)(FSM);

Like mkFSM, except that the module
constructor takes an additional pred-
icate condition as an argument. The
predicate condition is added to the
condition of each rule generated to
create the FSM.

mkAutoFSM

module mkAutoFSM#(Stmt seq_stmt)();

Like mkFSM, except that state ma-
chine simulation is automatically
started and a $finish(0)) is called
upon completion.

mkOnce

module mkOnce#( Action a )( Once );

Used to create a Once interface where
the action argument has been encap-
sulated and will be performed when
start is called.

Functions

There are two functions, await and delay, provided by the StmtFSM package.

The await function is used to create an action which can only execute when the condition is True.
The action does not do anything. await is useful to block the execution of an action until a condition
becomes True.

The delay function is used to execute noAction for a specified number of cycles. The function is
provided the value of the delay and returns a Stmt.

Name Function Declaration Description
await

function Action await( Bool cond ) ;

Creates an Action which does nothing,
but can only execute when the condi-
tion is True.

delay

function Stmt delay( a_type value ) ;

Creates a Stmt which executes
noAction for value number of cycles.
a_type must be in the Arith class and
Bits class and < 32 bits.

Example - Initializing a single-ported SRAM.

Since the SRAM has only a single port, we can write to only one location in each clock. Hence, we
need to express a temporal sequence of writes for all the locations to be initialized.

Reg#(int) i <- mkRegU; // instantiate register with interface i
Reg#(int) j <- mkRegU; // instantiate register with interface j
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// Define fsm behavior
Stmt s = seq

for (i <= 0; i < M; i <= i + 1)
for (j <= 0; j < N; j <= j + 1)

sram.write (i, j, i+j);
endseq

FSM fsm(); // instantiate FSM interface
mkFSM#(s) (fsm); // create fsm with interface fsm and behavior s

...

rule initSRAM (start_reset);
fsm.start; // Start the fsm

endrule

When the start_reset signal is true, the rule kicks off the SRAM initialization. Other rules can
wait on fsm.done, if necessary, for the SRAM initialization to be completed.

In this example, the seq-endseq brackets are used to enter the Stmt sublanguage, and then for
represents Stmt sequencing (instead of its usual role of static generation). Since seq-endseq contains
only one statement (the loop nest), par-endpar brackets would have worked just as well.

Example - Defining and instantiating a state machine.

import StmtFSM :: *;
import FIFO :: *;

module testSizedFIFO();

// Instantiation of DUT
FIFO#(Bit#(16)) dut <- mkSizedFIFO(5);

// Instantiation of reg’s i and j
Reg#(Bit#(4)) i <- mkRegA(0);
Reg#(Bit#(4)) j <- mkRegA(0);

// Action description with stmt notation
Stmt driversMonitors =
(seq
// Clear the fifo
dut.clear;

// Two sequential blocks running in parallel
par
// Enque 2 times the Fifo Depth
for(i <= 1; i <= 10; i <= i + 1)
seq
dut.enq({0,i});
$display(" Enque %d", i);

endseq

// Wait until the fifo is full and then deque
seq
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while (i < 5)
seq
noAction;

endseq
while (i <= 10)
action
dut.deq;
$display("Value read %d", dut.first);

endaction
endseq

endpar

$finish(0);
endseq);

// stmt instantiation
FSM test <- mkFSM(driversMonitors);

// A register to control the start rule
Reg#(Bool) going <- mkReg(False);

// This rule kicks off the test FSM, which then runs to completion.
rule start (!going);

going <= True;
test.start;

endrule
endmodule

Example - Defining and instantiating a state machine to control speed changes

import StmtFSM::*;
import Common::*;

interface SC_FSM_ifc;
method Speed xcvrspeed;
method Bool devices_ready;
method Bool out_of_reset;

endinterface

module mkSpeedChangeFSM(Speed new_speed, SC_FSM_ifc ifc);
Speed initial_speed = FS;

Reg#(Bool) outofReset_reg <- mkReg(False);
Reg#(Bool) devices_ready_reg <- mkReg(False);
Reg#(Speed) device_xcvr_speed_reg <- mkReg(initial_speed);

// the following lines define the FSM using the Stmt sublanguage
// the state machine is of type Stmt, with the name speed_change_stmt
Stmt speed_change_stmt =
(seq

action outofReset_reg <= False; devices_ready_reg <= False; endaction
noAction; noAction; // same as: delay(2);

device_xcvr_speed_reg <= new_speed;
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noAction; noAction; // same as: delay(2);

outofReset_reg <= True;
if (device_xcvr_speed_reg==HS)

seq noAction; noAction; endseq
// or seq delay(2); endseq

else
seq noAction; noAction; noAction; noAction; noAction; noAction; endseq
// or seq delay(6); endseq

devices_ready_reg <= True;
endseq);
// end of the state machine definition

// the statemachine is instantiated using mkFSM
FSM speed_change_fsm <- mkFSM(speed_change_stmt);

// the rule change_speed starts the state machine
// the rule checks that previous actions of the state machine have completed
rule change_speed ((device_xcvr_speed_reg != new_speed || !outofReset_reg) &&

speed_change_fsm.done);
speed_change_fsm.start;

endrule

method xcvrspeed = device_xcvr_speed_reg;
method devices_ready = devices_ready_reg;
method out_of_reset = outofReset_reg;

endmodule

Example - Defining a state machine and using the await function

// This statement defines this brick’s desired behavior as a state machine:
// the subcomponents are to be executed one after the other:
Stmt brickAprog =
seq

// Since the following loop will be executed over many clock
// cycles, its control variable must be kept in a register:
for (i <= 0; i < 0-1; i <= i+1)

// This sequence requests a RAM read, changing the state;
// then it receives the response and resets the state.
seq

action
// This action can only occur if the state is Idle
// the await function will not let the statements
// execute until the condition is met
await(ramState==Idle);
ramState <= DesignReading;
ram.request.put(tagged Read i);

endaction
action

let rs <- ram.response.get();
ramState <= Idle;
obufin.put(truncate(rs));

endaction
endseq
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// Wait a little while:
for (i <= 0; i < 200; i <= i+1)

action
endaction

// Set an interrupt:
action

inrpt.set;
endaction

endseq
);

// end of the state machine definition

FSM brickAfsm <- mkFSM#(brickAprog); //instantiate the state machine

// A register to remember whether the FSM has been started:
Reg#(Bool) notStarted();
mkReg#(True) the_notStarted(notStarted);

// The rule which starts the FSM, provided it hasn’t been started
// previously and the brick is enabled:
rule start_Afsm (notStarted && enabled);

brickAfsm.start; //start the state machine
notStarted <= False;

endrule

Creating FSM Server Modules

Instantiation of an FSM server module is performed in a manner analogous to that of a standard FSM
module constructor (such as mkFSM). Whereas mkFSM takes a Stmt value as an argument, howver,
mkFSMServer takes a function as an argument. More specifically, the argument to mkFSMServer is a
function which takes an argument of type a and returns a value of type RStmt#(b).

module mkFSMServer#(function RStmt#(b) seq_func (a input)) ( FSMServer#(a, b) );

The RStmt type is a polymorphic generalization of the Stmt type. A sequence of type RStmt#(a)
allows valued return statements (where the return value is of type a). Note that the Stmt type is
equivalent to RStmt#(Bit#(0)).

typedef RStmt#(Bit#(0)) Stmt;

The mkFSMServer module constructor provides an interface of type FSMServer#(a, b).

interface FSMServer#(type a, type b);
interface Server#(a, b) server;
method Action abort();

endinterface

The FSMServer interface has one subinterface of type Server#(a, b) (from the ClientServer
package) as well as an Action method called abort; The abort method allows the FSM inside the
FSMServer module to be halted if the client FSM is halted.

An FSMServer module is accessed using the callServer function from within an FSM statement
block. callServer takes two arguments. The first is the interface of the FSMServer module. The
second is the input value being passed to the module.
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result <- callServer(serv_ifc, value);

Note the special left arrow notation that is used to pass the server result to a register (or more
generally to any state element with a Reg interface). A simple example follows showing the definition
and use of a mkFSMServer module.

Example - Defining and instantiating an FSM Server Module

// State elements to provide inputs and store results
Reg#(Bit#(8)) count <- mkReg(0);
Reg#(Bit#(16)) partial <- mkReg(0);
Reg#(Bit#(16)) result <- mkReg(0);

// A function which creates a server sequence to scale a Bit#(8)
// input value by and integer scale factor. The scaling is accomplished
// by a sequence of adds.
function RStmt#(Bit#(16)) scaleSeq (Integer scale, Bit#(8) value);

seq
partial <= 0;
repeat (fromInteger(scale))

action
partial <= partial + {0,value};

endaction
return partial;

endseq;
endfunction

// Instantiate a server module to scale the input value by 3
FSMServer#(Bit#(8), Bit#(16)) scale3_serv <- mkFSMServer(scaleSeq(3));

// A test sequence to apply the server
let test_seq = seq

result <- callServer(scale3_serv, count);
count <= count + 1;

endseq;

let test_fsm <- mkFSM(test_seq);

// A rule to start test_fsm
rule start;

test_fsm.start;
endrule
// finish after 6 input values
rule done (count == 6);

$finish;
endrule

C.7 Connectivity

The packages in this section provide useful components, primarily interfaces, to connect hardware
elements in a design.

The basic interfaces, Get and Put are defined in the package GetPut. The typeclass Connectable
indicates that two related types can be connected together. The package ClientServer provides

296



Bluespec SystemVerilog Reference Guide

interfaces using Get and Put for modules that have a request-response type of interface. The package
CGetPut defines a type of the Get and Put interfaces that is implemented with a credit based FIFO.

C.7.1 GetPut

Package

import GetPut :: *;

Description

Get and Put are simple interfaces, consisting of one method each, get and put, respectively. This
package provides the interfaces Get, Put, and GetPut. This package also provides modules which
provide the GetPut interface as a FIFO implementation, but these interfaces can be used in many
additional hardware implementations.

Typeclasses

The GetPut package defines two typeclasses; ToGet and ToPut.

ToGet defines the class to which the function toGet can be applied to create an associated Get
interface.

typeclass ToGet#(a, b);
function Get#(b) toGet(a ax);

endtypeclass

ToPut defines the class to which the function toPut can be applied to create an associated Put
interface.

typeclass ToPut#(a, b);
function Put#(b) toPut(a ax);

endtypeclass

Defined Instances for ToGet and ToPut
Type (Interface) toGet toPut Comments

a D toGet returns value a

ActionValue#(a) D toGet performs the Action and returns the value
function Action fn(a) D toPut calls Action function fn with argument a
Get#(a) D identity function: returns Get#(a)

Put#(a) D identity function: returns Put#(a)

Reg#(a) D D toGet returns _read, toPut calls _write

RWire#(a) D D toGet returns wget, toPut calls wset

ReadOnly#(a) D toGet returns _read

FIFO#(a) D D toGet calls deq returns first, toPut calls enq

FIFOF#(a) D D toGet calls deq returns first, toPut calls enq

SyncFIFOIfc#(a) D D toGet calls deq returns first, toPut calls enq

FIFOLevelIfc#(a) D D toGet calls deq returns first, toPut calls enq

SyncFIFOLevelIfc#(a) D D toGet calls deq returns first, toPut calls enq

FIFOCountIfc#(a) D D toGet calls deq returns first, toPut calls enq

SyncFIFOCountIfc#(a) D D toGet calls deq returns first, toPut calls enq
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Interfaces and methods

The Get interface defines a get method, similar to a dequeue, which retrieves an item from an
interface and removes it at the same time. The Put interface defines a put method, similar to an
enqueue, which gives an item to an interface. A module providing these interfaces can be designed
to have implicit conditions on the get/put to ensure that the get/put is not performed when the
module is not ready. This would ensure that a rule containing get method would not fire if the
element associated with it is empty and that a rule containing put method would not fire if the
element is full.

Interfaces
Interface Name Parameter

name
Parameter Description Restrictions

Get element type type of the element must be in Bits class
being retrieved by the Get

Put element type type of the element must be in Bits class
being added by the Put

GetPut element type type of the element must be in Bits class
being retrieved and added

Get

The Get interface is where you retrieve (get) data from an object. The Get interface is provides
a single method, get, which retrieves an item of data from an interface and removes it from the
object. A get is similar to a dequeue, but it can be associated with any interface. A Get interface
is more abstract than a FIFO interface; it does not describe the underlying hardware.

Get
Method Argument

Name Type Description Name Description
get ActionValue returns an item from an

interface and removes it
from the object

interface Get#(type element_type);
method ActionValue#(element_type) get();

endinterface: Get

Example - adding your own Get interface:
module mkMyFifoUpstream (Get#(int));
...

method ActionValue#(int) get();
f.deq;
return f.first;

endmethod

Put

The Put interface is where you can give (put) data to an object. The Put interface provides a single
method, put, which gives an item to an interface. A put is similar to a enqueue, but it can be
associated with any interface. A Put interface is more abstract than a FIFO interface; it does not
describe the underlying hardware.

Put
Method Argument

Name Type Description Name Description
put Action gives an item to an interface x1 data to be added to the object

must be of type element_type
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interface Put#(type element_type);
method Action put(element_type x1);

endinterface: Put

Example - adding your own Put interface:
module mkMyFifoDownstream (Put#(int));
...

method Action put(int x);
F.enq(x);

endmethod

GetPut

The library also defines an interface GetPut which associates Get and Put interfaces into a Tuple2.
typedef Tuple2#(Get#(element_type), Put#(element_type)) GetPut#(type element_type);

Type classes

The class Connectable (Section C.7.2) is meant to indicate that two related types can be connected
in some way. It does not specify the nature of the connection.

A Get and Put is an example of connectable items. One object will put an element into the interface
and the other object will get the element from the interface.
instance Connectable#(Get#(element_type), Put#(element_type));

Modules

There are three modules provided by the GetPut package which provide the GetPut interface with
a type of FIFO. These FIFOs use Get and Put interfaces instead of the usual enq interfaces. To use
any of these modules the FIFO package must be imported. You can also write your own modules
providing a GetPut interface for other hardware structures.

mkGPFIFO Creates a FIFO of depth 2 with a GetPut interface.

module mkGPFIFO (GetPut#(element_type))
provisos (Bits#(element_type, width_elem));

mkGPFIFO1 Creates a FIFO of depth 1 with a GetPut interface.

module mkGPFIFO1 (GetPut#(element_type))
provisos (Bits#(element_type, width_elem));

mkGPSizedFIFO Creates a FIFO of depth n with a GetPut interface.

module mkGPSizedFIFO# (Integer n) (GetPut#(element_type))
provisos (Bits#(element_type, width_elem));
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Functions

There are two functions defined in the GetPut package that change a FIFO interface to a Get or
Put interface. Given a FIFO we can use the function fifoToGet to obtain a Get interface, which
is a combination of deq and first. Given a FIFO we can use the function fifoToPut to obtain a
Put interface using enq. The functions toGet and toPut (C.7.1) are recommended instead of the
fifoToGet and fifoToPut functions.

fifoToGet Returns a Get interface. It is recommended that you use the function toGet
(C.7.1) instead of this function.

function Get#(element_type) fifoToGet(FIFO#(element_type) f);

fifoToPut Returns a Put interface. It is recommended that you use the function toPut
(C.7.1) instead of this function.

function Put#(element_type) fifoToPut(FIFO#(element_type) f);

Example of creating a FIFO with a GetPut interface

import GetPut::*;
import FIFO::*;

...
module mkMyModule (MyInterface);

GetPut#(StatusInfo) aFifoOfStatusInfoStructures <- mkGPFIFO;
...
endmodule: mkMyModule

Example of a protocol monitor

This is an example of how you might write a protocol monitor that watches bus traffic between a
bus and a bus target device

import GetPut::*;
import FIFO::*;

// Watch bus traffic beteween a bus and a bus target
interface ProtocolMonitorIfc;

// These subinterfaces are defined inside the module
interface Put#(Bus_to_Target_Request) bus_to_targ_req_ifc;
interface Put#(Target_to_Bus_Response) targ_to_bus_resp_ifc;

endinterface
...
module mkProtocolMonitor (ProtocolMonitorIfc);

// Input FIFOs that have Put interfaces added a few lines down
FIFO#(Bus_to_Target_Request) bus_to_targ_reqs <- mkFIFO;
FIFO#(Target_To_Bus_Response) targ_to_bus_resps <- mkFIFO;

...
// Define the subinterfaces: attach Put interfaces to the FIFOs, and
// then make those the module interfaces
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interface bus_to_targ_req_ifc = fifoToPut (bus_to_targ_reqs);
interface targ_to_bus_resp_ifc = fifoToPut (targ_to_bus_resps);

end module: mkProtocolMonitor

// Top-level module: connect mkProtocolMonitor to the system:
module mkSys (Empty);

ProtocolMonitorIfc pmon <- mkProtocolInterface;
...

rule pass_bus_req_to_interface;
let x <- bus.bus_ifc.get; // definition not shown
pmon.but_to_targ_ifc.put (x);

endrule
...
endmodule: mkSys

C.7.2 Connectable

Package

import Connectable :: * ;

Description

The Connectable package contains the definitions for the class Connectable and instances of
Connectables.

Types and Type-Classes

The class Connectable is meant to indicate that two related types can be connected in some way.
It does not specify the nature of the connection. The Connectables type class defines the module
mkConnection, which is used to connect the pairs.

typeclass Connectable#(type a, type b);
module mkConnection#(a x1, b x2)(Empty);

endtypeclass

Instances

Get and Put One instance of the typeclass of Connectable is Get and Put. One object will put
an element into an interface and the other object will get the element from the interface.

instance Connectable#(Get#(a), Put#(a));

Tuples If we have Tuple2 of connectable items then the pair is also connectable, simply by con-
necting the individual items.
instance Connectable#(Tuple2#(a, c), Tuple2#(b, d))
provisos (Connectable#(a, b), Connectable#(c, d));

The proviso shows that the first component of one tuple connects to the first component of the other
tuple, likewise, the second components connect as well. In the above statement, a connects to b and
c connects to d. This is used by ClientServer (Section C.7.3) to connect the Get of the Client to
the Put of the Server and visa-versa.

This is extensible to all Tuples (Tuple3, Tuple4, etc.). As long as the items are connectable, the
Tuples are connectable.
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Vector Two Vectors are connectable if their elements are connectable.
instance Connectable#(Vector#(n, a), Vector#(n, b))
provisos (Connectable#(a, b));

ListN Two ListNs are connectable if their elements are connectable.
instance Connectable#(ListN#(n, a), ListN#(n, b))
provisos (Connectable#(a, b));

Action, ActionValue An ActionValue method (or function) which produces a value can be
connected to an Action method (or function) which takes that value as an argument.

instance Connectable#(ActionValue#(a), function Action f(a x));

instance Connectable#(function Action f(a x), ActionValue#(a));

A Value method (or value) can be connected to an Action method (or function) which takes that
value as an argument.

instance Connectable#(a, function Action f(a x));

instance Connectable#(function Action f(a x), a);

Inout Inouts are connectable via the Connectable typeclass. The use of mkConnection instanti-
ates a Verilog module InoutConnect. The Inouts must be on the same clock and the same reset.
The clock and reset of the Inouts may be different than the clock and reset of the parent module of
the mkConnection.
instance Connectable#(Inout#(a, x1), Inout#(a, x2))

provisos (Bit#(a,sa));

C.7.3 ClientServer

Package

import ClientServer :: * ;

Description

The ClientServer package provides two interfaces, Client and Server which can be used to define
modules which have a request-response type of interface. The GetPut package must be imported
when using this package because the Get and Put interface types are used.

Interfaces and methods

The interfaces Client and Server can be used for modules that have a request-response type of
interface (e.g. a RAM). The server accepts requests and generates responses, the client accepts
responces and generates requests. There are no assumptions about how many (if any) responses a
request generates

Interfaces
Interface Name Parameter name Parameter Description Restrictions
Client req type type of the client request must be in the Bits class

resp type type of the client response must be in the Bits class
Server req type type of the server request must be in the Bits class

resp type type of the server response must be in the Bits class
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Client

The Client interface provides two sub-interfaces, request and response. From a Client, one gets
a request and puts a response.

Client SubInterface
Name Type Description
request Get#(req_type) the interface through which the outside world

retrieves (gets) a request
response Put#(resp_type) the interface through which the outside world

returns (puts) a response

interface Client#(type req_type, type resp_type);
interface Get#(req_type) request;
interface Put#(resp_type) response;

endinterface: Client

Server

The Server interface provides two sub-interfaces, request and response. From a Server, one puts
a request and gets a response.

Server SubInterface
Name Type Description
request Put#(req_type) the interface through which the outside world

returns (puts) a request
response Get#(resp_type) the interface through which the outside world

retrieves (gets) a response

interface Server#(type req_type, type resp_type);
interface Put#(req_type) request;
interface Get#(resp_type) response;

endinterface: Server

ClientServer

A Client can be connected to a Server and vice versa. The request (which is a Get interface)
of the client will connect to response (which is a Put interface) of the Server. By making the
ClientServer tuple an instance of the Connectable typeclass, you can connect the Get of the client
to the Put of the server, and the Put of the client to the Get of the server.

instance Connectable#(Client#(req_type, resp_type), Server#(req_type, resp_type));
instance Connectable#(Server#(req_type, resp_type), Client#(req_type, resp_type));

This Tuple2 can be redefined to be called ClientServer

typedef Tuple2#(Client#(req_type, resp_type), Server#(req_type,resp_type))
ClientServer#(type req_type, type resp_type);

Example Connecting a bus to a target

interface Bus_Ifc;
interface Server#(RQ, RS) to_initor ;
interface Client#(RQ, RS) to_targ;
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endinterface

typedef Server#(RQ, RS) Target_Ifc;
typedef Client#(RQ, RS) Initiator_Ifc;

module mkSys (Empty);
// Instantiate subsystems
Bus_Ifc bus <- mkBus;
Target_Ifc targ <- mkTarget;
Initiator_Ifc initor <- mkInitiator;

// Connect bus and targ (to_targ is a Client ifc, targ is a Server ifc)
Empty x <- mkConnection (bus.to_targ, targ);

// Connect bus and initiator (to_initor is a Server ifc, initor is a Client ifc)
mkConnection (bus.to_initor, initor);
// Since mkConnection returns an interface of type Empty, it does
// not need to be specified (but may be as above)

...
endmodule: mkSys

C.7.4 CGetPut

Package

import CGetPut :: * ;

Description

The interfaces CGet and CPut are similar to Get and Put, but the interconnection of them (via
Connectable) is implemented with a credit-based FIFO. This means that the CGet and CPut inter-
faces have completely registered input and outputs, and furthermore that additional register buffers
can be introduced in the connection path without any ill effect (except an increase in latency, of
course).

In the absence of additional register buffers, the round-trip time for communication between the two
interfaces is 4 clock cycles. Call this number r. The first argument to the type, n, specifies that
transfers will occur for a fraction n/r of clock cycles (note that the used cycles will not necessarily be
evenly spaced). n also specifies the depth of the buffer used in the receiving interface (the transmitter
side always has only a single buffer). So (in the absence of additional buffers) use n = 4 to allow
full-bandwidth transmission, at the cost of sufficient registers for quadruple buffering at one end;
use n = 1 for minimal use of registers, at the cost of reducing the bandwidth to one quarter; use
intermediate values to select the optimal trade-off if appropriate.

Interfaces and methods

The interface types are abstract to avoid any improper use of the credit signaling protocol.
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Interfaces
Interface Name Parameter

name
Parameter Description Restrictions

CGet n depth of the buffer used in the re-
ceiving interface

must be a numeric
type

element type type of the element must be in Bits class
being retrieved by the CGet

CPut n depth of the buffer used in the re-
ceiving interface

must be a numeric
type

element type type of the element must be in Bits class
being added by the CPut

• CGet

interface CGet#(numeric type n, type element_type);
...Abstract...

• CPut

interface CPut#(numeric type n, type element_type);
...Abstract...

• Connectables

The CGet and CPut interfaces are connectable.
instance Connectable#(CGet#(n, element_type), CPut#(n, element_type));

instance Connectable#(CPut#(n, element_type), CGet#(n, element_type));

• CClient and CServer

The same idea may be extended to clients and servers.

interface CClient#(type n, type req_type, type resp_type);
interface CServer#(type n, type req_type, type resp_type);

Modules

mkCGetPut Create an n depth FIFO with a CGet interface on the dequeue side and a
Put interface on the enqueue side.

module mkCGetPut(Tuple2#(CGet#(n, element_type),
Put#(element_type)))

provisos (Bits#(element_type));

mkGetCPut Create an n depth FIFO with a Get interface on the dequeue side and a
CPut interface on the enqueue side.

module mkGetCPut(Tuple2#(Get#(element_type),
CPut#(n, element_type)))

provisos (Bits#(element_type));
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mkClientCServer Create a CServer with a mkCGetPut and a mkGetCPut. Provides a CServer
interface and a regular Client interface.

module mkClientCServer(
Tuple2#(Client#(req_type, resp_type),

CServer#(n, req_type, resp_type)))
provisos (Bits#(req_type),

Bits#(resp_type));

mkCClientServer Create a CClient with a mkCGetPut and a mkGetCPut. Provides a CClient
interface and a regular Server interface.

module mkCClientServer(
Tuple2#(CClient#(n, req_type, resp_type),

Server#(req_type, resp_type)))
provisos (Bits#(req_type),

Bits#(resp_type));

C.8 Utilities

C.8.1 LFSR

Package

import LFSR :: * ;

Description

The LFSR package implements Linear Feedback Shift Registers (LFSRs). LFSRs can be used to
obtain reasonable pseudo-random numbers for many purposes (though not good enough for cryp-
tography). The seed method must be called first, to prime the algorithm. Then values may be
read using the value method, and the algorithm stepped on to the next value by the next method.
When a LFSR is created the start value, or seed, is 1.

Interfaces and Methods

The LFSR package provides an interface, LFSR, which contains three methods; seed, value, and
next. To prime the LFSR the seed method is called with the parameter seed_value, of datatype
a_type. The value is read with the value method. The next method is used to shift the register
on to the next value.

LFSR Interface
Method Arguments

Name Type Description Name Description
seed Action Sets the value of the shift register. a_type datatype of the

seed value
seed_value the initial value

value a_type returns the value of the shift register
next Action signals the shift register to shift to

the next value.
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interface LFSR #(type a_type);
method Action seed(a_type seed_value);
method a_type value();
method Action next();

endinterface: LFSR

Modules

The module mkFeedLFSR creates a LFSR where the polynomial is specified by the mask used for
feedback.

mkFeedLFSR Creates a LFSR where the polynomial is specified by the mask (feed) used
for feedback.

module mkFeedLFSR#( Bit#(n) feed )( LFSR#(Bit#(n)) );

For example, the polynominal x7+x3+x2+x+1 is defined by the expression mkFeedLFSR#(8’b1000_1111)

Using the module mkFeedLFSR, the following maximal length LFSR’s are defined in this package.

Module Name feed Module Definition

mkLFSR_4 4’h9 module mkLFSR_4 (LFSR#(Bit#(4)));
x3 + 1

mkLFSR_8 8’h8E module mkLFSR_8 (LFSR#(Bit#(8)));

mkLFSR_16 16’h8016 module mkLFSR_16 (LFSR#(Bit#(16)));

mkLFSR_32 32’h80000057 module mkLFSR_32 (LFSR#(Bit#(32)));

For example,

mkLFSR_4 = mkFeedLFSR( 4’h9 );

The module mkLFSR_4 instantiates the interface LFSR with the value Bit#(4) to produce a 4 bit
shift register. The module uses the polynomial defined by the mask 4’h9 (x3 + 1) and the module
mkFeedLFSR.

The mkRCounter function creates a counter with a LFSR interface. This is useful during debugging
when a non-random sequence is desired. This function can be used in place of the other mkLFSR
module constructors, without changing any method calls or behavior.

mkRCounter Creates a counter with a LFSR interface.

module mkRCounter#( Bit#(n) seed ) ( LFSR#(Bit#(n)) );

Example - Random Number Generator
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import GetPut::*;
import FIFO::*;
import LFSR::*;

// We want 6-bit random numbers, so we will use the 16-bit version of
// LFSR and take the most significant six bits.

// The interface for the random number generator is parameterized on bit
// length. It is a "get" interface, defined in the GetPut package.

typedef Get#(Bit#(n)) RandI#(type n);

module mkRn_6(RandI#(6));
// First we instantiate the LFSR module
LFSR#(Bit#(16)) lfsr <- mkLFSR_16 ;

// Next comes a FIFO for storing the results until needed
FIFO#(Bit#(6)) fi <- mkFIFO ;

// A boolean flag for ensuring that we first seed the LFSR module
Reg#(Bool) starting <- mkReg(True) ;

// This rule fires first, and sends a suitable seed to the module.
rule start (starting);

starting <= False;
lfsr.seed(’h11);

endrule: start

// After that, the following rule runs as often as it can, retrieving
// results from the LFSR module and enqueing them on the FIFO.
rule run (!starting);

fi.enq(lfsr.value[10:5]);
lfsr.next;

endrule: run

// The interface for mkRn_6 is a Get interface. We can produce this from a
// FIFO using the fifoToGet function. We therefore don’t need to define any
// new methods explicitly in this module: we can simply return the produced
// Get interface as the "result" of this module instantiation.
return fifoToGet(fi);

endmodule

C.8.2 Randomizable

Package

import Randomizable :: * ;

Description

The Randomizable package includes interfaces and modules to generate random values of a given
data type.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
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To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Typeclasses

The Randomizable package includes the Randomizable typeclass.

typeclass Randomizable#(type t);
module mkRandomizer (Randomize#(t));

endtypeclass

Interfaces and Methods

Randomize Interface
Name Type Description
cntrl Interface Control interface provided by the module.
next ActionValue Returns the next value of type a.

interface Randomize#(type a);
interface Control cntrl;
method ActionValue#(a) next();

endinterface

Control Interface
Name Type Description
init Control Action method to initialize the randomizer.

interface Control ;
method Action init();

endinterface

Modules

The Randomizable package includes two modules which return random values of type a. The
difference between the two modules is how the min and max values are determined. The module
mkGenericRandomizer uses the min and max values of the type, while the module mkConstrainedRandomizer
uses arguments to set the min and max values. The type a must be in the Bounded class for both
modules.

mkGenericRandomizer This module provides a Randomize interface, which will return the next ran-
dom value when the next method is invoked. The min and max values are
the values defined by the type a which must be in the Bounded class.

module mkGenericRandomizer (Randomize#(a))
provisos (Bits#(a, sa), Bounded#(a));
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mkConstrainedRandomizer This module provides a Randomize interface, which will give the next random
value when the next method is invoked. When instantiated, the min and max
values are provided as arguments. Type a must be in the Bounded class.

module mkConstrainedRandomizer#(a min, a max) (Randomize#(a))
provisos (Bits#(a, sa), Bounded#(a));

Example

The mkTLMRandomizer module, defined within the TLM2 package (Section C.11.1), uses the Random-
ize package to generate random values for TLM packets. The mkConstrainedRandomizer module is
for fields with specific allowed values or ranges, while the mkGenericRandomizer module is for field
where all values of the type are allowed.

module mkTLMRandomizer#(Maybe#(TLMCommand) m_command) (Randomize#(TLMRequest#(‘TLM_TYPES)))
provisos(Bits#(RequestDescriptor#(‘TLM_TYPES), s0),
Bounded#(RequestDescriptor#(‘TLM_TYPES)),
Bits#(RequestData#(‘TLM_TYPES), s1),
Bounded#(RequestData#(‘TLM_TYPES))
);

...
// Use mkGeneric Randomizer - entire range valid
Randomize#(RequestDescriptor#(‘TLM_TYPES)) descriptor_gen <- mkGenericRandomizer;
Randomize#(Bit#(2)) log_wrap_gen <- mkGenericRandomizer;
Randomize#(RequestData#(‘TLM_TYPES)) data_gen <- mkGenericRandomizer;

// Use mkConstrainedRandomizer to Avoid UNKNOWN
Randomize#(TLMCommand) command_gen <- mkConstrainedRandomizer(READ, WRITE);
Randomize#(TLMBurstMode) burst_mode_gen <- mkConstrainedRandomizer(INCREMENT, WRAP);

// Use mkConstrainedRandomizer to set legal sizes between 1 and 16
Randomize#(TLMUInt#(‘TLM_TYPES)) burst_length_gen <- mkConstrainedRandomizer(1,16);

C.8.3 Arbiter

Package

import Arbiter :: * ;

Description

The Arbiter package includes interfaces and modules to implement two different arbiters: a fair
arbiter with changing priorities (round robin) and a sticky arbiter, also round robin, but which gives
the current owner priority.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.
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Interfaces and Methods

The Arbiter package includes three interfaces: a arbiter client interface, an arbiter request interface
and an arbiter interface which is a vector of client interfaces.

ArbiterClient IFC The ArbiterClient_IFC interface has two methods: an Action method to
make the request and a Boolean value method to indicate the request was granted. The lock method
is unused in this implementation.

interface ArbiterClient_IFC;
method Action request();
method Action lock();
method Bool grant();

endinterface

ArbiterRequest IFC The ArbiterRequest_IFC interface has two methods: an Action method
to grant the request and a Boolean value method to indicate there is a request. The lock method is
unused in this implementation.

interface ArbiterRequest_IFC;
method Bool request();
method Bool lock();
method Action grant();

endinterface

The ArbiterClient_IFC interface and the ArbiterRequest_IFC interface are connectable.

instance Connectable#(ArbiterClient_IFC, ArbiterRequest_IFC);

Arbiter IFC The Arbiter_IFC has a subinterface which is a vector of ArbiterClient_IFC in-
terfaces. The number of items in the vector equals the number of clients.

interface Arbiter_IFC#(type count);
interface Vector#(count, ArbiterClient_IFC) clients;

endinterface

Modules

The mkArbiter module is a fair arbiter with changing priorities (round robin). The mkStickyArbiter
gives the current owner priority - they can hold priority as long as they keep requesting it. The
modules all provide a Arbiter_IFC interface.

mkArbiter This module is a fair arbiter with changing priorities (round robin). If fixed is
True, the current client holds the priority, if fixed is False, it moves to the next
client. mkArbiter provides a Arbiter_IFC interface. Initial priority is given to
client 0.

module mkArbiter#(Bool fixed) (Arbiter_IFC#(count));
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mkStickyArbiter As long as the client currently with the grant continues to assert request, it can
hold the grant. It provides a Arbiter_IFC interface.

module mkStickyArbiter (Arbiter_IFC#(count));

C.8.4 GrayCounter

Package

import GrayCounter :: * ;

Description

The GrayCounter package provides an interface and a module to implement a gray-coded counter
with methods for both binary and Gray code. This package is designed for use in the BRAMFIFO
module, Section C.2.6. Since BRAMs have registered address inputs, the binary outputs are not
registered. The counter has two domains, source and destination. Binary and Gray code values are
written in the source domain. Both types of values can be read from the source and the destination
domains.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Types

The GrayCounter package uses the type Gray, defined in the Gray package, Section C.8.5. The Gray
package is imported by the GrayCounter package.

Interfaces and Methods

The GrayCounter package includes one interface, GrayCounter.

GrayCounter Interface Methods
Name Type Description
incr Action Increments the counter by 1
decr Action Decrements the counter by 1
sWriteBin Action Writes a binary value into the counter in the source

domain.
sReadBin Bit#(n) Returns a binary value from the source domain of

the counter. The output is not registered
sWriteGray Action Writes a Gray code value into the counter in the

source domain.
sReadGray Gray#(n) Returns the Gray code value from the source do-

main of the counter. The output is registered.
dReadBin Bit#(n) Returns the binary value from the destination do-

main of the counter. The output is not registered.
dReadGray Gray#(n) Returns the Gray code value from the destination

domain of the counter. The output is registered.
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interface GrayCounter#(numeric type n);
method Action incr;
method Action decr;
method Action sWriteBin(Bit#(n) value);
method Bit#(n) sReadBin;
method Action sWriteGray(Gray#(n) value);
method Gray#(n) sReadGray;
method Bit#(n) dReadBin;
method Gray#(n) dReadGray;

endinterface: GrayCounter

Modules

The module mkGrayCounter instantiates a Gray code counter with methods for both binary and
Gray code.

mkGrayCounter Instantiates a Gray counter with an initial value initval.

module mkGrayCounter#(Gray#(n) initval,
Clock dClk, Reset dRstN)
(GrayCounter#(n))

provisos(Add#(1, msb, n));

C.8.5 Gray

Package

import Gray :: * ;

Description

The Gray package defines a datatype, Gray and functions for working with the Gray type. This type
is used by the GrayCounter package.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Types and type classes

The datatype Gray is a representation for Gray code values. The basic representation is the Gray
structure, which is polymorphic on the size of the value.

typedef struct {
Bit#(n) code;
} Gray#(numeric type n) deriving (Bits, Eq);

The Gray type belongs to the Literal and Bounded type classes. Each type class definition includes
functions which are then also defined for the data type. The Prelude library definitions (Section B)
describes which functions are defined for each type class.

Type Classes used by Gray

Bits Eq Literal Arith Ord Bounded Bit Bit Bit
wise Reduction Extend

Gray
√ √ √ √
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Literal The Gray type is a member of the Literal class, which defines an encoding from the
compile-time Integer type to Gray type with the fromInteger and grayEncode functions. The
fromInteger converts the value to a bit pattern, and then calls grayEncode.
instance Literal #( Gray#(n) )

provisos(Add#(1, msb, n));

Bounded The Gray type is a member of the Bounded class, which provides the functions minBound
and maxBound to define the minimum and maximum Gray code values.

• minimum: ’b0

• maximum: ’b10...0

instance Bounded # ( Gray#(n) )
provisos(Add#(1, msb, n));

Functions

grayEncode This function takes a binary value of type Bit#(n) and returns a Gray
type with the Gray code value.

function Gray#(n) grayEncode(Bit#(n) value)
provisos(Add#(1, msb, n));

grayDecode This function takes a Gray code value of size n and returns the binary
value.

function Bit#(n) grayDecode(Gray#(n) value)
provisos(Add#(1, msb, n));

grayIncrDecr This functions takes a Gray code value and a Boolean, decrement. If
decrement is True, the value returned is one less than the input value.
If decrement is False, the value returned is one greater.

function Gray#(n) grayIncrDecr(Bool decrement,
Gray#(n) value)

provisos(Add#(1, msb, n));

grayIncr Takes a Gray code value and returns a Gray code value incremented
by 1.

function Gray#(n) grayIncr(Gray#(n) value)
provisos(Add#(1, msb, n));

grayDecr Takes a Gray code value a returns a Gray code value decremented by
1.

function Gray#(n) grayDecr(Gray#(n) value)
provisos(Add#(1, msb, n));
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C.8.6 CompletionBuffer

Package

import CompletionBuffer :: * ;

Description

A CompletionBuffer is like a FIFO except that the order of the elements in the buffer is independent
of the order in which the elements are entered. Each element obtains a token, which reserves a slot
in the buffer. Once the element is ready to be entered into the buffer, the token is used to place the
element in the correct position. When removing elements from the buffer, the elements are delivered
in the order specified by the tokens, not in the order that the elements were written.

Completion Buffers are useful when multiple tasks are running, which may complete at different
times, in any order. By using a completion buffer, the order in which the elements are placed in the
buffer can be controlled, independent of the order in which the data becomes available.

Interface and Methods

The CompletionBuffer interface provides three subinterfaces. The reserve interface, a Get, allows
the caller to reserve a slot in the buffer by returning a token holding the identity of the slot. When
data is ready to be placed in the buffer, it is added to the buffer using the complete interface of type
Put. This interface takes a pair of values as its argument - the token identifying its slot, and the
data itself. Finally, using the drain interface, of type Get, data may be retrieved from the buffer in
the order in which the tokens were originally allocated. Thus the results of quick tasks might have
to wait in the buffer while a lengthy task ahead of them completes.

The type of the elements to be stored is element_type. The type of the required size of the buffer
is a numeric type n, which is also the type argument for the type for the tokens issued, CBToken.
This allows the type-checking phase of the synthesis to ensure that the tokens are the appropriate
size for the buffer, and that all the buffer’s internal registers are of the correct sizes as well.

CompletionBuffer Interface
Name Type Description

reserve Get Used to reserve a slot in the buffer. Returns a token, CBToken #(n),
identifying the slot in the buffer.

complete Put Enters the element into the buffer. Takes as arguments the slot in the
buffer, CBToken#(n), and the element to be stored in the buffer.

drain Get Removes an element from the buffer. The elements are returned in the
order the tokens were allocated.

interface CompletionBuffer #(numeric type n, type element_type);
interface Get#(CBToken#(n)) reserve;
interface Put#(Tuple2 #(CBToken#(n), element_type)) complete;
interface Get#(element_type) drain;

endinterface: CompletionBuffer

Datatypes

The CBToken type is abstract to avoid misuse.

typedef union tagged { ... } CBToken #(numeric type n) ...;
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Modules

The mkCompletionBuffer module is used to instantiate a completion buffer. It takes no size argu-
ments, as all that information is already contained in the type of the interface it produces.

mkCompletionBuffer Creates a completion buffer.

module mkCompletionBuffer(CompletionBuffer#(n, element_type))
provisos (Bits#(element_type, sizea))

Example- Using a Completion Buffer in a server farm of multipliers

A server farm is a set of identical servers, which can each perform the same task, together with
a controller. The controller allocates incoming tasks to any server which happens to be available
(free), and sends results back to its caller.

The time needed to complete each task depends on the value of the multiplier argument; there is
therefore no guarantee that results will become available in the order the tasks were started. It is
required, however, that the controller return results to its caller in the order the tasks were received.
The controller accordingly must instantiate a special mechanism for this purpose. The appropriate
mechanism is a Completion Buffer.

import List::*;
import FIFO::*;
import GetPut::*;
import CompletionBuffer::*;

typedef Bit#(16) Tin;
typedef Bit#(32) Tout;

// Multiplier interface
interface Mult_IFC;

method Action start (Tin m1, Tin m2);
method ActionValue#(Tout) result();

endinterface

typedef Tuple2#(Tin,Tin) Args;
typedef 8 BuffSize;
typedef CBToken#(BuffSize) Token;

// This is a farm of multipliers, mkM. The module
// definition for the multipliers mkM is not provided here.
// The interface definition, Mult_IFC, is provided.
module mkFarm#( module#(Mult_IFC) mkM ) ( Mult_IFC );

// make the buffer twice the size of the farm
Integer n = div(valueof(BuffSize),2);

// Declare the array of servers and instantiate them:
Mult_IFC mults[n];
for (Integer i=0; i<n; i=i+1)

begin
Mult_IFC s <- mkM;
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mults[i] = s;
end

FIFO#(Args) infifo <- mkFIFO;

// instantiate the Completion Buffer, cbuff, storing values of type Tout
// buffer size is Buffsize, data type of values is Tout
CompletionBuffer#(BuffSize,Tout) cbuff <- mkCompletionBuffer;

// an array of flags telling which servers are available:
Reg#(Bool) free[n];
// an array of tokens for the jobs in progress on the servers:
Reg#(Token) tokens[n];
// this loop instantiates n free registers and n token registers
// as well as the rules to move data into and out of the server farm
for (Integer i=0; i<n; i=i+1)

begin
// Instantiate the elements of the two arrays:
Reg#(Bool) f <- mkReg(True);
free[i] = f;
Reg#(Token) t <- mkRegU;
tokens[i] = t;

Mult_IFC s = mults[i];

// The rules for sending tasks to this particular server, and for
// dealing with returned results:
rule start_server (f); // start only if flag says it’s free

// Get a token
CBToken#(BuffSize) new_t <- cbuff.reserve.get;

Args a = infifo.first;
Tin a1 = tpl_1(a);
Tin a2 = tpl_2(a);
infifo.deq;

f <= False;
t <= new_t;
s.start(a1,a2);

endrule

rule end_server (!f);
Tout x <- s.result;
// Put the result x into the buffer, at the slot t
cbuff.complete.put(tuple2(t,x));
f <= True;

endrule
end

method Action start (m1, m2);
infifo.enq(tuple2(m1,m2));

endmethod

// Remove the element from the buffer, returning the result
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// The elements will be returned in the order that the tokens were obtained.
method result = cbuff.drain.get;

endmodule

C.8.7 UniqueWrappers

Package

import UniqueWrappers :: * ;

Description

The UniqueWrappers package takes a piece of combinational logic which is to be shared and puts it
into its own protective shell or wrapper to prevent its duplication. This is used in instances where a
separately synthesized module is not possible. It allows the designer to use a piece of logic at several
places in a design without duplicating it at each site.

There are times where it is desired to use a piece of logic at several places in a design, but it is too
bulky or otherwise expensive to duplicate at each site. Often the right thing to do is to make the
piece of logic into a separately synthesized module – then, if this module is instantiated only once,
it will not be duplicated, and the tool will automatically generate the scheduling and multiplexing
logic to share it among the sites which use its methods. Sometimes, however, this is not convenient.
One reason might be that the logic is to be incorporated into a sub-module of the design which is
itself polymorphic – this will probably cause difficulties in observing the constraints necessary for a
module which is to be separately synthesized. And if a module is not separately synthesized, the
tool will inline its logic freely wherever it is used, and thus duplication will not be prevented as
desired.

This package covers the case where the logic to be shared is combinational and cannot be put
into a separately synthesized module. It may be thought of as surrounding this combinational
function with a protective shell, a unique wrapper, which will prevent its duplication. The module
mkUniqueWrapper takes a one-argument function as a parameter; both the argument type a and the
result type b must be representable as bits, that is, they must both be in the Bits typeclass.

Interfaces

The UniqueWrappers package provides an interface, Wrapper, with one actionvalue method, func,
which takes an argument of type a and produces a method of type ActionValue#(b). If the module
is instantiated only once, the logic implementing its parameter will be instantiated just once; the
module’s method may, however, be used freely at several places.

Although the function supplied as the parameter is purely combinational and does not change state,
the method is of type ActionValue. This is because actionvalue methods have enable signals and
these signals are needed to organize the scheduling and multiplexing between the calling sites.

Variants of the interface Wrapper are also provided for handling functions of two or three arguments;
the interfaces have one and two extra parameters respectively. In each case the result type is the
final parameter, following however many argument type parameters are required.

Wrapper Interfaces

Wrapper This interface has one actionvalue method, func, which takes an argument of type
a_type and produces an actionvalue of type ActionValue#(b_type).

interface Wrapper#(type a_type, type b_type);
method ActionValue#(b_type) func (a_type x);
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Wrapper2 Similar to the Wrapper interface, but it takes two arguments.

interface Wrapper2#(type a1_type, type a2_type, type b_type);
method ActionValue#(b_type) func (a1_type x, a2_type y);

Wrapper3 Similar to the Wrapper interface, but it takes three arguments.

interface Wrapper3#(type a1_type, type a2_type, type a3_type,
type b_type);

method ActionValue#(b_type) func (a1_type x, a2_type y, a3_type z);

Modules

The interfaces Wrapper, Wrapper2, and Wrapper3 are provided by the modules mkUniqueWrapper,
mkUniqueWrapper2, and mkUniqueWrapper3. These modules vary only in the number of aguments
in the parameter function.

If a function has more than three arguments, it can always be rewritten or wrapped as one which
takes the arguments as a single tuple; thus the one-argument version mkUniqueWrapper can be used
with this function.

mkUniqueWrapper

Takes a function, func, with a single parameter x and provides the interface Wrapper.

module mkUniqueWrapper#(function b_type func(a_type x))
(Wrapper#(a_type, b_type))

provisos (Bits#(a_type, sizea), Bits#(b_type, sizeb));

mkUniqueWrapper2

Takes a function, func, with a two parameters, x and y, and provides the interface
Wrapper2.

module mkUniqueWrapper2#(function b_type func(a1_type x, a2_type y))
(Wrapper2#(a1_type, a2_type, b_type))

provisos (Bits#(a1_type, sizea1), Bits#(a2_type, sizea2),
Bits#(b_type, sizeb));

mkUniqueWrapper3

Takes a function, func, with a three parameters, x, y, and z, and provides the interface
Wrapper3.

module mkUniqueWrapper3#(function b_type
func(a1_type x, a2_type y, a3_type z))

(Wrapper3#(a1_type, a2_type, a3_type, b_type))
provisos (Bits#(a1_type, sizea1), Bits#(a2_type, sizea2),

Bits#(a3_type, sizea3), Bits#(b_type, sizeb));

Example: Complex Multiplication
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// This module defines a single hardware multiplier, which is then
// used by multiple method calls to implement complex number
// multiplication (a + bi)(c + di)

typedef Int#(18) CFP;

module mkComplexMult1Fifo( ArithOpGP2#(CFP) ) ;
FIFO#(ComplexP#(CFP)) infifo1 <- mkFIFO;
FIFO#(ComplexP#(CFP)) infifo2 <- mkFIFO;
let arg1 = infifo1.first ;
let arg2 = infifo2.first ;

FIFO#(ComplexP#(CFP)) outfifo <- mkFIFO;

Reg#(CFP) rr <- mkReg(0) ;
Reg#(CFP) ii <- mkReg(0) ;
Reg#(CFP) ri <- mkReg(0) ;
Reg#(CFP) ir <- mkReg(0) ;

// Declare and instantiate an interface that takes 2 arguments, multiplies them
// and returns the result. It is a Wrapper2 because there are 2 arguments.
Wrapper2#(CFP,CFP, CFP) smult <- mkUniqueWrapper2( \* ) ;

// Define a sequence of actions
// Since smult is a UnqiueWrapper the method called is smult.func
Stmt multSeq =
seq

action
let mr <- smult.func( arg1.rel, arg2.rel ) ;
rr <= mr ;

endaction
action

let mr <- smult.func( arg1.img, arg2.img ) ;
ii <= mr ;

endaction
action

// Do the first add in this step
let mr <- smult.func( arg1.img, arg2.rel ) ;
ir <= mr ;
rr <= rr - ii ;

endaction
action

let mr <- smult.func( arg1.rel, arg2.img );
ri <= mr ;
// We are done with the inputs so deq the in fifos
infifo1.deq ;
infifo2.deq ;

endaction
action

let ii2 = ri + ir ;
let res = Complex{ rel: rr , img: ii2 } ;
outfifo.enq( res ) ;

endaction
endseq;
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// Now convert the sequence into a FSM ;
// Bluespec can assign the state variables, and pick up implict
// conditions of the actions
FSM multfsm <- mkAutoFSM;
rule startFSM;

multfsm.start;
endrule

endmodule

C.8.8 FShow

Package

import FShow :: * ;

Description

The FShow package defines the typeclass FShow. FShow includes a single member function, fshow.
When applied to an object which is an instance of FShow, the fshow function returns an object of
type Fmt (Section B.2.8).

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Typeclasses

FShow defines the class of types to which the function fshow can be applied to create an associated
Fmt representation.

typeclass FShow#(type t);
function Fmt fshow(t value);

endtypeclass

The package defines instances of FShow for many commonly used datatypes. Users can create their
own FShow instances for other types (or redefine the instances included in the FShow package).

FShow Instances
String Returns a Fmt object showing the value of the string.

instance FShow#(String);

Bool Returns a Fmt object showing True or False.

instance FShow#(Bool);

Maybe#(a) Returns a Fmt object showing Valid and the value, or just Invalid.

instance FShow#(Maybe#(a))
provisos(FShow#(a));
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Int#(n) Returns a Fmt object showing n in a decimal format.

instance FShow#(Int#(n));

Bit#(n) Returns a Fmt object showing n in a hexadecimal format.

instance FShow#(Bit#(n));

FIFOF_#(a)
FIFOF#(a)

Returns a Fmt object showing the first element and Empty/Full state of the
FIFO.

instance FShow#(FIFOF_#(a))
provisos(FShow#(a));

Vector#(n, a) Returns a Fmt object showing <V elem1 elem2 ...>, where the elemn are
the elements of the vector.

instance FShow#(Vector#(n, a))
provisos(FShow#(a));

List#(a) Returns a Fmt object showing <List elem1 elem2 ...>, where the elemn
are the elements of the list.

instance FShow#(List#(a))
provisos(FShow#(a));

FixedPoint#(i,f) Returns a Fmt object showing FP int.frac where int is the integer part
and frac is the fractional part of the fixed point number.

instance FShow#(FixedPoint#(i,f));

Complex#(a) Returns a Fmt object showing <C x.rel, x.img> where x.rel is the real
and x.img is the imaginary part of x.

instance FShow#(Complex#(a))
provisos (FShow#(a));
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Tuple2#(a,b) Returns a Fmt object showing Tuple2(a, b).

instance FShow#(Tuple2#(a, b))
provisos(FShow#(a), FShow#(b));
function Fmt fshow (Tuple2#(a, b) value);

return $format("Tuple2(", fshow(tpl_1(value)), ",",
fshow(tpl_2(value)),")");

Tuple3#(a,b,c) Returns a Fmt object showing Tuple3(a,b,c).
Tuple4#(a,b,c,d) Returns a Fmt object showing Tuple4(a,b,c,d).
Tuple5#(a,b,c,d,e) Returns a Fmt object showing Tuple5(a,b,c,d,e).
Tuple6#(a,b,c,d,e,f) Returns a Fmt object showing Tuple6(a,b,c,d,e,f).
Tuple7#(a,b,c,d,e,f,g) Returns a Fmt object showing Tuple7(a,b,c,d,e,f,g).
Tuple8#(a,b,c,d,e,f,g,h) Returns a Fmt object showing Tuple8(a,b,c,d,e,f,g,h).

Functions

fshow Returns a Fmt representation when applied to a value

function Fmt fshow(t value);

concatWith Concantenates a String (x) with two other arguments a and b, both of
type Fmt.

function Fmt concatWith(String x, Fmt a, Fmt b);
return (a + $format(x) + b);

Modules

dbgProbe This module is used like a Probe except that the sampled value (to be
viewed in waves) is the ascii representation of fshow(value).

module dbgProbe (Probe#(a))
provisos(FShow#(a));

Example

package FShowExample;

import Probe::*;
import FShow::*;
import Vector::*;

/// Define some types ....

typedef Vector#(3,Bool) VOB;
typedef Tuple2#(Bit#(2), Bit#(2)) TUP;

typedef enum {READ, WRITE, UNKNOWN} OpCommand deriving(Bounded, Bits, Eq);

typedef struct {OpCommand command;
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Bit#(8) addr;
Bit#(8) data;
Bit#(8) length;
Bool lock;
} Header deriving (Eq, Bits, Bounded);

typedef union tagged {Header Descriptor;
Bit#(8) Data;
} Request deriving(Eq, Bits, Bounded);

/// Define FShow instances for the ones that aren’t already in FShow.bsv

instance FShow#(OpCommand);
function Fmt fshow (OpCommand label);

case (label)
READ: return fshow("READ ");
WRITE: return fshow("WRITE");
UNKNOWN: return fshow("UNKNOWN");

endcase
endfunction

endinstance

instance FShow#(Header);
function Fmt fshow (Header value);

return ($format("<HEAD ")
+
fshow(value.command)
+
$format(" (%0d)", value.length)
+
$format(" A:%h", value.addr)
+
$format(" D:%h>", value.data));

endfunction
endinstance

instance FShow#(Request);
function Fmt fshow (Request request);

case (request) matches
tagged Descriptor .a:

return fshow(a);
tagged Data .a:

return $format("<DATA %h>", a);
endcase

endfunction
endinstance

(* synthesize *)
module mkFShowExample (Empty);

Reg#(Bit#(32)) value <- mkReg(1234);
Reg#(Bit#(16)) count <- mkReg(0);

// Probes to send "fshow" strings to waves
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Probe#(VOB) vob_probe <- dbgProbe;
Probe#(TUP) tup_probe <- dbgProbe;
Probe#(Request) req_probe <- dbgProbe;

rule every;
// generate some values
VOB v_of_bools = unpack(truncate(count));
TUP a_tuple = unpack(truncate(count));
Request request = unpack(truncate(value));

// send signals to waves.
vob_probe <= v_of_bools;
tup_probe <= a_tuple;
req_probe <= request;

// show use with $display
$display(" A Vector: ", fshow(v_of_bools));
$display(" A Tuple: ", fshow(a_tuple));
$display(" A Request: ", fshow(request));
$display("----------------------------------");

// update values
value <= (value << 1) | {0, (value[31] ^ value[21] ^ value[1] ^ value[01])};
count <= count + 1;
if (count == 30) $finish;

endrule

endmodule

C.8.9 DefaultValue

Package

import DefaultValue :: * ;

Description

This package defines a type class of DefaultValue and instances of the type class for many commonly
used datatypes. Users can create their own default value instances for other types. This type class
is particularly useful for defining default values for user-defined structures.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Typeclasses

typeclass DefaultValue #( type t );
t defaultValue ;

endtypeclass

The following instances are defined in the DefaultValue package. You can define your own instances
for user-defined structures and other types.
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DefaultValue Instances
Literal#(t) Any type t in the Literal class can have a default value which is de-

fined here as 0. The types in the Literal class include Bit#(n), Int#(n),
UInt#(n), Real, Integer, FixedPoint, and Complex.

instance DefaultValue # (t)
provisos (Literal#(t));
defaultValue = fromInteger (0);

Bool The default value for a Bool is defined as False.

instance DefaultValue #( Bool );
defaultValue = False ;

void The default value for a void is defined as ?.

instance DefaultValue #(void);
defaultValue = ?;

Maybe The default value for a Maybe is defined as tagged Invalid.

instance DefaultValue #( Maybe#(t) );
defaultValue = tagged Invalid ;

The default value for a Tuple is composed of the default values of each member type. Instances are
defined for Tuple2 through Tuple8.

Tuple2#(a,b) The default value of a Tuple2 is the default value of element a and the
default value of element b.

instance DefaultValue #( Tuple2#(a,b) )
provisos (DefaultValue#(a)

,DefaultValue#(b) );
defaultValue = tuple2 (defaultValue, defaultValue );

Vector The default value for a Vector replicates the element’s default value type
for each element.

instance DefaultValue #( Vector#(n,t) )
provisos (DefaultValue#(t));
defaultValue = replicate (defaultValue) ;

Examples

Example 1: Specifying the initial or reset values for a structure.
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Reg#(Int#(17)) rint <- mkReg#(defaultValue); // initial value 0
Reg#(Tuple2#(Bool,UInt#(5))) tbui <- mkReg#(defaultValue); // value is(False,0)
Reg#(Vector#(n,Bool) vbool <- mkReg#(defaultValue); // initial value all False

Example 2: Using default values to replace the unsafe use of unpack.

import DefaultValue :: *;

typedef struct {
UInt#(4) size;
UInt#(3) depth ;
} MyStruct

deriving (Bits, Eq);

instance DefaultValue #( MyStruct );
defaultValue = MyStruct { size : 0,

depth : 1 };
endinstance

then you can use:

Reg#(MyStruct) mstr <- mkReg(defaultValue);

instead of:

Reg#(MyStruct) mybad <- mkReg(unpack(0)); // Bad use of unpack

Example 3: Module instantiation which requires a large structure as an argument.

ModParam modParams = defaultValue ; // generate default value
modParams.field1 = 5 ; // override some default values
modParams.field2 = 1.4 ;
ModIfc <- mkMod (modArgs) ; // construct the module

C.8.10 TieOff

Package

import TieOff :: * ;

Description

This package provides a typeclass TieOff#(t) which may be userful to provide default enable meth-
ods of some interface t, some of which must be always_enabled or require some action.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Typeclasses
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typeclass TieOff #(type t);
module mkTieOff#(t ifc) (Empty);

endtypeclass

Example: Defining a TieOff for a Get interface

This is a sink module which pulls data from the Get interface and displays the data.

instance TieOff #(Get #(t) )
provisos (Bits#(t,st),

FShow#(t) );
module mkTieOff ( Get#(t) ifc, Empty inf);

rule getSink (True);
t val <- ifc.get;
$display( "Get tieoff %m", fshow(val) );

endrule
endmodule

endinstance

C.8.11 Assert

Package

import Assert :: *;

Description

The Assert package contains definitions to test assertions in the code. The check-assert flag must
be set during compilation. By default the flag is set to False and assertions are ignored. The flag,
when set, instructs the compiler to abort compilation if an assertion fails.

Functions

staticAssert Compile time assertion. Can be used anywhere a compile-time statement
is valid.

module staticAssert(Bool b, String s);

dynamicAssert Run time assertion. Can be used anywhere an Action is valid, and is
tested whenever it is executed.

function Action dynamicAssert(Bool b, String s);

continuousAssert Continuous run-time assertion (expected to be True on each clock). Can
be used anywhere a module instantiation is valid.

function Action continuousAssert(Bool b, String s);

Examples using Assertions:
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import Assert:: *;
module mkAssert_Example ();
// A static assert is checked at compile-time
// This code checks that the indices are within range
for (Integer i=0; i<length(cs); i=i+1)

begin
Integer new_index = (cs[i]).index;
staticAssert(new_index < valueOf(n),

strConcat("Assertion index out of range: ", integerToString(new_index)));
end

rule always_fire (True);
counter <= counter + 1;

endrule
// A continuous assert is checked on each clock cycle
continuousAssert (!fail, "Failure: Fail becomes True");

// A dynamic assert is checked each time the rule is executed
rule test_assertion (True);

dynamicAssert (!fail, "Failure: Fail becomes True");
endrule

endmodule: mkAssert_Example

C.8.12 Probe

Package

import Probe :: * ;

Description

A Probe is a primitive used to ensure that a signal of interest is not optimized away by the compiler
and that it is given a known name. In terms of BSV syntax, the Probe primitive it used just like
a register except that only a write method exists. Since reads are not possible, the use of a Probe
has no effect on scheduling. In the generated Verilog, the associated signal will be named just like
the port of any Verilog module, in this case <instance_name>$PROBE. No actual Probe instance will
be created however. The only side effects of a BSV Probe instantiation relate to the naming and
retention of the associated signal in the generated Verilog.

Interfaces

interface Probe #(type a_type);
method Action _write(a_type x1);

endinterface: Probe

Modules

The module mkProbe is used to instantiate a Probe.

mkProbe Instantiates a Probe

module mkProbe(Probe#(a_type))
provisos (Bits#(a_type, sizea));

Example - Creating and writing to registers and probes
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import FIFO::*;
import ClientServer::*;
import GetPut::*;
import Probe::*;

typedef Bit#(32) LuRequest;
typedef Bit#(32) LuResponse;

module mkMesaHwLpm(ILpm);
// Create registers for requestB32 and responseB32
Reg#(LuRequest) requestB32 <- mkRegU();
Reg#(LuResponse) responseB32 <- mkRegU();

// Create a probe responseB32_probe
Probe#(LuResponse) responseB32_probe <- mkProbe();
....
// Define the interfaces:
....

interface Get response;
method get() ;

actionvalue
let resp <- completionBuffer.drain.get();
// record response for debugging purposes:
let {r,t} = resp;
responseB32 <= r; // a write to a register
responseB32_probe <= r; // a write to a probe

// count responses in status register
return(resp);

endactionvalue
endmethod: get

endinterface: response
.....

endmodule

C.8.13 Reserved

Package

import Reserved :: * ;

Description

The Reserved package defines three abstract data types which only have the purpose of taking up
space. They are useful when defining a struct where you need to enforce a certain layout and want
to use the type checker to enforce that the value is not accidently used. One can enforce a layout
unsafely with Bit#(n), but Reserved#(n) gives safety. A value of type Reserved#(n) takes up
exactly n bits.

typedef · · · abstract · · · Reserved#(type n);

Types and Type classes

There are three types defined in the Reserved package: Reserved, ReservedZero, and ReservedOne.
The Reserved type is an abstract data type which takes up exactly n bits and always returns an
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unspecified value. The ReservedZero and ReservedOne data types are equivalent to the Reserved
type except that ReservedZero always returns ’0 and ReservedOne always returns ’1.

Type Classes used by Reserved

Bits Eq Literal Arith Ord Bounded Bit Bit Bit
wise Reduction Extend

Reserved
√ √ √ √

ReservedZero
√ √ √ √

ReservedOne
√ √ √ √

• Bits The only purpose of these types is to allow the value to exist in hardware (at port
boundaries and in states). The user should have no reason to use pack/unpack directly.

Converting Reserved to or from Bits returns a don’t care (?).

Converting ReservedZero to or from Bits returns a ’0.

Converting ReservedOne to or from Bits returns a ’1.

• Eq and Ord

Any two Reserved, ReservedZero, or ReservedOne values are considered to be equal.

• Bounded

The upper and lower bound return don’t care (?), ’1 or ’0 values depending on the type.

Example: Structure with a 8 bits reserved.

typedef struct {
Bit#(8) header; // Frame.header
Vector#(2, Bit#(8)) payload; // Frame.payload
Reserved#(8) dummy; // Can’t access 8 bits reserved
Bit#(8) trailer; // Frame.trailer

} Frame;

header payload0 payload1 dummy trailer
8 8 8 8 8

C.8.14 TriState

Package

import TriState :: * ;

Description

The TriState package implements a tri-state buffer, as shown in Figure 5. Depending on the value
of the output_enable, inout can be an input or an output.

The buffer has two inputs, an input of type value_type and a Boolean output_enable which
determines the direction of inout. If output_enable is True, the signal is coming in from input
and out through inout and output. If output_enable is False, then a value can be driven in from
inout, and the output value will be the value of inout. The behavior is described in the tables
below.
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Figure 5: TriState Buffer

output enable = 0
output = inout
Inputs

input inout output
0 0 0
0 1 1
1 0 0
1 1 1

output enable = 1
output = in
inout = in

Outputs
input inout output

0 0 0
1 1 1

This module is not supported in Bluesim.

Interfaces and Methods

The TriState interface is composed of an Inout interface and a _read method. The _read method
is similar to the _read method of a register in that to read the method you reference the interface
in an expression.

TriState Interface
Name Type Description
io Inout#(value_type) Inout subinterface providing a value of type

value_type
_read value_type Returns the value of output

(* always_ready, always_enabled *)
interface TriState#(type value_type);

interface Inout#(value_type) io;
method value_type _read;

endinterface: TriState

Modules and Functions

The TriState package provides a module constructor function, mkTriState, which provides the
TriState interface. The interface includes an Inout subinterface and the value of output.
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mkTriState Creates a module which provides the TriState interface.

module mkTriState#(Bool output_enable, value_type input)
(TriState#(value_type))

provisos(Bits#(value_type, size_value));

Verilog Modules

The TriState module is implemented by the Verilog module TriState.v which can be found in the
Bluespec Verilog library, $BLUESPECDIR/Verilog/.

C.8.15 ZBus

Package

import ZBus :: * ;

Description

BSV provides the ZBus library to allow users to implement and use tri-state buses. Since BSV does
not support high-impedance or undefined values internally, the library encapsulates the tri-state bus
implementation in a module that can only be accessed through predefined interfaces which do not
allow direct access to internal signals (which could potentially have high-impedance or undefined
values).

The Verilog implementation of the tri-state module includes a number of primitive sub-modules
that are implemented using Verilog tri-state wires. The BSV representation of the bus, however,
only models the values of the bus at the associated interfaces and thus the need to represent high-
impedance or undefined values in BSV is avoided.

A ZBus consists of a series of clients hanging off of a bus. The combination of the client and the
bus is provided by the ZBusDualIFC interface which consists of 2 subinterfaces, the client and the
bus. The client subinterface is provided by the ZBusClientIFC interface. The bus subinterface is
provided by the ZBusBusIFC interface. The user never needs to manipulate the bus side, this is all
done internally. The user builds the bus out of ZBusDualIFCs and then drives values onto the bus
and reads values from the bus using the ZBusClientIFC.

Interfaces and Methods

There are three interfaces are defined in this package; ZBusDualIFC, ZBusClientIFC, and ZBusBusIFC.

The ZBusDualIFC interface provides two subinterfaces; a ZBusBusIFC and a ZBusClientIFC. For a
given bus, one ZBusDualIFC interface is associated with each bus client.

ZBusDualIFC
Name Type Description
busIFC ZBusBusIFC#() The subinterface providing the bus side of the

ZBus.
clientIFC ZBusClientIFC#(t) The subinterface providing the client side to the

ZBus.

interface ZBusDualIFC #(type value_type) ;
interface ZBusBusIFC#(value_type) busIFC;
interface ZBusClientIFC#(value_type) clientIFC;

endinterface
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The ZBusClientIFC allows a BSV module to connect to the tri-state bus. The drive method is
used to drive a value onto the bus. The get() and fromBusValid() methods allow each bus client
to access the current value on the bus. If the bus is in an invalid state (i.e. has a high-impedance
value or an undefined value because it is being driven by more than one client simultaneously), then
the get() method will return 0 and the fromBusValid() method will return False. In all other
cases, the fromBusValid() method will return True and the get() method will return the current
value of the bus.

ZBusClientIFC
Method Argument

Name Type Description Name Description
drive Action Drives a current value on

to the bus
value The value being put on

the bus, datatype of
value_type.

get value_type Returns the current
value on the bus.

fromBusValid Bool Returns False if the bus
has a high-impedance
value or is undefined.

interface ZBusClientIFC #(type value_type) ;
method Action drive(value_type value);
method value_type get();
method Bool fromBusValid();

endinterface

The ZBusBusIFC interface connects to the bus structure itself using tri-state values. This interface
is never accessed directly by the user.
interface ZBusBusIFC #(type value_type) ;

method Action fromBusSample(ZBit#(value_type) value, Bool isValid);
method ZBit#(t) toBusValue();
method Bool toBusCtl();

endinterface

Modules and Functions

The library provides a module constructor function, mkZBusBuffer, which allows the user to create
a module which provides the ZBusDualIFC interface. This module provides the functionality of a
tri-state buffer.

mkZBusBuffer Creates a module which provides the ZBusDualIFC interface.

module mkZBusBuffer (ZBusDualIFC #(value_type))
provisos (Eq#(value_type), Bits#(value_type, size_value));

The mkZBus module constructor function takes a list of ZBusBusIFC interfaces as arguments and
creates a module which ties them all together in a bus.

mkZBus Ties a list of ZBusBusIFC interfaces together in a bus.

module mkZBus#(List#(ZBusBusIFC#(value_type)) ifc_list)(Empty)
provisos (Eq#(value_type), Bits#(value_type, size_value));

334



Bluespec SystemVerilog Reference Guide

Examples - ZBus

Creating a tri-state buffer for a 32 bit signal. The interface is named buffer_0.
ZBusDualIFC#(Bit#(32)) buffer_0();
mkZBusBuffer inst_buffer_0(buffer_0);

Drive a value of 12 onto the associated bus.
buffer_0.clientIFC.drive(12);

The following code fragment demonstrates the use of the module mkZBus.
ZBusDualIFC#(Bit#(32)) buffer_0();
mkZBusBuffer inst_buffer_0(buffer_0);

ZBusDualIFC#(Bit#(32)) buffer_1();
mkZBusBuffer inst_buffer_1(buffer_1);

ZBusDualIFC#(Bit#(32)) buffer_2();
mkZBusBuffer inst_buffer_2(buffer_2);

List#(ZBusIFC#(Bit#(32))) ifc_list;

bus_ifc_list = cons(buffer_0.busIFC,
cons(buffer_1.busIFC,

cons(buffer_2.busIFC,
nil)));

Empty bus_ifc();
mkZBus#(bus_ifc_list) inst_bus(bus_ifc);

C.8.16 OVLAssertions

Package

import OVLAssertions :: * ;

Description

The OVLAssertions package provides the BSV interfaces and wrapper modules necessary to al-
low BSV designs to include assertion checkers from the Open Verification Library (OVL). The
OVL includes a set of assertion checkers that verify specific properties of a design. For more
details on the complete OVL, refer to the Accellera Standard OVL Library Reference Manual
(http://www.accellera.org).

Interfaces and Methods

The following interfaces are defined for use with the assertion modules. Each interface has one or
more Action methods. Each method takes a single argument which is either a Bool or polymorphic.

AssertTest IFC Used for assertions that check a test expression on every clock cycle.

AssertTest_IFC
Method Argument

Name Type Name Type Description
test Action test_value a_type Expression to be checked.

interface AssertTest_IFC #(type a_type);
method Action test(a_type test_value);

endinterface
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AssertSampleTest IFC Used for assertions that check a test expression on every clock cycle only
if the sample, indicated by the boolean value sample_test is asserted.

AssertSampleTest_IFC
Method Argument

Name Type Name Type Description
sample Action sample_test Bool Assertion only checked if sample_test is

asserted.
test Action test_value a_type Expression to be checked.

interface AssertSampleTest_IFC #(type a_type);
method Action sample(Bool sample_test);
method Action test(a_type test_value);

endinterface

AssertStartTest IFC Used for assertions that check a test expression only subsequent to a
start event, specified by the Boolean value start_test.

AssertStartTest_IFC
Method Argument

Name Type Name Type Description
start Action start_test Bool Assertion only checked after start is as-

serted.
test Action test_value a_type Expression to be checked.

interface AssertStartTest_IFC #(type a_type);
method Action start(Bool start_test);
method Action test(a_type test_value);

endinterface

AssertStartStopTest IFC Used to check a test expression between a start event and a stop event.

AssertStartStopTest_IFC
Method Argument

Name Type Name Type Description
start Action start_test Bool Assertion only checked after start is as-

serted.
stop Action stop_test Bool Assertion only checked until the stop is

asserted.
test Action test_value a_type Expression to be checked.

interface AssertStartStopTest_IFC #(type a_type);
method Action start(Bool start_test);
method Action stop(Bool stop_test);
method Action test(a_type test_value);

endinterface
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AssertTransitionTest IFC Used to check a test expression that has a specified start state and
next state, i.e. a transition.

AssertTransitionTest_IFC
Method Argument

Name Type Name Type Description
test Action test_value a_type Expression that should transition to the

next_value.
start Action start_test a_type Expression that indicates the start state

for the assertion check. If the value
of start_test equals the value of
test_value, the check is performed.

next Action next_value a_type Expression that indicates the only valid
next state for the assertion check.

interface AssertTransitionTest_IFC #(type a_type);
method Action test(a_type test_value);
method Action start(a_type start_value);
method Action next(a_type next_value);

endinterface

AssertQuiescentTest IFC Used to check that a test expression is equivalent to the specified
expression when the sample state is asserted.

AssertQuiescentTest_IFC
Method Argument

Name Type Name Type Description
sample Action sampe_test Bool Expression which initiates the quiescent

assertion check when it transistions to
true.

state Action state_value a_type Expression that should have the same
value as check_value

check Action check_value a_type Expression state_value is compared to.

interface AssertQuiescentTest_IFC #(type a_type);
method Action sample(Bool sample_test);
method Action state(a_type state_value);
method Action check(a_type check_value);

endinterface

AssertFifoTest IFC Used with assertions checking a FIFO structure.

AssertFifoTest_IFC
Method Argument

Name Type Name Type Description
push Action push_value a_type Expression which indicates the number of

push operations that will occur during the
current cycle.

pop Action pop_value a_type Expression which indicates the number of
pop operations that will occur during the
current cycle.
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interface AssertFifoTest_IFC #(type a_type, type b_type);
method Action push(a_type push_value);
method Action pop(b_type pop_value);

endinterface

Datatypes

The parameters severity_level, property_type, msg, and coverage_level are common to all
assertion checkers.

Common Parameters for all Assertion Checkers
Parameter Valid Values

* indicates default value
severity_level OVL_FATAL

*OVL_ERROR
OVL_WARNING
OVL_Info

property_type *OVL_ASSERT
OVL_ASSUME
OVL_IGNORE

msg *VIOLATION
coverage_level OVL_COVER_NONE

*OVL_COVER_ALL
OVL_COVER_SANITY
OVL_COVER_BASIC
OVL_COVER_CORNER
OVL_COVER_STATISTIC

Each assertion checker may also use some subset of the following parameters.

Other Parameters for Assertion Checkers
Parameter Valid Values
action_on_new_start OVL_IGNORE_NEW_START

OVL_RESET_ON_NEW_START
OVL_ERROR_ON_NEW_START

edge_type OVL_NOEDGE
OVL_POSEDGE
OVL_NEGEDGE
OVL_ANYEDGE

necessary_condition OVL_TRIGGER_ON_MOST_PIPE
OVL_TRIGGER_ON_FIRST_PIPE
OVL_TRIGGER_ON_FIRST_NOPIPE

inactive OVL_ALL_ZEROS
OVL_ALL_ONES
OVL_ONE_COLD
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Other Parameters for Assertion Checkers
Parameter Valid Values
num_cks Int#(32)
min_cks Int#(32)
max_cks Int#(32)
min_ack_cycle Int#(32)
max_ack_cycle Int#(32)
max_ack_length Int#(32)
req_drop Int#(32)
deassert_count Int#(32)
depth Int#(32)
value a_type
min a_type
max a_type
check_overlapping Bool
check_missing_start Bool
simultaneous_push_pop Bool

Setting Assertion Parameters

Each assertion checker module has a set of associated parameter values that can be customized for
each module instantiation. The values for these parameters are passed to each checker module in
the form of a single struct argument of type OVLDefaults#(a) A typical use scenario is illustrated
below:

let defaults = mkOVLDefaults;

defaults.min_clks = 2;
defaults.max_clks = 3;

AssertTest_IFC#(Bool) assertWid <- bsv_assert_width(defaults);

The defaults struct (created by mkOVLDefaults) includes one field for each possible parameter.
Initially each field includes the associated default value. By editing fields of the struct, individual
parameter values can be modified as needed to be non-default values. The modified defaults struct
is then provided as a module argument during instantiation.

Modules

Each module in this package corresponds to an assertion checker from the Open Verification Library
(OVL). The BSV name for each module is the same as the OVL name with bsv_ appended to the
beginning of the name.

Module bsv_assert_always
Description Concurrent assertion that the value of the expression is always True.
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_always#(OVLDefaults#(Bool) defaults)
(AssertTest_IFC#(Bool));
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Module bsv_assert_always_on_edge
Description Checks that the test expression evaluates True whenever the sample

method is asserted.
Interface Used AssertSampleTest_IFC
Parameters common assertion parameters

edge_type (default value = OVL_NOEDGE)
Module Declaration

module bsv_assert_always_on_edge#(OVLDefaults#(Bool)
defaults)(AssertSampleTest_IFC#(Bool));

Module bsv_assert_change
Description Checks that once the start method is asserted, the expression will change

value within num_cks cycles.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters

action_on_new_start (default value = OVL_IGNORE_NEW_START)
num_cks (default value = 1)

Module Declaration
module bsv_assert_change#(OVLDefaults#(a_type) defaults)

(AssertStartTest_IFC#(a_type))
provisos (Bits#(a_type, sizea),

Bounded#(a_type), Eq#(a_type));

Module bsv_assert_cycle_sequence
Description Ensures that if a specified necessary condition occurs,it is followed by a

specified sequence of events.
Interface Used AssertTest_IFC
Parameters common assertion parameters

necessary_condition (default value = OVL_TRIGGER_ON_MOST_PIPE)
Module Declaration

module bsv_assert_cycle_sequence#(OVLDefaults#(a_type)
defaults)(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_decrement
Description Ensures that the expression decrements only by the value specifiedR.
Interface Used AssertTest_IFC
Parameters common assertion parameters

value (default value = 1)
Module Declaration

module bsv_assert_decrement#(OVLDefaults#(a_type) defaults)
(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea), Literal#(a_type),
Bounded#(a_type), Eq#(a_type));
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Module bsv_assert_delta
Description Ensures that the expression always changes by a value within the range

specified by min and max.
Interface Used AssertTest_IFC
Parameters common assertion parameters

min (default value = 1)
max (default value = 1)

Module Declaration
module bsv_assert_delta#(OVLDefaults#(a_type) defaults)

(AssertTest_IFC#(a_type))
provisos (Bits#(a_type, sizea), Literal#(a_type),

Bounded#(a_type), Eq#(a_type));

Module bsv_assert_even_parity
Description Ensures that value of a specified expression has even parity, that is an

even number of bits in the expression are active high.
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_even_parity#(OVLDefaults#(a_type)
defaults) (AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_fifo_index
Description Ensures that a FIFO-type structure never overflows or underflows. This

checker can be configured to support multiple pushes (FIFO writes) and
pops (FIFO reads) during the same clock cycle.

Interface Used AssertFifoTest_IFC
Parameters common assertion parameters

depth (default value = 1)
simultaneous_push_pop (default value = True)

Module Declaration
module bsv_assert_fifo_index#(OVLDefaults#(Bit#(0))

defaults)(AssertFifoTest_IFC#(a_type, b_type))
provisos (Bits#(a_type, sizea), Bits#(b_type, sizeb));

Module bsv_assert_frame
Description Checks that once the start method is asserted, the test expression eval-

uates true not before min_cks clock cycles and not after max_cks clock
cycles.

Interface Used AssertStartTest_IFC
Parameters common assertion parameters

action_on_new_start (default value = OVL_IGNORE_NEW_START)
min_cks (default value = 1)
max_cks (default value = 1)

Module Declaration
module bsv_assert_frame#(OVLDefaults#(Bool) defaults)

(AssertStartTest_IFC#(Bool));
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Module bsv_assert_handshake
Description Ensures that the specified request and acknowledge signals follow a spec-

ified handshake protocol.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters

action_on_new_start (default value = OVL_IGNORE_NEW_START)
min_ack_cycle (default value = 1)
max_ack_cycle (default value = 1)

Module Declaration
module bsv_assert_handshake#(OVLDefaults#(Bool) defaults)

(AssertStartTest_IFC#(Bool));

Module bsv_assert_implication
Description Ensures that a specified consequent expression is True if the specified

antecedent expression is True.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_implication#(OVLDefaults#(Bool) defaults)
(AssertStartTest_IFC#(Bool));

Module bsv_assert_increment
Description ensure that the test expression always increases by the value of specified

by value.
Interface Used AssertTest_IFC
Parameters common assertion parameters

value (default value = 1)
Module Declaration

module bsv_assert_increment#(OVLDefaults#(a_type) defaults)
(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea), Literal#(a_type),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_never
Description Ensures that the value of a specified expression is never True.
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_never#(OVLDefaults#(Bool) defaults)
(AssertTest_IFC#(Bool));
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Module bsv_assert_never_unknown
Description Ensures that the value of a specified expression contains only 0 and 1

bits when a qualifying expression is True.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_never_unknown#(OVLDefaults#(a_type)
defaults)(AssertStartTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_never_unknown_async
Description Ensures that the value of a specified expression always contains only 0

and 1 bits
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_never_unknown_async#(OVLDefaults#(a_type)
defaults)(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea), Literal#(a_type),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_next
Description Ensures that the value of the specified expression is true a specified

number of cycles after a start event.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters

num_cks (default value = 1)
check_overlapping (default value = True)
check_missing_start (default value = False)

Module Declaration
module bsv_assert_next#(OVLDefaults#(Bool) defaults)

(AssertStartTest_IFC#(Bool));

Module bsv_assert_no_overflow
Description Ensures that the value of the specified expression does not overflow.
Interface Used AssertTest_IFC
Parameters common assertion parameters

min (default value = minBound)
max (default value = maxBound)

Module Declaration
module bsv_assert_no_overflow#(OVLDefaults#(a_type)

defaults) (AssertTest_IFC#(a_type))
provisos (Bits#(a_type, sizea),

Bounded#(a_type), Eq#(a_type));
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Module bsv_assert_no_transition
Description Ensures that the value of a specified expression does not transition from

a start state to the specified next state.
Interface Used AssertTransitionTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_no_transition#(OVLDefaults#(a_type)
defaults) (AssertTransitionTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_no_underflow
Description Ensures that the value of the specified expression does not underflow.
Interface Used AssertTest_IFC
Parameters common assertion parameters

min (default value = minBound)
max (default value = maxBound)

Module Declaration
module bsv_assert_no_underflow#(OVLDefaults#(a_type)

defaults)(AssertTest_IFC#(a_type))
provisos (Bits#(a_type, sizea),

Bounded#(a_type), Eq#(a_type));

Module bsv_assert_odd_parity
Description Ensures that the specified expression had odd parity; that an odd num-

ber of bits in the expression are active high.
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_odd_parity#(OVLDefaults#(a_type)
defaults)(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_one_cold
Description Ensures that exactly one bit of a variable is active low.
Interface Used AssertTest_IFC
Parameters common assertion parameters

inactive (default value = OLV_ONE_COLD)
Module Declaration

module bsv_assert_one_cold#(OVLDefaults#(a_type) defaults)
(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type))

344



Bluespec SystemVerilog Reference Guide

Module bsv_assert_one_hot
Description Ensures that exactly one bit of a variable is active high.
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_one_hot#(OVLDefaults#(a_type) defaults)
(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_proposition
Description Ensures that the test expression is always combinationally True. Like

assert_always except that the test expression is not sampled by the
clock.

Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_proposition#(OVLDefaults#(Bool) defaults)
(AssertTest_IFC#(Bool));

Module bsv_assert_quiescent_state
Description Ensures that the value of a specified state expression equals a corre-

sponding check value if a specified sample event has transitioned to
TRUE.

Interface Used AssertQuiescentTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_quiescent_state#(OVLDefaults#(a_type)
defaults)(AssertQuiescentTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_range
Description Ensure that an expression is always within a specified range.
Interface Used AssertTest_IFC
Parameters common assertion parameters

min (default value = minBound)
max (default value = maxBound)

Module Declaration
module bsv_assert_range#(OVLDefaults#(a_type) defaults)

(AssertTest_IFC#(a_type))
provisos (Bits#(a_type, sizea),

Bounded#(a_type), Eq#(a_type));
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Module bsv_assert_time
Description Ensures that the expression remains True for a specified number of clock

cycles after a start event.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters

action_on_new_start (default value = OVL_IGNORE_NEW_START)
num_cks (default value = 1)

Module Declaration
module bsv_assert_time#(OVLDefaults#(Bool) defaults)

(AssertStartTest_IFC#(Bool));

Module bsv_assert_transition
Description Ensures that the value of a specified expression transitions properly

froma start state to the specified next state.
Interface Used AssertTransitionTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_transition#(OVLDefaults#(a_type)
defaults)(AssertTransitionTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_unchange
Description Ensures that the value of the specified expression does not change during

a specified number of clock cycles after a start event initiates checking.
Interface Used AssertStartTest_IFC
Parameters common assertion parameters

action_on_new_start (default value = OVL_IGNORE_NEW_START)
num_cks (default value = 1)

Module Declaration
module bsv_assert_unchange#(OVLDefaults#(a_type) defaults)

(AssertStartTest_IFC#(a_type))
provisos (Bits#(a_type, sizea),

Bounded#(a_type), Eq#(a_type));

Module bsv_assert_width
Description Ensures that when the test expression goes high it stays high for at least

min and at most max clock cycles.
Interface Used AssertTest_IFC
Parameters common assertion parameters

min_cks (default value = 1)
max_cks (default value = 1)

Module Declaration
module bsv_assert_width#(OVLDefaults#(Bool) defaults)

(AssertTest_IFC#(Bool));
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Module bsv_assert_win_change
Description Ensures that the value of a specified expression changes in a specified

window between a start event and a stop event.
Interface Used AssertStartStopTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_win_change#(OVLDefaults#(a_type)
defaults)(AssertStartStopTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_win_unchange
Description Ensures that the value of a specified expression does not change in a

specified window between a start event and a stop event.
Interface Used AssertStartStopTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_win_unchange#(OVLDefaults#(a_type)
defaults)(AssertStartStopTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Module bsv_assert_window
Description Ensures that the value of a specified event is True between a specified

window between a start event and a stop event.
Interface Used AssertStartStopTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_window#(OVLDefaults#(Bool) defaults)
(AssertStartStopTest_IFC#(Bool));

Module bsv_assert_zero_one_hot
Description ensure that exactly one bit of a variable is active high or zero.
Interface Used AssertTest_IFC
Parameters common assertion parameters
Module Declaration

module bsv_assert_zero_one_hot#(OVLDefaults#(a_type)
defaults)(AssertTest_IFC#(a_type))

provisos (Bits#(a_type, sizea),
Bounded#(a_type), Eq#(a_type));

Example using bsv assert increment

This example checks that a test expression is always incremented by a value of 3. The assertion
passes for the first 10 increments and then starts failing when the increment amount is changed from
3 to 1.

347



Reference Guide Bluespec SystemVerilog

import OVLAssertions::*; // import the OVL Assertions package

module assertIncrement (Empty);

Reg#(Bit#(8)) count <- mkReg(0);
Reg#(Bit#(8)) test_expr <- mkReg(0);

// set the default values
let defaults = mkOVLDefaults;

// override the default increment value and set = 3
defaults.value = 3;

// instantiate an instance of the module bsv_assert_increment using
// the name assert_mod and the interface AssertTest_IFC
AssertTest_IFC#(Bit#(8)) assert_mod <- bsv_assert_increment(defaults);

rule every (True); // Every clock cycle
assert_mod.test(test_expr); // the assertion is checked

endrule

rule increment (True);
count <= count + 1;
if (count < 10) // for 10 cycles

test_expr <= test_expr + 3; // increment the expected amount
else if (count < 15)

test_expr <= test_expr + 1; // then start incrementing by 1
else

$finish;
endrule

endmodule

Using The Library

In order to use the OVLAssertions package, a user must first download the source OVL library from
Accellera (http://www.accellera.org). In addition, that library must be made available when
building a simulation executable from the BSV generated Verilog.

If the bsc compiler is being used to generate the Verilog simulation executable, the BSC_VSIM_FLAGS
environment variable can be used to set the required simulator flags that enable use of the OVL
library.

For instance, if the iverilog simulator is being used and the OVL library is located in the directory
shared/std_ovl, the BSC_VSIM_FLAGS environment variable can be set to -̈I shared/std_ovl -Y
.vlib -y shared/std_ovl -DOVL_VERILOG=1 -DOVL_ASSERT_ON=1¨. These flags:

• Add shared/std_ovl to the Verilog and include search paths.

• Set .vlib as a possible file suffix.

• Set flags used in the OVL source code.

The exact flags to be used will differ based on what OVL behavior is desired and which Verilog
simulator is being used.
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C.9 Multiple Clock Domains and Clock Generators

Package

import Clocks :: * ;

Description

The BSV Clocks library provide features to access and change the default clock. Moreover, there
are hardware primitives to generate clocks of various shapes, plus several primitives which allow the
safe crossing of signals and data from one clock domain to another.

The Clocks package uses the data types Clock and Reset as well as clock functions which are
described below but defined in the Prelude package.

Each section describes a related group of modules, followed by a table indicating the Verilog modules
used to implement the BSV modules.

Types and typeclasses

The Clocks package uses the abstract data types Clock and Reset, which are defined in the Prelude
package. These are first class objects. Both Clock and Reset are in the Eq type class, meaning two
values can be compared for equality.

Clock is an abstract type of two components: a single Bit oscillator and a Bool gate.

typedef ... Clock ;

Reset is an abstract type.

typedef ... Reset ;

Type Classes for Clock and Reset

Bits Eq Literal Arith Ord Bounded Bitwise Bit Bit
Reduction Extend

Clock
√

Reset
√

Example: Declaring a new clock

Clock clk0;

Example: Instantiating a register with clock and reset

Reg#(Byte) a <- mkReg(0, clocked_by clks0, reset_by rst0);

Functions

The following functions are defined in the Prelude package but are used with multiple clock domains.

Clock Functions

exposeCurrentClock This function returns a value of type Clock, which is the current clock
of the module.

module exposeCurrentClock ( Clock c );
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exposeCurrentReset This function returns a value of type Reset, which is the current reset
of the module.

module exposeCurrentReset ( Reset r );

Both exposeCurrentClock and exposeCurrentReset use the module instantiation syntax (<-) to
return the value. Hence these can only be used from within a module.

Example: setting a reset to the current reset

Reset reset_value <- exposeCurrentReset;

Example: setting a clock to the current clock

Clock clock_value <- exposeCurrentClock;

sameFamily A Boolean function which returns True if the clocks are in the same
family, False if the clocks are not in the same family. Clocks in the
same family have the same oscillator but may have different gate con-
ditions.

function Bool sameFamily ( Clock clka, Clock clkb ) ;

isAncestor A Boolean function which returns True if clka is an ancestor of clkb,
that is clkb is a gated version of clka (clka itself may be gated) or if
clka and clkb are the same clock. The ancestry relation is a partial
order (ie., reflexive, transitive and antisymmetric).

function Bool isAncestor ( Clock clka, Clock clkb ) ;

clockOf Returns the current clock of the object obj.

function Clock clockOf ( a_type obj ) ;

noClock Specifies a null clock, a clock where the oscillator never rises.

function Clock noClock() ;

resetOf Returns the current reset of the object obj.

function Reset resetOf ( a_type obj ) ;

350



Bluespec SystemVerilog Reference Guide

noReset Specifies a null reset, a reset which is never asserted.

function Reset noReset() ;

C.9.1 Clock Generators and Clock Manipulation

Description

This section provides modules to generate new clocks and to modify the existing clock.

The modules mkAbsoluteClock, mkAbsoluteClockFull, mkClock, and mkUngatedClock all define a
new clock, one not based on the current clock. Both mkAbsoluteClock and mkAbsoluteClockFull
define new oscillators and are not synthesizable. mkClock and mkUngatedClock use an existing oscil-
lator to create a clock, and is synthesizable. The modules, mkGatedClock and mkGatedClockFromCC
use existing clocks to generate another clock in the same family.

Interfaces and Methods

The MakeClockIfc supports user-defined clocks with irregular waveforms created with mkClock
and mkUngatedClock, as opposed to the fixed-period waveforms created with the mkAbsoluteClock
family.

MakeClockIfc Interface
Method and subinterfaces Arguments

Name Type Description Name Description
setClockValue Action Changes the value of the

clock at the next edge of
the clock

value Value the clock will
be set to, must be a
one bit type

getClockValue one_bit_type Retrieves the last value of
the clock

setGateCond Action Changes the gating condi-
tion

gate Must be of the type
Bool

getGateCond Bool Retrieves the last gating
condition set

new_clk Interface Clock interface provided
by the module

interface MakeClockIfc#(type one_bit_type);
method Action setClockValue(one_bit_type value) ;
method one_bit_type getClockValue() ;
method Action setGateCond(Bool gate) ;
method Bool getGateCond() ;
interface Clock new_clk ;

endinterface

The GatedClockIfc is used for adding a gate to an existing clock.

GatedClockIfc Interface
Method and subinterfaces Arguments

Name Type Description Name Description
setGateCond Action Changes the gating condi-

tion
gate Must be of the type

Bool
getGateCond Bool Retrieves the last gating

condition set
new_clk Interface Clock interface provided

by the module
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interface GatedClockIfc ;
method Action setGateCond(Bool gate) ;
method Bool getGateCond() ;
interface Clock new_clk ;

endinterface

Modules

The mkClock module creates a Clock type from a one-bit oscillator and a Boolean gate condition.
There is no family relationship between the current clock and the clock generated by this module.
The initial values of the oscillator and gate are passed as parameters to the module. When the
module is out of reset, the oscillator value can be changed using the setClockValue method and the
gate condition can be changed by calling the setGateCond method. The oscillator value and gate
condition can be queried with the getClockValue and getGateCond methods, respectively. The
clock created by mkClock is available as the new_clk subinterface. When setting the gate condition,
the change does not affect the generated clock until it is low, to prevent glitches.

The mkUngatedClock module is an ungated version of the mkClock module. It takes only an oscillator
argument (no gate argument) and returns the same new_clock interface. Since there is no gate,
an error is returned if the design calls the setGetCond method. The getGateCond method always
returns True.

Figure 6: Clock Generator

mkClock Creates a Clock type from a one-bit oscillator input, and a Boolean gate
condition. There is no family relationship between the current clock and the
clock generated by this module.

module mkClock #( one_bit_type initVal, Bool initGate)
( MakeClockIfc#(one_bit_type) ifc )

provisos( Bits#(one_bit_type, 1) ) ;

mkUngatedClock Creates an ungated Clock type from a one-bit oscillator input. There is no
family relationship between the current clock and the clock generated by this
module.

module mkUngatedClock #( one_bit_type initVal)
( MakeClockIfc#(one_bit_type) ifc )

provisos( Bits#(one_bit_type, 1) ) ;
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The mkGatedClock module adds (logic and) a Boolean gate condition to an existing clock, thus
creating another clock in the same family. The source clock is provided as the argument clk_in.
The gate condition is controlled by an asynchronously-reset register inside the module. The register
is set with the setGateCond Action method of the interface and can be read with getGateCond
method. The reset value of the gate condition register is provided as an instantiation parameter.
The clock for the register (and thus these set and get methods) is the default clock of the module;
to specify a clock other than the default clock, use the clocked_by directive.

Figure 7: Gated Clock Generator

mkGatedClock Creates another clock in the same family by adding logic and a Boolean gate
condition to the current clock.

module mkGatedClock#(Bool v) ( Clock clk_in, GatedClockIfc ifc );

For convenience, we provide an alternate version in which the source clock is the default clock of the
module

mkGatedClockFromCC An alternate interface for the module mkGatedClock in which the source
clock is the default clock of the module.

module mkGatedClockFromCC#(Bool v) ( GatedClockIfc ifc );

The modules mkAbsoluteClock and mkAbsoluteClockFull provide parametizable clock generation
modules which are not synthesizable, but may be useful for testbenches. In mkAbsoluteClock, the
first rising edge (start) and the period are defined by parameters. These parameters are measured
in Verilog delay times, which are usually specified during simulation with the timescale directive.
Refer to the Verilog LRM for more details on delay times. s Additional parameters are provided by
mkAbsoluteClockFull.

mkAbsoluteClock The first rising edge (start) and period are defined by parameters.
This module is not synthesizable.

module mkAbsoluteClock #( Integer start,
Integer period )
( Clock );
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mkAbsoluteClockFull The value initValue is held until time start, and then the clock
oscillates. The value not(initValue) is held for time compValTime,
followed by initValue held for time initValTime. Hence the clock
period after startup is compValTime + initValTime. This module is
not synthesizable.

module mkAbsoluteClockFull #( Integer start,
Bit#(1) initValue,
Integer compValTime,
Integer initValTime )
( Clock );

Verilog Modules

The BSV modules correspond to the following Verilog modules, which are found in the Bluespec
Verilog library, $BLUESPECDIR/Verilog/.

BSV Module Name Verilog Module Name

mkAbsoluteClock ClockGen.v
mkAbsoluteClockFull
mkClock MakeClock.v
mkUngatedClock
mkGatedClock GatedClock.v
mkGatedClockFromCC

C.9.2 Clock Multiplexing

Description

Bluespec provides two gated clock multiplexing primitives: a simple combinational multiplexor and
a stateful module which generates an appropriate reset signal when the clock changes. The first
multiplexor uses the interface MuxClockIfc, which includes an Action method to select the clock
along with a Clock subinterface. The second multiplexor uses the interface SelectClockIfc which
also has a Reset subinterface.

Ungated versions of these modules are also provided. The ungated versions are identical to the gated
versions, except that the input and output clocks are ungated.

Interfaces and Methods

MuxClockIfc Interface
Method and subinterfaces Arguments

Name Type Description Name Description
select Action Method used to select the

clock based on the Boolean
value ab

ab if True, clock_out is
taken from aclk

clock_out Interface Clock interface

interface MuxClkIfc ;
method Action select ( Bool ab ) ;
interface Clock clock_out ;

endinterface
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SelectClockIfc Interface
Method and subinterfaces Arguments

Name Type Description Name Description
select Action Method used to select the

clock based on the Boolean
value ab

ab if True, clock out is
taken from aclk

clock_out Interface Clock interface
reset_out Interface Reset interface

interface SelectClkIfc ;
method Action select ( Bool ab ) ;
interface Clock clock_out ;
interface Reset reset_out ;

endinterface

Modules

The mkClockMux module is a simple combinational multiplexor with a registered clock selection
signal, which selects between clock inputs aClk and bClk. The provided Verilog module does not
provide any glitch detection or removal logic; it is the responsibility of the user to provide additional
logic to provide glitch-free behavior. The mkClockMux module uses two arguments and provides a
Clock interface. The aClk is selected if ab is True, while bClk is selected otherwise.

The mkUngatedClockMux module is identical to the mkClockMux module except that the input and
output clocks are ungated. The signals aClkgate, bClkgate, and outClkgate in figure 8 don’t exist.

Figure 8: Clock Multiplexor

mkClockMux Simple combinational multiplexor, which selects between aClk and
bClk.

module mkClockMux ( Clock aClk, Clock bClk )
( MuxClkIfc ) ;

mkUngatedClockMux Simple combinational multiplexor, which selects between aClk and
bClk. None of the clocks are gated.

module mkUngatedClockMux ( Clock aClk, Clock bClk )
( MuxClkIfc ) ;
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The mkClockSelect module is a clock multiplexor containing additional logic which generates a
reset whenever a new clock is selected. As such, the interface for the module includes an Action
method to select the clock (if ab is True clock out is taken from aClk), provides a Clock interface,
and also a Reset interface.

The constructor for the module uses two clock arguments, and provides the MuxClockIfc interface.
The underlying Verilog module is ClockSelect.v; it is expected that users can substitute their own
modules to meet any additional requirements they may have. The parameter stages is the number
of clock cycles in which the reset is asserted after the clock selection changes.

The mkUngatedClockSelect module is identical to the mkClockSelect module except that the input
and output clocks are ungated. The signals aClkgate, bClkgate, and outClk_gate in figure 9 don’t
exist.

Figure 9: Clock Multiplexor with reset

mkClockSelect Clock Multiplexor containing additional logic which generates a reset
whenever a new clock is selected.

module mkClockSelect #( Integer stages,
Clock aClk,
Clock bClk,

( SelectClockIfc ) ;

mkUngatedClockSelect Clock Multiplexor containing additional logic which generates a reset
whenever a new clock is selected. The input and output clocks are
ungated.

module mkUngatedClockSelect #( Integer stages,
Clock aClk,
Clock bClk,

( SelectClockIfc ) ;

Verilog Modules

The BSV modules correspond to the following Verilog modules, which are found in the Bluespec
Verilog library, $BLUESPECDIR/Verilog/.
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BSV Module Name Verilog Module Name

mkClockMux ClockMux.v
mkClockSelect ClockSelect.v
mkUngatedClockMux UngatedClockMux.v
mkUngatedClockSelect UngatedClockSelect.v

C.9.3 Clock Division

Description

A clock divider provides a derived clock and also a ClkNextRdy signal, which indicates that the
divided clock will rise in the next cycle. This signal is associated with the input clock, and can only
be used within that clock domain.

The AlignedFIFOs package (Section C.2.8) contains parameterized FIFO modules for creating syn-
chronizing FIFOs between clock domains with aligned edges.

Data Types

The ClkNextRdy is a Boolean signal which indicates that the slow clock will rise in the next cycle.

typedef Bool ClkNextRdy ;

Interfaces and Methods

ClockDividerIfc Interface
Name Type Description
fastClock Interface The original clock
slowClock Interface The derived clock
clockReady Bool Boolean value which indicates that the slow clock will rise

in the next cycle. The method is in the clock domain of the
fast clock.

interface ClockDividerIfc ;
interface Clock fastClock ;
interface Clock slowClock ;
method ClkNextRdy clockReady() ;

endinterface

Modules

The divider parameter may be any integer greater than 1. For even dividers the generated clock’s
duty cycle is 50%, while for odd dividers, the duty cycle is (divider/2)/divider. Since divisor is an
integer, the remainder is truncated when divided. The current clock (or the clocked_by argument)
is used as the source clock.

mkClockDivider Basic clock divider.

module mkClockDivider #( Integer divisor )
( ClockDividerIfc ) ;
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Figure 10: Clock Divider

mkGatedClockDivider A gated verison of the basic clock divider.

module mkGatedClockDivider #( Integer divisor
)( ClockDividerIfc ) ;

The mkClockDividerOffset module provides a clock divider where the rising edge can be defined
relative to other clock dividers which have the same divisor. An offset of value 2 will produce a rising
edge one fast clock after a divider with offset 1. mkClockDivider is just mkClockDividerOffset
with an offset of value 0.

mkClockDividerOffset Provides a clock divider, where the rising edge can be defined rel-
ative to other clock dividers which have the same divisor.

module mkClockDividerOffset #( Integer divisor,
Integer offset )

( ClockDividerIfc ) ;

The mkClockInverter and mkGatedClockInverter modules generate an inverted clock having the
same period but opposite phase as the current clock. The mkGatedClockInverter is a gated version
of mkClockInverter. The output clock includes a gate signal derived from the gate of the input
clock.

mkClockInverter Generates an inverted clock having the same period but opposite
phase as the current clock.

module mkClockInverter ( ClockDividerIfc ) ;

mkGatedClockInverter A gated version of mkClockInverter.

module mkGatedClockInverter ( ClockDividerIfc ifc ) ;

Verilog Modules

The BSV modules correspond to the following Verilog modules, which are found in the Bluespec
Verilog library, $BLUESPECDIR/Verilog/.
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BSV Module Name Verilog Module Name

mkClockDivider ClockDiv.v
mkClockDividerOffset
mkGatedClockDivider GatedClockDiv.v
mkClockInverter ClockInverter.v
mkGatedClockInverter GatedClockInverter.v

C.9.4 Bit Synchronizers

Description

Bit synchronizers are used to safely transfer one bit of data from one clock domain to another. More
complicated synchronizers are provided in later sections.

Interfaces and Methods

The SyncBitIfc interface provides a send method which transmits one bit of information from one
clock domain to the read method in a second domain.

SyncBitIfc Interface
Methods Arguments

Name Type Description Name Description
send Action Transmits information from

one clock domain to the sec-
ond domain

bitData One bit of information
transmitted

read one_bit_type Reads one bit of data sent
from a different clock domain

interface SyncBitIfc #(type one_bit_type) ;
method Action send ( one_bit_type bitData ) ;
method one_bit_type read () ;

endinterface

Modules

The mkSyncBit, mkSyncBitFromCC and mkSyncBitToCC modules provide a SyncBitIfc across clock
domains. The send method is in one clock domain, and the read method is in a second clock
domain, as shown in Figure 11. The FromCC and ToCC versions differ in that the FromCC module
moves data from the current clock (module’s clock), while the ToCC module moves data to the current
clock domain. The hardware implementation is a two register synchronizer, which can be found in
SyncBit.v in the Bluespec Verilog library directory.

Figure 11: Bit Synchronizer
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mkSyncBit Moves data across clock domains. The in and out clocks, along with
the input reset, are explicitly provided. The default clock and reset
are ignored.

module mkSyncBit #( Clock sClkIn, Reset sRst,
Clock dClkIn )

( SyncBitIfc #(one_bit_type) )
provisos( Bits#(one_bit_type, 1)) ;

mkSyncBitFromCC Moves data from the current clock (the module’s clock) to a different
clock domain. The input clock and reset are the current clock and
reset.

module mkSyncBitFromCC #( Clock dClkIn )
( SyncBitIfc #(one_bit_type) )

provisos( Bits#(one_bit_type, 1)) ;

mkSyncBitToCC Moves data into the current clock domain. The output clock is the
current clock. The current reset is ignored.

module mkSyncBitToCC #( Clock sClkIn, Reset sRstIn )
( SyncBitIfc #(one_bit_type) )

provisos( Bits#(one_bit_type, 1)) ;

The mkSyncBit15 module (one and a half) and its variants provide the same interface as the
mkSyncBit modules, but the underlying hardware is slightly modified, as shown in Figure 12. For
these synchronizers, the first register clocked by the destination clock triggers on the falling edge of
the clock.

Figure 12: Bit Synchronizer 1.5 - first register in destination domain triggers on falling edge
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mkSyncBit15 Similar to mkSyncBit except it triggers on the falling edge of the clock.
The in and out clocks, along with the input reset, are explicitly pro-
vided. The default clock and reset are ignored.

module mkSyncBit15 #( Clock sClkIn, Reset sRst,
Clock dClkIn )

( SyncBitIfc #(one_bit_type) )
provisos( Bits#(one_bit_type, 1)) ;

mkSyncBit15FromCC Moves data from the current clock and is triggered on the falling edge
of the clock. The input clock and reset are the current clock and reset.

module mkSyncBit15FromCC #(Clock dClkIn)
(SyncBitIfc #(one_bit_type))

provisos( Bits#(one_bit_type, 1)) ;

mkSyncBit15ToCC Moves data into the current clock domain and is triggered on the falling
edge of the clock. The output clock is the current clock. The current
reset is ignored.

module mkSyncBit15ToCC #( Clock sClkIn, Reset sRstIn )
( SyncBitIfc #(one_bit_type) )

provisos( Bits#(one_bit_type, 1)) ;

The mkSyncBit1 module, shown in Figure 13, also provides the same interface but only uses one
register in the destination domain. Synchronizers like this, which use only one register, are not
generally used since meta-stable output is more probable. However, one can use this synchronizer
provided special meta-stable resistant flops are selected during physical synthesis or (for example) if
the output is immediately registered.

Figure 13: Bit Synchronizer 1.0 - single register in destination domain
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mkSyncBit1 Moves data from one clock domain to another clock domain, with only
one register in the destination domain. The in and out clocks, along
with the input reset, are explicitly provided. The default clock and
reset are ignored.

module mkSyncBit1 #( Clock sClkIn, Reset sRst,
Clock dClkIn )

( SyncBitIfc #(one_bit_type) )
provisos( Bits#(one_bit_type, 1)) ;

mkSyncBit1FromCC Moves data from the current clock domain, with only one register in
the destination domain. The input clock and reset are the current
clock and reset.

module mkSyncBit1FromCC #( Clock dClkIn )
( SyncBitIfc #(one_bit_type) )

provisos( Bits #(one_bit_type, 1)) ;

mkSyncBit1ToCC Moves data into the current clock domain, with only one register in
the destination domain. The output clock is the current clock. The
current reset is ignored.

module mkSyncBit1ToCC #( Clock sClkIn, Reset sRstIn )
( SyncBitIfc #(one_bit_type) )

provisos( Bits#(one_bit_type, 1)) ;

The mkSyncBit05 module is similar to mkSyncBit1, but the destination register triggers on the
falling edge of the clock, as shown in Figure 14.

Figure 14: Bit Synchronizer .5 - first register in destination domain triggers on falling edge
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mkSyncBit05 Moves data from one clock domain to another clock domain, with
only one register in the destination domain. The destination register
triggers on the falling edge of the clock. The in and out clocks, along
with the input reset, are explicitly provided. The default clock and
reset are ignored.

module mkSyncBit05 #( Clock sClkIn, Reset sRst,
Clock dClkIn )

( SyncBitIfc #(one_bit_type) )
provisos( Bits#(one_bit_type, 1)) ;

mkSyncBit05FromCC Moves data from the current clock domain, with only one register in
the destination domain, the destination register triggers on the falling
edge of the clock. The input clock and reset are the current clock and
reset.

module mkSyncBit05FromCC #( Clock dClkIn )
(SyncBitIfc #(one_bit_type) )

provisos( Bits#(one_bit_type, 1)) ;

mkSyncBit05ToCC Moves data into the current clock domain, with only one register in
the destination domain, the destination register triggers on the falling
edge of the clock. The output clock is the current clock. The current
reset is ignored.

module mkSyncBit05ToCC #( Clock sClkIn, Reset sRstIn )
( SyncBitIfc #(one_bit_type) )

provisos( Bits#(one_bit_type, 1)) ;

Verilog Modules

The BSV modules correspond to the following Verilog modules, which are found in the Bluespec
Verilog library, $BLUESPECDIR/Verilog/.

BSV Module Name Verilog Module Name

mkSyncBit SyncBit.v
mkSyncBitFromCC
mkSyncBitToCC
mkSyncBit15 SyncBit15.v
mkSyncBit15FromCC
mkSyncBit15ToCC
mkSyncBit1 SyncBit1.v
mkSyncBit1FromCC
mkSyncBit1ToCC
mkSyncBit05 SyncBit05.v
mkSyncBit05FromCC
mkSyncBit05ToCC
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C.9.5 Pulse Synchronizers

Description

Pulse synchronizers are used to transfer a pulse from one clock domain to another.

Interfaces and Methods

The SyncPulseIfc interface provides an Action method, send, which when invoked generates a True
value on the pulse method in a second clock domain.

SyncPulseIfc Interface
Methods

Name Type Description
send Action Starts transmittling a pulse from one clock domain to the

second clock domain.
pulse Bool Where the pulse is received in the second domain. pulse is

True if a pulse is recieved in this cycle.

interface SyncPulseIfc ;
method Action send () ;
method Bool pulse () ;

endinterface

Modules

The mkSyncPulse, mkSyncPulseFromCC and mkSyncPulseToCC modules provide clock domain cross-
ing modules for pulses. When the send method is called from the one clock domain, a pulse will be
seen on the read method in the second. Note that there is no handshaking between the domains,
so when sending data from a fast clock domain to a slower one, not all pulses sent may be seen in
the slower receiving clock domain. The pulse delay is two destination clocks cycles.

Figure 15: Pulse Synchronizer - no handshake

mkSyncPulse Sends a pulse from one clock domain to another. The in and out
clocks, along with the input reset, are explicitly provided. The default
clock and reset are ignored.

module mkSyncPulse #( Clock sClkIn, Reset sRstIn,
Clock dClkIn )

( SyncPulseIfc ) ;
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mkSyncPulseFromCC Sends a pulse from the current clock domain to the other clock domain.
The input clock and reset are the current clock and reset.

module mkSyncPulseFromCC #( Clock dClkIn )
( SyncPulseIfc ) ;

mkSyncPulseToCC Sends a pulse from the other clock domain to the current clock domain.
The output clock is the current clock. The current reset is ignored.

module mkSyncPulseToCC #( Clock sClkIn, Reset sRstIn )
( SyncPulseIfc ) ;

The mkSyncHandshake, mkSyncHandshakeFromCC and mkSyncHandshakeToCC modules provide clock
domain crossing modules for pulses in a similar way as mkSyncPulse modules, except that a hand-
shake is provided in the mkSyncHandshake versions. The handshake enforces that another send does
not occur before the first pulse crosses to the other domain. Note that this only guarantees that the
pulse is seen in one clock cycle of the destination; it does not guarantee that the system on that side
reacted to the pulse before it was gone. It is up to the designer to ensure this, if necessary.

The pulse delay from the send method to the read method is two destination clocks. The send
method is re-enabled in two destination clock cycles plus two source clock cycles after the send
method is called.

Figure 16: Pulse Synchronizer with handshake

mkSyncHandshake Sends a pulse from one clock domain to another clock domain with
handshaking. The in and out clocks, along with the input reset, are
explicitly provided. The default clock and reset are ignored.

module mkSyncHandshake #( Clock sClkIn, Reset sRstIn,
Clock dClkIn )

( SyncPulseIfc ) ;
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mkSyncHandShakeFromCC Sends a pulse with a handshake from the current clock domain.
The input clock and reset are the current clock and reset.

module mkSyncHandshakeFromCC #( Clock dClkIn )
( SyncPulseIfc ) ;

mkSyncHandshakeToCC Sends a pulse with a handshake to the current clock domain. The
output clock is the current clock. The current reset is ignored.

module mkSyncHandshakeToCC #( Clock sClkIn,
Reset sRstIn )

( SyncPulseIfc ) ;

Verilog Modules

The BSV modules correspond to the following Verilog modules, which are found in the Bluespec
Verilog library, $BLUESPECDIR/Verilog/.

BSV Module Name Verilog Module Name

mkSyncPulse SyncPulse.v
mkSyncPulseFromCC
mkSyncPulseToCC
mkSyncHandshake SyncHandshake.v
mkSyncHandshakeFromCC
mkSyncHandshakeToCC

C.9.6 Word Synchronizers

Description

Word synchronizers are used to provide word synchronization across clock domains. The crossings
are handshaked, such that a second write cannot occur until the first is acknowledged (that the data
has been received, but the value may not have been read) by the destination side. The destination
read is registered.

Interfaces and Methods

Word synchronizers use the common Reg interface (redescribed below), but there are a few subtle
differences which the designer should be aware. First, the _read and _write methods are in different
clock domains and, second, the _write method has an implicit “ready” condition which means that
some synchronization modules cannot be written every clock cycle. Both of these conditions are
handled automatically by the Bluespec compiler relieving the designer of these tedious checks.

Reg Interface
Method Arguments

Name Type Description Name Description
_write Action Writes a value x1 x1 Data to be written
_read a_type Returns the value of the reg-

ister
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interface Reg #(a_type);
method Action _write(a_type x1);
method a_type _read();

endinterface: Reg

Modules

The mkSyncReg, mkSyncRegToCC and mkSyncRegFromCC modules provide word synchronization across
clock domains.

Figure 17: Register Synchronization Module (see Figure 16 for the pulse synchronizer with hand-
shake)

mkSyncReg Provides word synchronization across clock domains. The in and out
clocks, along with the input reset, are explicitly provided. The default
clock and reset are ignored.

module mkSyncReg #( a_type initValue,
Clock sClkIn, Reset sRstIn,
Clock dClkIn )

( Reg #(a_type) )
provisos (Bits#(a_type, sa) ) ;

mkSyncRegFromCC Provides word synchronization from the current clock domain. The
input clock and reset are the current clock and reset.

module mkSyncRegFromCC #( a_type initValue,
Clock dClkIn )

( Reg #(a_type) )
provisos (Bits#(a_type, sa)) ;

mkSyncRegToCC Provides word synchronization to the current clock domain. The out-
put clock is the current clock. The current reset is ignored.

module mkSyncRegToCC #( a_type initValue,
Clock sClkIn, Reset sRstIn )

( Reg #(a_type) )
provisos (Bits#(a_type, sa)) ;
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Verilog Modules

The BSV modules correspond to the following Verilog modules, which are found in the Bluespec
Verilog library, $BLUESPECDIR/Verilog/.

BSV Module Name Verilog Module Name

mkSyncReg SyncRegister.v
mkSyncRegFromCC
mkSyncRegToCC

C.9.7 FIFO Synchronizers

Description

The SyncFIFO modules use FIFOs to synchronize data being sent across clock domains, provid-
ing registered full and empty signals (notFull and notEmpty). Additional FIFO synchronizers,
SyncFIFOLevel and SyncFIFOCount can be found in the FIFOLevel package (Section C.2.3).

Interfaces and Methods

The SyncFIFOIfc interface defines an interface similar to the FIFOF interface, except it does not
have a clear method.

SyncFIFOIfc Interface
Method Arguments

Name Type Description Name Description
enq Action Adds an entry to the FIFO sendData Data to be added
deq Action Removes the first entry from

the FIFO
first a_type Returns the first entry
notFull Bool Returns True if there is space

and you can enq into the
FIFO

notEmpty Bool Returns True if there are el-
ements in the FIFO and you
can deq from the FIFO

interface SyncFIFOIfc #(type a_type) ;
method Action enq ( a_type sendData ) ;
method Action deq () ;
method a_type first () ;
method Bool notFull () ;
method Bool notEmpty () ;

endinterface

Modules

The mkSyncFIFO, mkSyncFIFOFromCC and mkSyncFIFOToCC modules provide FIFOs for sending data
across clock domains. Data items enqueued on the source side will arrive at the destination side and
remain there until they are dequeued. The depth of the FIFO is specified by the depth parameter.
The full and empty signals are registered. The module mkSyncFIFO1 is a 1 element synchronized
FIFO.
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Figure 18: Synchronization FIFOs

mkSyncFIFO Provides a FIFO for sending data across clock domains. The enq
method is in the source (sClkIn) domain, while the deq and first
methods are in the destination (dClkIn) domain. The in and out
clocks, along with the input reset, are explicitly provided. The default
clock and reset are ignored.

module mkSyncFIFO #( Integer depth,
Clock sClkIn, Reset sRstIn,
Clock dClkIn )

( SyncFIFOIfc #(a_type) )
provisos (Bits#(a_type, sa));

mkSyncFIFOFromCC Provides a FIFO to send data from the current clock domain into a
second clock domain. The input clock and reset are the current clock
and reset.

module mkSyncFIFOFromCC #( Integer depth,
Clock dClkIn )

( SyncFIFOIfc #(a_type) )
provisos (Bits#(a_type, sa));

mkSyncFIFOToCC Provides a FIFO to send data from a second clock domain into the
current clock domain. The output clock is the current clock. The
current reset is ignored.

module mkSyncFIFOToCC #( Integer depth,
Clock sClkIn, Reset sRstIn )

( SyncFIFOIfc #(a_type) )
provisos (Bits#(a_type, sa));
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mkSyncFIFO1 Provides a 1 element FIFO for sending data across clock domains.
The 1 element module does not have a dedicated output register and
registers for full and empty, as in the depth > 1 module. This module
should be used in clock crossing applications where complete FIFO
handshaking is required, but data throughput or storage is minimal.

module mkSyncFIFO #( Clock sClkIn, Reset sRstIn,
Clock dClkIn )

( SyncFIFOIfc #(a_type) )
provisos (Bits#(a_type, sa));

Verilog Modules

The BSV modules correspond to the following Verilog modules, which are found in the Bluespec
Verilog library, $BLUESPECDIR/Verilog/.

BSV Module Name Verilog Module Name

mkSyncFIFO SyncFIFO.v
mkSyncFIFOFromCC
mkSyncFIFOToCC
mkSyncFIFO1 SyncFIFO1.v

C.9.8 Asynchronous RAMs

Description

An asynchronous RAM provides a domain crossing by having its read and write methods in separate
clock domains.

Interfaces and Methods

DualPortRamIfc Interface
Method Arguments

Name Type Description Name Description
write Action Writes data to a an ad-

dress in a RAM
wr_addr Address of datatype addr_t

din Data of datatype data_t
read data_d Reads the data from the

RAM
rd_addr Address to be read from

interface DualPortRamIfc #(type addr_t, type data_t);
method Action write( addr_t wr_addr, data_t din );
method data_t read ( addr_t rd_addr);

endinterface: DualPortRamIfc

mkDualRam Provides an asynchronous RAM for when the read and the write meth-
ods are in separate clock domains. The write method is clocked by the
default clock, the read method is not clocked.

module mkDualRam( DualPortRamIfc #(addr_t, data_t) )
provisos ( Bits#(addr_t, sa),

Bits#(data_t, da) ) ;
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Figure 19: Ansynchronous RAM

Verilog Modules

The BSV modules correspond to the following Verilog modules, which are found in the Bluespec
Verilog library, $BLUESPECDIR/Verilog/.

BSV Module Name Verilog Module Name

mkDualRam DualPortRam.v

C.9.9 Null Crossing Primitives

Description

In these primitives, no synchronization is actually done. It is up to the designer to verify that it is
safe for the signal to be used in the other domain. The mkNullCrossingWire is a wire synchronizer.
The mkNullCrossingReg modules are equivalent to a register (mkReg, mkRegA, or mkRegU depending
on the module) followed by a mkNullCrossingWire.

The older mkNullCrossing primitive is deprecated.

Interfaces

The mkNullCrossingWire module, shown in Figure 20, provides the ReadOnly interface which is
defined in the Prelude library B.4.7.

The mkNullCrossingReg modules provide the CrossingReg interface.

Interfaces and Methods

CrossingReg Interface
Method Arguments

Name Type Description Name Description
_write Action Writes a value datain datain Data to be written.
_read a_type Returns the value of the

register in the source clock
domain

crossed a_type Returns the value of the
register in the destination
clock domain

interface CrossingReg #( type a_type ) ;
method Action _write(a datain) ;
method a_type _read() ;
method a_type crossed() ;

endinterface
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Figure 20: Wire synchronizer

Modules

mkNullCrossingWire Defines a synchronizer that contains only a wire. It is left up to the
designer to ensure the clock crossing is safe.

module mkNullCrossingWire #( Clock dClk, a_type dataIn )
( ReadOnly#(a_type) )

provisos (Bits#(a_type, sa)) ;

Figure 21: Register with wire synchronizer

mkNullCrossingReg Defines a synchronizer that contains a register with a synchronous reset
value, followed by a wire synchronizer. It is left up to the designer to
ensure the clock crossing is safe.

module mkNullCrossingReg( Clock dClk, a_type resetval,
CrossingReg#(a_type) ifc )

provisos (Bits#(a_type, sz_a)) ;

mkNullCrossingRegA Defines a synchronizer that contains a register with a given reset value
where reset is asynchronous, followed by a wire synchronizer. It is left
up to the designer to ensure the clock crossing is safe.

module mkNullCrossingRegA( Clock dClk, a_type resetval,
CrossingReg#(a_type) ifc )

provisos (Bits#(a_type, sz_a)) ;
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mkNullCrossingRegU Defines a synchronizer that contains a register without a reset, followed
by a wire synchronizer. It is left up to the designer to ensure the clock
crossing is safe.

module mkNullCrossingRegU( Clock dClk,
CrossingReg#(a_type) ifc )

provisos (Bits#(a_type, sz_a)) ;

Example: instantiating a null synchronizer

// domain2sig is domain1sig synchronized to clk0 with just a wire.
ReadOnly#(Bit#(2)) domain2sig <- mkNullCrossingWire (clk0, domain1sig);

Note: no synchronization is actually done. This is purely a way to tell BSC that it is safe to use the
signal in the other domain. It is the responsibility of the designer to verify that this is correct.

There are some restrictions on the use of a mkNullCrossingWire. The expression used as the data
argument must not have an implicit condition, and there cannot be another rule which is required
to schedule before any method called in the expression.

mkNullCrossingWires may not be used in sequence to pass a signal across multiple clock boundaries
without synchronization. Once a signal has been crossed from one domain to a second domain
without synchronization, it cannot be subsequently passed unsynchronized to a third domain (or
back to the first domain).

Verilog Modules

The BSV modules correspond to the following Verilog modules, which are found in the Bluespec
Verilog library, $BLUESPECDIR/Verilog/.

BSV Module Name Verilog Module Name

mkNullCrossingWire BypassWire.v

C.9.10 Reset Synchronization and Generation

Description

This section describes the interfaces and modules used to synchronize reset signals from one clock
domain to another and to create reset signals. Reset generation converts a Boolean type to a Reset
type, where the reset is associated with the default or clocked_by clock domain.

Interfaces and Methods

The MakeResetIfc interface is provided by the reset generators mkReset and mkResetSync.

MakeResetIfc Interface
Method

Name Type Description
assertReset Action Method used to assert the reset
isAsserted Bool Indicates whether the reset is asserted
new_rst Reset Generated output reset
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interface MakeResetIfc;
method Action assertReset();
method Bool isAsserted();
interface Reset new_rst;

endinterface

The interface MuxRstIfc is provided by the mkResetMux module.

MuxRstIfc Interface
Method Arguments

Name Type Description Name Description
select Action Method used to select

the reset based on the
Boolean value ab

ab Value determines which
input reset to select

reset_out Reset Generated output reset

interface MuxRstIfc;
method Action select ( Bool ab );
interface Reset reset_out;

endinterface

Modules

Reset Synchronization To synchronize resets from one clock domain to another, both syn-
chronous and asynchronous modules are provided. The stages argument is the number of full clock
cycles the output reset is held for after the input reset is deasserted. This is shown as the number of
flops in figures 22 and 23. Specifying a 0 for the stages argument results in the creation of a simple
wire between sRst and dRstOut.

Figure 22: Module for asynchronous resets

mkAsyncReset Provides synchronization of a source reset (sRst) to the destination
domain. The output reset occurs immediately once the source reset is
asserted.

module mkAsyncReset #( Integer stages,
Reset sRst,
Clock dClkIn )

( Reset ) ;
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mkAsyncResetFromCR Provides synchronization of the current reset to the destination do-
main. There is no source reset sRst argument because it is taken
from the current reset. The output reset occurs immediately once the
current reset is asserted.

module mkAsyncResetFromCR #( Integer stages,
Clock dClkIn )

( Reset ) ;

The less common mkSyncReset modules are provided for convenience, but these modules require
that sRst be held during a positive edge of dClkIn for the reset assertion to be detected. Both
mkSyncReset and mkSyncResetFromCR use the model in figure 23.

Figure 23: Module for synchronous resets

mkSyncReset Provides synchronization of a source reset (sRst) to the destination
domain. The reset is asserted at the next rising edge of the clock.

module mkSyncReset #( Integer stages
Reset sRst,
Clock dClkIn )

( Reset ) ;

mkSyncResetFromCR Provides synchronization of the current reset to the destination do-
main. The reset is asserted at the next rising edge of the clock.

module mkSyncResetFromCR #( Integer stages
Clock dClkIn )

( Reset ) ;

Example: instantiating a reset synchronizer

// 2 is the number of stages
Reset rstn2 <- mkAsyncResetFromCR (2, clk0);

// if stages = 0, the default reset is used directly
Reset rstn0 <- mkAsyncResetFromCR (0, clk0);
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Reset Generation Two modules are provided for reset generation, mkReset and mkResetSync,
where each module has one parameter, stages. The stages parameter is the number of full clock
cycles the output reset is held after the inRst, as seen in figure 24, is deasserted. Specifying a 0
for the stages parameter results in the creation of a simple wire between the input register and
the output reset. That is, the reset is asserted immediately and not held after the input reset is
deasserted. It becomes the designer’s responsibility to ensure that the input reset is asserted for
sufficient time to allow the design to reset properly. The reset is controlled using the assertReset
method of the MakeResetIfc interface.

The difference between mkReset and mkResetSync is that for the former, the assertion of reset
is immediate, while the later asserts reset at the next rising edge of the clock. Note that use of
mkResetSync is less common, since the reset requires clock edges to take effect; failure to assert
reset for a clock edge will result in a reset not being seen at the output reset.

Figure 24: Module for generating resets

mkReset Provides conversion of a Boolean type to a Reset type, where the reset
is associated with dClkIn. This module uses the model in figure 24.
startInRst indicates the reset value of the register. If startInRst
is True, the reset value of the register is 0, which means the output
reset will be asserted whenever the currentReset (sRst) is asserted.
rst_out will remain asserted for the number of clock cycles given
by the stages parameter after sRst is deasserted. If startInRst is
False, the output reset will not be asserted when sRst is asserted,
but only when the assert_reset method is invoked. At the start of
simulation rst_out will only be asserted if startinRst is True and
sRst is initially asserted.

module mkReset #( Integer stages,
Bool startInRst,
Clock dClkIn )

( MakeResetIfc ) ;
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mkResetSync Provides conversion of a Boolean type to a Reset type, where the reset
is associated with dClkIn and the assertion of reset is at the next
rising edge of the clock. This module uses the model in figure 24.
startInRst indicates the reset value of the register. If startInRst
is True, the reset value of the register is 0, which means the output
reset will be asserted whenever the currentReset (sRst) is asserted.
rst_out will remain asserted for the number of clock cycles given
by the stages parameter after sRst is deasserted. If startInRst is
False, the output reset will not be asserted when sRst is asserted,
but only when the assert_reset method is invoked. At the start of
simulation rst_out will only be asserted if startinRst is True and
sRst is initially asserted.

module mkResetSync #( Integer stages,
Bool startInRst,
Clock dClkIn )

( MakeResetIfc ) ;

A reset multiplexor mkResetMux, as seen in figure 25, creates one reset signal by selecting between
two existing reset signals.

Figure 25: Reset Multiplexor

mkResetMux Multiplexor which selects between two input resets, aRst and bRst,
to create a single output reset rst_out. The reset is selected through
a Boolean value provided to the select method where True selects
aRst.

module mkResetMux #( Reset aRst, Reset bRst )
( MuxRstIfc rst_out ) ;

For testbenches, in which an absolute clock is being created, it is helpful to generate a reset for
that clock. The module mkInitialReset is available for this purpose. It generates a reset which is
asserted at the start of simulation. The reset is asserted for the number of cycles specified by the
parameter cycles, counting the start of time as 1 cycle. Therefore, a cycles value of 1 will cause
the reset to turn off at the first clock tick. This module is not synthesizable.
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mkInitialReset Generates a reset for cycles cycles, where the cycles parameter must
be greater than zero. The clocked_by clause indicates the clock the
reset is associated with. This module is not synthesizable.

module mkInitialReset #( Integer cycles )
( Reset ) ;

Example:

Clock c <- mkAbsoluteClock (10, 5);
// a reset associated with clock c:
Reset r <- mkInitialReset (2, clocked_by c);

When two reset signals need to be combined so that some logic can be reset when either input reset
is asserted, the mkResetEither module can be used.

Figure 26: Reset Either

mkResetEither Generates a reset which is asserted whenever either input reset is as-
serted.

module mkResetEither ( Reset aRst,
Reset bRst)

( Reset out_ifc );

Example:

Reset r <- mkResetEither(rst1, rst2);

mkResetInverter Generates an inverted Reset.

module mkResetInverter#(Reset in)
(Reset);

isResetAsserted Tests whether a Reset is asserted, providing a Boolean value in the
clock domain associated with the Reset.

module isResetAsserted( ReadOnly#(Bool) ifc ) ;
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Verilog Modules

The BSV modules correspond to the following Verilog modules, which are found in the Bluespec
Verilog library, $BLUESPECDIR/Verilog/.

BSV Module Name Verilog Module Name Comments

mkASyncReset SyncReset0.v when stages==0
mkASyncResetFromCR SyncResetA.v
mkSyncReset SyncReset0.v when stages==0
mkSyncResetFromCR SyncReset.v
mkReset MakeReset0.v when stages==0

MakeResetA.v instantiates SyncResetA
mkResetSync MakeReset0.v when stages==0

MakeReset.v instantiates SyncReset
mkResetMux ResetMux.v
mkResetEither ResetEither.v
mkResetInverter ResetInverter.v
isResetAsserted ResetToBool.v

C.10 Special Collections

C.10.1 ModuleContext

Package

import ModuleContext :: * ;

Description

An ordinary Bluespec module, when instantiated, adds state elements and rules to the growing
accumulation of elements and rules already in the design. In some designs, items other than state
elements and rules must be accumulated as well. While there is a need to add these items, it is also
desirable to keep these additional design details separate from the main design, keeping the natural
structure of the design intact.

The ModuleContext package provides the capability of accumulating items and maintaining the
compile-time state of additional items, in such a way that it doesn’t change the structure of the
original design.

The ModuleContext mechanism allows the designer to hide the details of the additional interfaces.
Before the module can be synthesized, it must be converted (or exposed) into a module containing
only rules and state elements, as the compiler does not know how to handle the other items. The
ModuleContext package provides the mechanisms to allow additional items to be collected, processed,
and exposed.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Contexts di-
rectory. To customize a package, copy the file into a local directory and then include the local
directory in the path when compiling. This is done by specifying the search path with the -p option
as described in the BSV Users Guide.

Types and Type Classes
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The default BSV module type is Module, but you can define other BSV module types as well. The
ModuleContext type is a variation on the Module type that allows additional items, other than states
and rules, to be collected while elaborating the module structure.

The ModuleContext package defines the typeclass Context, which includes functions getContext
and putContext. A Context typeclass has two type parameters: a module type (mc1) and the
context (c2).

typeclass Context#(type mc1, type c2);
module [mc1] getContext(c2) provisos (IsModule#(mc1, a));
module [mc1] putContext#(c2 s)(Empty) provisos (IsModule#(mc1, a));

endtypeclass

A regular module type (Module) will have a context of void:

instance Context#(Module, void);

A module type of ModuleContext will return the context of the module:

instance Context#(ModuleContext#(st1), st1);

An instance is defined where the context type st1 of the ModuleContext and the context type st2
are different, but Gettable (as defined in Hlist Section C.10.4):

instance Context#(ModuleContext#(st1), st2)
provisos (Gettable#(st1, st2));

The modules applyToContext and applyToContextM are used to apply a function over a context.
The applyToContextM modules is used for monadic functions.

applyToContext Applies a function over a context.

module [mc1] applyToContext#(function c2 f(c2 c))(Empty)
provisos (IsModule#(mc1, a), Context#(mc1, c2));

applyToContextM Applies a monadic function over a context.

module [mc1] applyToContextM#(function module#(c2) m(c2 c))
(Empty)

provisos (IsModule#(mc1, a), Context#(mc1, c2));

ClockContext

The structure ClockContext is defined to be comprised of two clocks: clk1 and clk2 and two resets:
rst1 and rst2.

typedef struct {
Clock clk1;
Clock clk2;
Reset rst1;
Reset rst2;
} ClockContext;
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An initClockContext is defined with the values of both clocks set to noClock and both resets set
to noReset:

ClockContext initClockContext = ClockContext {
clk1: noClock, clk2: noClock, rst1: noReset, rst2: noReset };

Expose

The Expose typeclass converts a context to an interface for a synthesis boundary, converting it
to a module type of Module. The Expose typeclass provides the modules unburyContext and
unburyContextWithClocks.

typeclass Expose#(type c, type ifc)
dependencies (c determines ifc);

An HList of contexts is convertible if its elements are, and results in a Tuple of subinterfaces.

instance Expose#(HList1#(ct1), ifc1)
provisos (Expose#(ct1,ifc1));

instance Expose#(HCons#(c1,c2), Tuple2#(ifc1,ifc2))
provisos (Expose#(c1,ifc1), Expose#(c2,ifc2));

instance Expose#(ClockContext, Empty);

The unburyContext module is for use at the top level of a module to be separately synthesized. It
takes as an argument a module which is to be instantiated in a particular context, and an initial
state for that context. The module is instantiated, and the final context converted into an extra
interface, returned in pair with the intantiated module’s own interface.

unburyContext Converts a context to an interface for a synthesis boundary. An HList of
contexts is convertible if its elements are, and results in a tuple of subinter-
faces.

module unburyContext#(c x)(ifc);

module unburyContext#(HList1#(ct1) c1)(ifc1);

module unburyContext#(HCons#(c1,c2) c12)(Tuple2#(ifc1,ifc2));

module unburyContext#(ClockContext x)();

The unburyContextWithClocks takes a ClockContext along with the Context it is specifically
handling
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unburyContextWithClocks Converts a context to an interface for a synthesis boundary and takes
a ClockContext as a second argument.

module unburyContextWithClocks#(c x, ClockContext cc)
(ifc);

module unburyContextWithClocks#(HList1#(ct1) c1,
ClockContext cc)(ifc1);

module unburyContextWithClocks#(HCons#(c1,c2) c12,
ClockContext cc)
(Tuple2#(ifc1,ifc2));

module unburyContextWithClocks#(ClockContext x,
ClockContext cc)();

Hide

The Hide typeclass provides the module reburyContext, which takes an interface as an argument
(and provides an Empty interface). It is intended to be run in a context which can absorb the
information from the interface. As with Expose, a Tuple of interfaces can be hidden if each element
can be hidden.

reburyContext Connects the provided interface with the surrounding context.

module [mc] reburyContext#(ifc i)(Empty);

module [mc] reburyContext#(Empty i)(Empty);

module [mc] reburyContext#(Tuple2#(ifc1,ifc2) i12)(Empty);

ContextRun

The ContextRun and ContextsRun typeclasses provides modules to run modules in contexts. The
module runWithContext runs a module with an entirely new context.

typeclass ContextRun#(type m, type c1, type ctx2)
dependencies ((m, c1) determines ctx2);

typeclass ContextsRun#(type m, type c1, type ctx2)
dependencies ((m, c1) determines ctx2);
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runWithContext Runs a module with an entirely new context.

module [m] runWithContext #(c1 initState,
ModuleContext#(ctx2, ifcType) mkI)
(Tuple2#(c1, ifcType));

module [ModuleContext#(ctx)] runWithContext#(c1 initState,
ModuleContext#(HCons#(c1, ctx), ifcType) mkI)

(Tuple2#(c1, ifcType));

module [Module] runWithContext#(c1 initState,
ModuleContext#(c1,ifcType) mkI)
(Tuple2#(c1, ifcType));

runWithContexts Runs a module with an entirely new context.

module [m] runWithContexts#(c1 initState,
ModuleContext#(ctx2, ifcType) mkI)
(Tuple2#(c1, ifcType));

module [ModuleContext#(ctx)] runWithContexts#(c1 initState,
ModuleContext#(ctx2, ifcType) mkI)

(Tuple2#(c1, ifcType));

module [Module] runWithContexts#(c1 initState,
ModuleContext#(c1, ifcType) mkI)
(Tuple2#(c1, ifcType));

Contexts.defines

Bluespec provides macros in the Context.defines file to handle the treatment of the module con-
texts at synthesis boundaries.

1. The designer defines a leaf or intermediate node module, with module type [ErrorReporter]
or [ErrorReporterA], appending a 0 to its name (e.g. mkM0). Elsewhere in the package the
appropriate macro is chosen from the macros SynthBoundary and SynthBoundaryWithClocks.

2. The macro defines a synthesizable version of the module, mkMV, which provides the original
interface together with an error-reporting subinterface. It also defines a module with the origi-
nal name mkM to be used for instantiating the original module. It uses the Context mechanism
to re-bury the error-reporting plumbing and returns the original interface of the original mkM)
module

These macros assume that the complete module context (such as an HList of individual contexts) is
named CompleteContext and that its initial value may be obtained from either mkInitialCompleteContext
or mkInitialCompleteContextWithClocks.

Example Without Clocks

SynthBoundary(mkM,IM)

Becomes
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(*synthesize*)
module [Module] mkMV(Tuple2#(CompleteContextIfc,IM));

let init <- mkInitialCompleteContext;
let _ifc <- unbury(init, mkM0);
return _ifc;

endmodule

module [ModuleContext#(CompleteContext)] mkM(IM);
let _ifc <- rebury(mkMV);
return _ifc;

endmodule

Example With Clocks

SynthBoundaryWithClocks(mkM,IM)

Becomes

(*synthesize*)
module [Module] mkMV#(Clock c1,Reset r1,Clock c2,Reset r2)(Tuple2#(CompleteContextIfc,IM));

let init <- mkInitialCompleteContextWithClocks(c1, r1, c2, r2);
let _ifc <- unburyWithClocks(initialCompleteContext, c1, r1, c2, r2, mkM0);
return _ifc;

endmodule

module [ModuleContext#(CompleteContext)] mkM(IM);
let _ifc <- reburyWithClocks(mkMV);
return _ifc;

endmodule

C.10.2 ModuleCollect

Package

import ModuleCollect :: * ;

Description

The ModuleCollect package provides the capability of adding additional items, such as configuration
bus connections, to a design in such a way that it does not change the structure of the design. This
section provides a brief overview of the package. For a more detailed description of its usage, see the
CBus package (C.10.3), which utilizes ModuleCollect. There is also a detailed example and more
complete discussion of the CBus package in the configbus tutorial in the BSV/tutorials directory.

An ordinary Bluespec module, when instantiated, adds its own state elements and rules to the grow-
ing accumulation of state elements and rules defined in the design. In some designs, for example a
configuration bus, additional items, such as the logic for the bus address decoding must be accumu-
lated as well. While there is a need to add these items, it is also desirable to keep these additional
design details separate from the main design, keeping the natural structure of the design intact.

The ModuleCollect mechanism allows the designer to hide the details of the additional interfaces. A
module which is going to be synthesized must contain only rules and state elements, as the compiler
does not know how to handle the additional items. Therefore, the collection must be brought into
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the open, or exposed, before the module can be synthesized. The ModuleCollect package provides
the mechanisms to allow these additional items to be collected, processed and exposed.

Types and Type Classes

The ModuleCollect type is a variation on the Module type that allows additional items, other than
states and rules, to be collected while elaborating the module structure. A module defining the
accumulation of a special collection will have the type of ModuleCollect which is defined as a type
of ModuleContext (Section C.10.1):

typedef ModuleContext#(HList1#(UAList#(a))) ModuleCollect#(type a_type);

where a_type defines the type of the items being collected. The collection is kept as an HList,
therefore each item in the collection does not have the same type.

Your new type of module is a ModuleCollect defined to collect a specific type. It is often convenient
to give a name to your new type of module using the typedef keyword.

For example:
typedef ModuleCollect#(element_type, ifc_device)

MyModuleType#(type ifc_device)

specifies a type named MyModuleType.

An ordinary module, one defined with the keyword module without a type in square brackets im-
mediately after it, can be of any module type. It is polymorphic, and when instantiated takes the
type of the surrounding module context. Only modules of type Module can be synthesized, so the
*synthesize* attribute forces the type to be Module. This is equivalent to writing:

module [Module]...

Normally, all the modules instantiated inside a synthesized module take the type Module.

A module which is accumulating a collection must have the appropriate type, specified in square
brackets immedately after the keyword, as shown in the following example:

module [AssertModule] mkAssertionReg...

The complete example is found later in this section. This implies that any module instantiating
mkAssertionReg is no longer polymorphic, its type is constrained by the inner module, so it will
have to be explicitly given the AssertModule type too. Note, however, that you can continue
to instantiate other modules not concerned with the collection (for example, mkReg, mkFIFO, etc.)
alongside mkAssertReg just as before. But now they will take the type AssertModule from the
context instead of the type Module.

Since only modules of type Module can be synthesized, before this group of AssertModule instanti-
ations can be synthesized, you must use exposeCollection to contain the collection in a top-level
module of type Module.

Interfaces

The IWithCollection interface couples the normal module interface (the device interface) with
the collection of collected items (the collection interface). This is the interface provided by the
exposeCollection function. It separates the collection list and the device module interface, to allow
the module to be synthesized.

interface IWithCollection #(type a, type i);
method i device();
method List#(a) collection();

endinterface: IWithCollection
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OLD:

interface IWithCollection #(type collection_type, type item_type);
interface item_type device();
interface List#(collection_type) collection();

endinterface: IWithCollection

Modules and Functions

In the course of evaluating a module body during its instantiation, an item may be added to the
current collection by using the function addToCollection.

addToCollection Adds an item to the collection.

function ModuleCollect#(a_type, ifc)
addToCollection(a_type item);

Once a set of items has been collected, those items must be exposed before synthesis. The exposeCollection
module constructor is used to bring the collection out into the open. The exposeCollection
module takes as an argument a ModuleCollect module (m) with interface ifc, and provides an
IWithCollection interface.

exposeCollection Expose the collection to allow the module to be synthesized.

module exposeCollection#(ModuleCollect#(a_type, ifc) m)
(IWithCollection#(a_type, ifc));

Finally, the ModuleCollect package provides a function, mapCollection, to apply a function to
each item in the current collection.

mapCollection Apply a function to each item added to the collection within the second
argument.

function ModuleCollect#(a_type, ifc)
mapCollection(function a_type x1(a_type x1),

ModuleCollect#(a_type, ifc) x2);

Example - Assertion Wires

// This example shows excerpts of a design which places various
// test conditions (Boolean expressions) at random places in a design,
// and lights an LED (setting an external wire to 1), if the condition
// is ever satisfied.

import ModuleCollect::*;
import List::*;
import Vector::*;
import Assert::*;
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// The desired interface at the top level is:
interface AssertionWires#(type n);

method Bit#(n) wires;
method Action clear;

endinterface

// The "wires" method tells which conditions have been set, and the
// "clear" method resets them all to 0.
// The items in our extra collection will be interfaces of the
// following type:

interface AssertionWire;
method Integer index; //Indicates which wire is to be set if
method Bool fail; // fail method ever returns true.
method Action clear;

endinterface

// We next define the "AssertModule" type. This is to behave like an
// ordinary module providing an interface of type "i", except that it
// also can collect items of type "AssertionWire":

typedef ModuleCollect#(AssertionWire, i) AssertModule#(type i);

typedef Tuple2#(AssertionWires#(n), i) AssertIfc#(type i, type n);

...

// The next definition shows how items are added to the collection.
// This is the module which will be instantiated at various places in
// the design, to test various conditions. It takes one static
// parameter, "ix", to specify which wire is to carry this condition,
// and one dynamic parameter (one varying at run-time) "c", giving the
// value of the condition itself.

interface AssertionReg;
method Action set;
method Action clear;

endinterface

module [AssertModule] mkAssertionReg#(Integer ix)(AssertionReg);

Reg#(Bool) cond <- mkReg(False);

// an item is defined and added to the collection
let item = (interface AssertionWire;

method index;
return (ix);

endmethod
method fail;

return(cond);
endmethod
method Action clear;

cond <= False;
endmethod
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endinterface);
addToCollection(item);
...

endmodule

// the collection must be exposed before synthesis
module [Module] exposeAssertionWires#(AssertModule#(i) mkI)(AssertIfc#(i, n));

IWithCollection#(AssertionWire, i) ecs <- exposeCollection(mkI);

...(c_ifc is created from the list ecs.collection)

// deliver the array of values in the registers
let dut_ifc = ecs.device;

// return the values in the collection, and the ifc of the device
return(tuple2(c_ifc, dut_ifc));

endmodule

C.10.3 CBus

Package

import CBus :: * ;

Description

The CBus package provides the interface, types and modules to implement a configuration bus
capability providing access to the control and status registers in a given module hierarchy. This
package utilizes the ModuleCollect package and functionality, as described in section C.10.2. The
ModuleCollect package allows items in addition to usual state elements and rules to be accumulated.
This is required to collect up the interfaces of the control status registers included in a module and
to add the associated logic and ports required to allow them to be accessed via a configuration bus.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

For a more complete discussion of the CBus package, consult the configbus tutorial in the BSV/tutorials
directory.

Types and Type Classes

The type CBusItem defines the type of item to be collected by ModuleCollect. The items to be
collected are the same as the ifc which we will later expose, so we use a type alias:

typedef CBus#(size_address, size_data)
CBusItem #(type size_address, type size_data);

The type ModWithCBus defines the type of module which is collecting CBusItems. An ordinary
module, one not collecting anything other than state elements and rules, has the type Module. Since
CBusItems are being collected, a module type ModWithCBus is defined. When the module type is
not Module, the type must be specified in square brackets immediately after the module keyword in
the module definition.
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typedef ModuleCollect#(CBusItem#(size_address, size_data), item)
ModWithCBus#(type size_address, type size_data, type item);

Interface and Methods

The CBus interface provides read and write methods to access control status registers. It is poly-
morphic in terms of the size of the address bus (size_address) and size of the data bus (size_data).

CBus Interface
Name Description

write Writes the data value to the register if and only if the value of
addr matches the address of the register.

read Returns the value of the associated register if and only if addr
matches the register address. In all other cases the read method
returns an Invalid value.

interface CBus#(type size_address, type size_data);
method Action write(Bit#(size_address) addr, Bit#(size_data) data);
(* always_ready *)
method ActionValue#(Bit#(size_data)) read(Bit#(size_address) addr);

endinterface

The IWithCBus interface combines the CBus interface with a normal module interface. It is defined as
a structured interface with two sub-interfaces: cbus_ifc (the associated configuration bus interface)
and device_ifc (the associated device interface). It is polymorphic in terms of the type of the
configuation bus interface and the type of the device interface.
interface IWithCBus#(type cbus_IFC, type device_IFC);

interface cbus_IFC cbus_ifc;
interface device_IFC device_ifc;

endinterface

Modules

The collectCBusIFC module takes as an argument a module with an IWithCBus interface, adds the
associated CBus interface to the current collection (using addToCollection from the ModuleCollect
package), and returns a module with the normal interface. Note that collectCBusIFC is of module
type ModWithCBus.

collectCBusIFC Adds the CBus to the collection and returns a module with just the device
interface.

module [ModWithCBus#(size_address, size_data)]
collectCBusIFC#(Module#(IWithCBus#(

CBus#(size_address,size_data),i)) m)(i);

The exposeCBusIFC module is used to create an IWithCBus interface given a module with a normal
interface and an associated collection of CBusItems. This module takes as an argument a module
of type ModWithCBus and provides an interface of type IWithCBus. The exposeCBusIFC module
exposes the collected CBusItems, processes them, and provides a new combined interface. This
module is synthesizable, because it is of type Module.
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exposeCBusIFC A module wrapper that takes a module with a normal interface, processes the
collected CBusItems and provides an IWithCBus interface.

module [Module] exposeCBusIFC#(ModWithCBus#(
size_address, size_data, item) sm)
(IWithCBus#(CBus#(size_address, size_data), item));

The CBus package provides a set of module primitives each of which adds a CBus interface to the
collection and provides a normal Reg interface from the local block point of view. These modules are
used in designs where a normal register would be used, and can be read and written to as registers
from within the design.

mkCBRegR A wrapper to provide a read only CBus interface to the collection and a normal
Reg interface to the local block.

module [ModWithCBus#(size_address, size_data)]
mkCBRegR#(CRAddr#(size_address2) addr, r x)

(Reg#(r))
provisos (Bits#(r, sr), Add#(k, sr, size_data),

Add#(ignore, size_address2, size_address));

mkCBRegRW A wrapper to provide a read/write CBus interface to the collection and a
normal Reg interface to the local block.

module [ModWithCBus#(size_address, size_data)]
mkCBRegRW#(CRAddr#(size_address2) addr, r x)

(Reg#(r))
provisos (Bits#(r, sr), Add#(k, sr, size_data),

Add#(ignore, size_address2, size_address));

mkCBRegW A wrapper to provide a write only CBus interface to the collection and a
normal Reg interface to the local block.

module [ModWithCBus#(size_address, size_data)]
mkCBRegW#(CRAddr#(size_address2) addr, r x)

(Reg#(r))
provisos (Bits#(r, sr), Add#(k, sr, size_data),

Add#(ignore, size_address2, size_address));
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mkCBRegRC A wrapper to provide a read/clear CBus interface to the collection and a
normal Reg interface to the local block. This register can read from the config
bus but the write is clear mode; for each write bit a 1 means clear, while a 0
means don’t clear.

module [ModWithCBus#(size_address, size_data)]
mkCBRegRC#(CRAddr#(size_address2) addr, r x)

(Reg#(r))
provisos (Bits#(r, sr), Add#(k, sr, size_data),

Add#(ignore, size_address2, size_address));

The mkCBRegFile module wrapper adds a CBus interface to the collection and provides a RegFile
interface to the design. This module is used in designs as a normal RegFile would be used.

mkCBRegFile A wrapper to provide a normal RegFile interface and automatically add the
CBus interface to the collection.

module [ModWithCBus#(size_address, size_data)]
mkCBRegFile#(Bit#(size_address) reg_addr,

Bit#(size_address) size)
(RegFile#(Bit#(size_address), r))

provisos (Bits#(r, sr), Add#(k, sr, size_data));

Example

Provided here is a simple example of a CBus implementation. The example is comprised of three
packages: CfgDefines, Block, and Tb. The CfgDefines package contains the definition for the
configuration bus, Block is the design block, and Tb is the testbench which executes the block.

The Block package contains the local design. As seen in Figure 27, the configuration bus registers
look like a single field from the CBus (cfgResetAddr, cfgStateAddr, cfgStatusAddr), while each
field (reset, init, cnt, etc.) in the configuration bus registers looks like a regular register from
from the local block point of view.

Figure 27: CBus Registers used in Block example

import CBus::*; // this is a Bluespec library
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import CfgDefines::*; // user defines - address,registers, etc

interface Block;
// TODO: normally this block would have at least a few methods
// Cbus interface is hidden, but it is there

endinterface

// In order to access the CBus at this parent, we need to expose the bus.
// Only modules of type [Module] can be synthesized.
module [Module] mkBlock(IWithCBus#(DCBus, Block));

let ifc <- exposeCBusIFC( mkBlockInternal );
return ifc;

endmodule

// Within this module the CBus looks like normal Registers.
// This module can’t be synthesized directly.
// How these registers are combined into CBus registers is
// defined in the CfgDefines package.

module [DModWithCBus] mkBlockInternal( Block );
// all registers are read/write from the local block point of view
// config register interface types can be
// mkCBRegR -> read only from config bus
// mkCBRegRW -> read/write from config bus
// mkCBRegW -> write only from config bus
// mkCBRegRC -> read from config bus, write is clear mode
// i.e. for each bit a 1 means clear, 0 means don’t clear
// reset bit is write only from config bus
// we presume that you use this bit to fire some local rules, etc
Reg#(TCfgReset) reg_reset_reset <- mkCBRegW(cfg_reset_reset, 0 /* init val */);

Reg#(TCfgInit) reg_setup_init <- mkCBRegRW(cfg_setup_init, 0 /* init val */);
Reg#(TCfgTz) reg_setup_tz <- mkCBRegRW(cfg_setup_tz, 0 /* init val */);
Reg#(TCfgCnt) reg_setup_cnt <- mkCBRegRW(cfg_setup_cnt, 1 /* init val */);

Reg#(TCfgOnes) reg_status_ones <- mkCBRegRC(cfg_status_ones, 0 /* init val */);
Reg#(TCfgError) reg_status_error <- mkCBRegRC(cfg_status_error, 0 /* init val */);

// USER: you know have registers, so do whatever it is you do with registers :)
// for instance
rule bumpCounter ( reg_setup_cnt != unpack(’1) );

reg_setup_cnt <= reg_setup_cnt + 1;
endrule

rule watch4ones ( reg_setup_cnt == unpack(’1) );
reg_status_ones <= 1;

endrule
endmodule

The CfgDefines package contains the user defines describing how the local registers are combined
into the configuration bus.

package CfgDefines;
import CBus::*;
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////////////////////////////////////////////////////////////////////////////////
/// basic defines
////////////////////////////////////////////////////////////////////////////////
// width of the address bus, it’s easiest to use only the width of the bits needed
// but you may have other reasons for passing more bits around (even if some address
// bits are always 0)
typedef 2 DCBusAddrWidth; // roof( log2( number_of_config_registers ) )

// the data bus width is probably defined in your spec
typedef 32 DCBusDataWidth; // how wide is the data bus

////////////////////////////////////////////////////////////////////////////////
// Define the CBus
////////////////////////////////////////////////////////////////////////////////
typedef CBus#( DCBusAddrWidth,DCBusDataWidth) DCBus;
typedef CRAddr#(DCBusAddrWidth,DCBusDataWidth) DCAddr;
typedef ModWithCBus#(DCBusAddrWidth, DCBusDataWidth, i) DModWithCBus#(type i);

////////////////////////////////////////////////////////////////////////////////
/// Configuration Register Types
////////////////////////////////////////////////////////////////////////////////
// these are configuration register from your design. The basic
// idea is that you want to define types for each individual field
// and later on we specify which address and what offset bits these
// go to. This means that config register address fields can
// actually be split across modules if need be.
//
typedef bit TCfgReset;

typedef Bit#(4) TCfgInit;
typedef Bit#(6) TCfgTz;
typedef UInt#(8) TCfgCnt;

typedef bit TCfgOnes;
typedef bit TCfgError;

////////////////////////////////////////////////////////////////////////////////
/// configuration bus addresses
////////////////////////////////////////////////////////////////////////////////
Bit#(DCBusAddrWidth) cfgResetAddr = 0; //
Bit#(DCBusAddrWidth) cfgStateAddr = 1; //
Bit#(DCBusAddrWidth) cfgStatusAddr = 2; // maybe you really want this to be 0,4,8 ???

////////////////////////////////////////////////////////////////////////////////
/// Configuration Register Locations
////////////////////////////////////////////////////////////////////////////////
// DCAddr is a structure with two fields
// DCBusAddrWidth a ; // this is the address
// // this does a pure comparison
// Bit#(n) o ; // this is the offset that this register
// // starts reading and writting at

DCAddr cfg_reset_reset = DCAddr {a: cfgResetAddr, o: 0}; // bits 0:0
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DCAddr cfg_setup_init = DCAddr {a: cfgStateAddr, o: 0}; // bits 0:0
DCAddr cfg_setup_tz = DCAddr {a: cfgStateAddr, o: 4}; // bits 9:4
DCAddr cfg_setup_cnt = DCAddr {a: cfgStateAddr, o: 16}; // bits 24:16

DCAddr cfg_status_ones = DCAddr {a: cfgStatusAddr, o: 0}; // bits 0:0
DCAddr cfg_status_error = DCAddr {a: cfgStatusAddr, o: 0}; // bits 1:1

////////////////////////////////////////////////////////////////////////////////
///
////////////////////////////////////////////////////////////////////////////////
endpackage

The Tb package executes the block.

import CBus::*; // bluespec library
import CfgDefines::*; // address defines, etc
import Block::*; // test block with cfg bus
import StmtFSM::*; // just for creating a test sequence

(* synthesize *)
module mkTb ();

// In order to access this cfg bus we need to use IWithCBus type
IWithCBus#(DCBus,Block) dut <- mkBlock;

Stmt test =
seq

// write the bits need to the proper address
// generally this comes from software or some other packing scheme
// you can, of course, create functions to pack up several fields
// and drive that to bits of the correct width
// For that matter, you could have your own shadow config registers
// up here in the testbench to do the packing and unpacking for you
dut.cbus_ifc.write( cfgResetAddr, unpack(’1) );

// put some ones in the status bits
dut.cbus_ifc.write( cfgStateAddr, unpack(’1) );

// show that only the valid bits get written
$display("TOP: state = %x at ", dut.cbus_ifc.read( cfgStateAddr ), $time);

// clear out the bits
dut.cbus_ifc.write( cfgStateAddr, 0 );

// but the ’ones’ bit was set when it saw all ones on the count
// so read it to see that...
$display("TOP: status = %x at ", dut.cbus_ifc.read( cfgStatusAddr ), $time);

// now clear it
dut.cbus_ifc.write( cfgStatusAddr, 1 );

// see that it’s clear
$display("TOP: status = %x at ", dut.cbus_ifc.read( cfgStatusAddr ), $time);
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// and if we had other interface methods, that where not part of CBUS
// we would access them via dut.device_ifc

endseq;
mkAutoFSM( test );

endmodule

C.10.4 HList

Package

import HList :: * ;

Description

The HList package defines a datatype HList which stores a list of data of different types. The
package also provides typeclasses and functions to perform various list operations on the HList
type.

The primitive data structures for an HList are HNil and the polymorphic HCons. The various
functions are provided by typeclasses, one for each function.

The package defines a typeclass Gettable for finding (getIt) and replacing (putIt) items in an
HList. This requires that all the items in the HList are different types. If two types are the same,
they must be disambiguated by encapsulating at least one of them (but preferably each of them) in
a new struct type. The functions of the Gettable typeclass require that the HList be flat (no nested
HLists) and well-formed (terminating in HNil). That is, the target of a recursive search must be
either the complete hHead or found within the hTail.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Types and type classes

The HList packages defines a typeclass HList:

typeclass HList#(type l);

The HNil datatype defines a nil instance, the empty set. An HList is usually terminated by a HNil.

typedef struct {} HNil deriving (Eq);

The HCons datatype is a structure with two members, a head of datatype e and a tail of datatype l.

typedef struct {
e hd;
l tl;
} HCons#(type e, type l) deriving (Eq);

Functions

The various functions for heterogenous lists are provided by typeclasses, one for each functions.
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HHead Returns the first element of the list.

typeclass HHead#(type l, type h)
dependencies (l determines h);
function h hHead(l x);

endtypeclass

instance HHead#(HCons#(e, l), e);

HTail Returns the tail element from the list.

typeclass HTail#(type l, type lt)
dependencies (l determines lt);
function lt hTail(l xs);

endtypeclass

instance HTail#(HCons#(e, l), l);

HLength Returns a numeric value with the length of the list. For a HNil, will return
0.

typeclass HLength#(type l, numeric type n);
endtypeclass

instance HLength#(HNil, 0);

instance HLength#(HCons#(e, l), nPlus1)
provisos (HLength#(l, n), Add#(n,1,nPlus1));

HAppend Appends two lists, returning the combined list. The elements do not have
to be of the same data type. The combined list will be of type l2, and will
contain all the elements of xs followed in order by all the elements of ys.

typeclass HAppend#(type l, type l1, type l2)
dependencies ((l, l1) determines l2);
function l2 hAppend(l xs, l1 ys);

instance HAppend#(HNil, l, l);

instance HAppend#(HCons#(e, l), l1, HCons#(e, l2))
provisos (HList#(l), HAppend#(l, l1, l2));
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HSplit The hSplit function takes an HList of type l and returns a Tuple2 of two
HLists. This function is the inverse of hAppend.

typeclass HSplit#(type l, type l1, type l2);
function Tuple2#(l1,l2) hSplit(l xs);

endtypeclass

instance HSplit#(HNil, HNil, HNil);

instance HSplit#(l, HNil, l);

instance HSplit#(HCons#(hd,tl), HCons#(hd,l3), l2)
provisos (HSplit#(tl,l3,l2));

Gettable This typeclass is for finding (getIt) and replacing (putIt) a particular
element in an HList. All items in the HList must be of different types. If
two types are the same, they should be disambiguated by encapsulating at
least one of them (and preferably both of them) in a new struct type.

typeclass Gettable#(type c1, type c2);
function c2 getIt(c1 x);
function c1 putIt(c1 x, c2 y);

endtypeclass

instance Gettable#(HCons#(t1, t2), t1);

instance Gettable#(HCons#(t1, t2), t3)
provisos (Gettable#(t2, t3));

Small Lists

The HList packcage provides type definitions for small lists, ranging from 1 element to 8 elements,
along with constructor functions to build the lists.

HList1

typedef HCons#(t, HNil)
HList1#(type t);

function HList1#(t1) hList1(t1 x1) = hCons(x1, hNil);

HList2

typedef HCons#(t1, HCons#(t2, HNil))
HList2#(type t1, type t2);

function HList2#(t1, t2) hList2(t1 x1, t2 x2) = hCons(x1, hCons(x2, hNil));

HList3

typedef HCons#(t1, HCons#(t2, HCons#(t3, HNil)))
HList3#(type t1, type t2, type t3);
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function HList3#(t1, t2, t3) hList3(t1 x1, t2 x2, t3 x3)
= hCons(x1, hCons(x2, hCons(x3, hNil)));

HList4

typedef HCons#(t1, HCons#(t2, HCons#(t3, HCons#(t4, HNil))))
HList4#(type t1, type t2, type t3, type t4);

function HList4#(t1, t2, t3, t4) hList4(t1 x1, t2 x2, t3 x3, t4 x4)
= hCons(x1, hCons(x2, hCons(x3, hCons(x4, hNil))));

HList5

typedef HCons#(t1, HCons#(t2, HCons#(t3, HCons#(t4, HCons#(t5, HNil)))))
HList5#(type t1, type t2, type t3, type t4, type t5);

function HList5#(t1, t2, t3, t4, t5) hList5(t1 x1, t2 x2, t3 x3, t4 x4, t5 x5)
= hCons(x1, hCons(x2, hCons(x3, hCons(x4, hCons(x5, hNil)))));

HList6

typedef HCons#(t1, HCons#(t2, HCons#(t3, HCons#(t4, HCons#(t5, HCons#(t6, HNil))))))
HList6#(type t1, type t2, type t3, type t4, type t5, type t6);

function HList6#(t1, t2, t3, t4, t5, t6)
hList6(t1 x1, t2 x2, t3 x3, t4 x4, t5 x5, t6 x6)

= hCons(x1, hCons(x2, hCons(x3, hCons(x4, hCons(x5, hCons(x6, hNil))))));

HList7

typedef HCons#(t1, HCons#(t2, HCons#(t3, HCons#(t4, HCons#(t5,
HCons#(t6, HCons#(t7, HNil)))))))

HList7#(type t1, type t2, type t3, type t4, type t5, type t6, type t7);

function HList7#(t1, t2, t3, t4, t5, t6, t7)
hList7(t1 x1, t2 x2, t3 x3, t4 x4, t5 x5, t6 x6, t7 x7)

= hCons(x1, hCons(x2, hCons(x3, hCons(x4, hCons(x5, hCons(x6, hCons(x7, hNil)))))));

HList8

typedef HCons#(t1, HCons#(t2, HCons#(t3, HCons#(t4, HCons#(t5,
HCons#(t6, HCons#(t7, HCons#(t8, HNil))))))))

HList8#(type t1, type t2, type t3, type t4, type t5, type t6, type t7, type t8);

function HList8#(t1, t2, t3, t4, t5, t6, t7, t8)
hList8(t1 x1, t2 x2, t3 x3, t4 x4, t5 x5, t6 x6, t7 x7, t8 x8)

= hCons(x1, hCons(x2, hCons(x3, hCons(x4, hCons(x5, hCons(x6,
hCons(x7, hCons(x8, hNil))))))));
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C.10.5 UnitAppendList

Package

import UnitAppendList :: * ;

Description

This provides a representation of lists for which append(x,y) is O(1), rather than O(length(x)) as
in the normal representation; the downside is that there is no longer a unique representation for
a given list. These lists are useful for situations in which the length is constructed by recursively
amalgamating lists from sub-computations, and then subsequently processed. Functions for map and
mapM are provided for processing sublists during construction. For final processing it is almost always
preferable first to flatten the list (by a function also provided) into the conventional representation,
thus eliminating empty subtrees.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource/Misc directory.
To customize a package, copy the file into a local directory and then include the local directory in
the path when compiling. This is done by specifying the search path with the -p option as described
in the BSV Users Guide.

Types and type classes

The UnitAppendList package defines the structure UAList:

typedef union tagged {
void NoItems;
a One;
Tuple2#(UAList#(a),UAList#(a)) Append;

} UAList#(type a);

UAList is a member of the DefaultValue typeclass, which defines a default value for user defined
structures. The default value for UAList is defined as:

instance DefaultValue#(UAList#(a));
defaultValue = NoItems;

endinstance

Functions

flatten0 Given a UAList#(a) and a List#(a), returns a conventional list of type List.

function List#(a) flatten0(UAList#(a) c, List#(a) xs);

flatten Converts a list of type UAList into a conventional list of type List.

function List#(a) flatten(UAList#(a) c) = flatten0(c, Nil);

uaMap Maps a function of a list of type UAList, returning a UAList.

function UAList#(b) uaMap(function b f(a x), UAList#(a) c);
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uaMapM Maps a monadic function of a list of type UAList, returning a UAList.

module uaMapM#(function module#(b) f(a x), UAList#(a) c)(UAList#(b));

C.11 Bus Fabric Libraries

This section describes the Bluespec AzureIP bus fabric library components. These components
can be used to build complex, fully synthesizable designs. Each component is provided in one or
more BSV packages, defining the interfaces and data structures used to communicate with other
components.

The TLM library package allows users to create bus-based protocol-independent designs. This
package is provided as part of the Bluespec Foundation library, and is available to all users.

Bluespec also provides packages to implement AXI and AHB protocols. These packages are AzureIP
Premium offerings and are not provided as part of the Foundation library. If you are interested in
obtaining these packages, please contact your sales representative or sales@bluespec.com. Customers
licensed under release 2009.10.B or earlier still have access to the AXI and AHB libraries as part of
the standard offering. Please contact support@bluespec.com if you cannot access the latest libraries.

C.11.1 TLM2

Packages

import TLM2 :: * ;

Description

The TLM2 package includes definitions of interfaces, data structures, and module constructors which
allow users to create and modify bus-based designs in a manner that is independent of any one specific
bus protocol. Bus operations are defined in terms of generic bus payload data structures. Other
protocol specific packages include transactor modules that convert a stream of TLM bus operations
into corresponding operations in a specific bus protocol. Designs created using the TLM package
are thus more portable (because that they allow the core design to be easily applied to multiple bus
protocols). In addition, since the specific signalling details of each bus protocol are encapsulated
in pre-designed transactors, users are not required to learn, re-implement, and re-verify existing
standard protocols.

This package is provided as both a compiled library package and as BSV source code to facilitate
customization. The source code file can be found in the $BLUESPECDIR/BSVSource directory. To
customize a package, copy the file into a local directory and then include the local directory in the
path when compiling. This is done by specifying the search path with the -p option as described in
the BSV Users Guide.

Data Structures

The two basic data structures defined in the TLM package are TLMRequest and TLMResponse. By
using these types in a design, the underlying bus protocol can be changed without having to modify
the interactions with the TLM objects.
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TLMRequest A TLM request contains either control information and data, or data alone. A
TLMRequest is tagged as either a RequestDescriptor or RequestData. A RequestDescriptor
contains control information and data while a RequestData contains only data.

typedef union tagged {RequestDescriptor#(‘TLM_PRM) Descriptor;
RequestData#(‘TLM_PRM) Data;
} TLMRequest#(‘TLM_PRM_DCL) deriving(Eq, Bits, Bounded);

typedef TLMRequest#(‘TLM_PRM_STD) TLMRequestStd;

RequestDescriptor The table below describes the components of a RequestDescriptor and the
valid values for each of its members.

RequestDescriptor
Member Name DataType Valid Values

command TLMCommand READ, WRITE, UNKNOWN
mode TLMMode REGULAR, DEBUG, CONTROL, UNKNOWN
addr TLMAddr#(‘TLM_PRM) Bit#(addr_size)
data TLMData#(‘TLM_PRM) Bit#(data_size)
burst_length TLMUint#(‘TLM_PRM) UInt#(uint_size)
byte_enable TLMByteEn#(‘TLM_PRM) Bit#(TDiv#(data_size, 8))
burst_mode TLMBurstMode INCR, WRAP, CNST, UNKNOWN
burst_size TLMBurstSize#(‘TLM_PRM) Bit#(TLog#(TDiv#(data_size, 8)))
prty TLMUInt#(‘TLM_PRM) UInt#(uint_size)
lock Bool TRUE, FALSE
thread_id TLMId#(‘TLM_PRM) Bit#(id_size)
transaction_id TLMId#(‘TLM_PRM) Bit#(id_size)
export_id TLMId#(‘TLM_PRM) Bit#(id_size)
custom TLMCustom#(‘TLM_PRM) cstm_type

typedef struct {TLMCommand command;
TLMMode mode;
TLMAddr#(‘TLM_PRM) addr;
TLMData#(‘TLM_PRM) data;
TLMUInt#(‘TLM_PRM) burst_length;
TLMByteEn#(‘TLM_PRM) byte_enable;
TLMBurstMode burst_mode;
TLMBurstSize#(‘TLM_PRM) burst_size;
TLMUInt#(‘TLM_PRM) prty;
Bool lock;
TLMId#(‘TLM_PRM) thread_id;
TLMId#(‘TLM_PRM) transaction_id;
TLMId#(‘TLM_PRM) export_id;
TLMCustom#(‘TLM_PRM) custom;
} RequestDescriptor#(‘TLM_PRM_DCL) deriving (Eq, Bits, Bounded);

RequestData The table below describes the components of a RequestData and the valid values
for its members.
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RequestData
Member Name DataType Valid Values

data TLMData#(‘TLM_PRM) Bit#(data_size)
transaction_id TLMId#(‘TLM_PRM) Bit#(id_size)
custom TLMCustom#(‘TLM_PRM) cstm_type

typedef struct {TLMData#(‘TLM_PRM) data;
TLMId#(‘TLM_PRM) transaction_id;
TLMCustom#(‘TLM_PRM) custom;
} RequestData#(‘TLM_PRM_DCL) deriving (Eq, Bits, Bounded);

TLMResponse The table below describes the components of a TLMResponse and the valid values
for its members.

TLMResponse
Member Name DataType Valid Values

command TLMCommand READ, WRITE, UNKNOWN
data TLMData#(‘TLM_PRM) Bit#(data_size)
status TLMStatus SUCCESS, ERROR, NO RESPONSE,

UNKNOWN
prty TLMUInt#(‘TLM_PRM) UInt#(uint_size)
thread_id TLMId#(‘TLM_PRM) Bit#(id_size)
transaction_id TLMId#(‘TLM_PRM) Bit#(id_size)
export_id TLMId#(‘TLM_PRM) Bit#(id_size)
custom TLMCustom#(‘TLM_PRM) cstm_type

typedef struct {TLMCommand command;
TLMData#(‘TLM_PRM) data;
TLMStatus status;
TLMUInt#(‘TLM_PRM) prty;
TLMId#(‘TLM_PRM) thread_id;
TLMId#(‘TLM_PRM) transaction_id;
TLMId#(‘TLM_PRM) export_id;
TLMCustom#(‘TLM_PRM) custom;
} TLMResponse#(‘TLM_PRM_DCL) deriving (Eq, Bits, Bounded);

typedef TLMResponse#(‘TLM_PRM_STD) TLMResponseStd;

Configurable Parameters

In the above BSV code definitions the compiler macros ‘TLM_PRM_DCL and ‘TLM_PRM are used in the
typedef statements. A ’define statement is a preprocessor construct used to place prepackaged
text values into a file, as described in Section 2.7.1. In this case, the macros contain parameters
to be used in the data definitions. Placing the parameters in a separate file allows them to be
easily modified for different protocol requirements. For convenience, we have predefined a few useful
definitions for use in the TLM package.

The TLM_PRM_DCL macro contains type definition parameters which are used in the interface defini-
tions or as arguments to TLM types and interfaces.

The TLM_PRM macro is used when providing the interface or using the data type. TLM_PRM is still
polymorphic.
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The macro TLM_PRM_STD provides specific values for the polymorphic values defined above. The
values defined in TLM_PRM_STD are common values. The user can change any of the values or define
other corresponding macros (with different values) as appropriate for a given design.

The macros are found in the file TLM.defines. A sample of the contents of the file are displayed
below.

‘define TLM_PRM_DCL numeric type id_size, \
numeric type addr_size, \
numeric type data_size, \
numeric type uint_size, \
type cstm_type

‘define TLM_PRM id_size, \
addr_size, \
data_size, \
uint_size, \
cstm_type

‘define TLM_PRM_STD 4, \
32, \
32, \
10, \
Bit#(0)

The following macros are used to define requests and responses. The format follows the TLM PRM
(parameters), but these are TLM_RR (request response). The TLM_RR_DCL macro contains type defi-
nitions for requests and responses used in interface defintiions or as arguments to TLM types and
interfaces. The TLM_RR macro is polymorphic, while the TLM_RR_STD macro provides specific values.

‘define TLM_RR_DCL type req_t, \
type resp_t

‘define TLM_RR req_t, \
resp_t

‘define TLM_RR_STD TLMRequest#(‘TLM_PRM_STD), \
TLMResponse#(‘TLM_PRM_STD) \

The following macros combine the request and response type definitions into transactor definitions.

‘define TLM_XTR_DCL ‘TLM_RR_DCL, ‘TLM_PRM_DCL

‘define TLM_XTR ‘TLM_RR, ‘TLM_PRM

‘define TLM_XTR_STD ‘TLM_RR_STD, ‘TLM_PRM_STD

Default Values

Both the RequestDescriptor#(‘TLM_PRM) and TLMResponse#(‘TLM_PRM) structures are instances
of the DefaultValue typeclass allowing the definition of default values for the structures.

instance DefaultValue #(RequestDescriptor#(‘TLM_PRM))
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provisos(DefaultValue#(cstm_type));
function defaultValue ();

RequestDescriptor#(‘TLM_PRM) request;
request.command = READ;
request.mode = REGULAR;
request.addr = 0;
request.data = 0;
request.burst_length = 1;
request.byte_enable = ’1;
request.burst_mode = INCR;
request.burst_size = 3; // assume 32 bits for now.
request.prty = 0;
request.lock = False;
request.thread_id = 0;
request.transaction_id = 0;
request.export_id = 0;
request.custom = defaultValue;
return request;

endfunction
endinstance

instance DefaultValue #(TLMResponse#(‘TLM_PRM))
provisos(DefaultValue#(cstm_type));
function defaultValue ();

TLMResponse#(‘TLM_PRM) response;
response.command = READ;
response.data = 0;
response.status = SUCCESS;
response.prty = 0;
response.thread_id = 0;
response.transaction_id = 0;
response.export_id = 0;
response.custom = defaultValue;
return response;

endfunction
endinstance

Typeclasses

typeclass TLMRequestTC#(type a, ‘TLM_PRM_DCL)
dependencies (a determines (‘TLM_PRM));
function TLMRequest#(‘TLM_PRM) toTLMRequest(a value);
function a fromTLMRequest(TLMRequest#(‘TLM_PRM) value);

endtypeclass

instance TLMRequestTC#(TLMRequest#(‘TLM_PRM), ‘TLM_PRM);
function toTLMRequest = id;
function fromTLMRequest = id;

endinstance

typeclass TLMResponseTC#(type a, ‘TLM_PRM_DCL)
dependencies (a determines (‘TLM_PRM));
function TLMResponse#(‘TLM_PRM) toTLMResponse(a value);
function a fromTLMResponse(TLMResponse#(‘TLM_PRM) value);

endtypeclass
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instance TLMResponseTC#(TLMResponse#(‘TLM_PRM), ‘TLM_PRM);
function toTLMResponse = id;
function fromTLMResponse = id;

endinstance

Interfaces

The TLM interfaces define how TLM blocks interconnect and communicate. The TLM package
includes two basic interfaces: The TLMSendIFC interface and the TLMRecvIFC interface. These inter-
faces use basic Get and Put subinterfaces as the requests and responses, as described in Section C.7.1.
The TLMSendIFC interface generates (Get) requests and receives (Put) responses. The TLMRecvIFC
interface receives (Put) requests and generates (Get) responses. Additional TLM interfaces are built
up from these basic blocks.

TLMSendIFC The TLMSendIFC interface transmits the requests and receives the responses.

TLMSendIFC Interface
Name Type Description
tx Get#(req) Transmits a request through the Get interface
rx Put#(resp) Receives a response through the Put interface

interface TLMSendIFC#(type req, type resp);
interface Get#(req) tx;
interface Put#(resp) rx;

endinterface

TLMRecvIFC The TLMRecvIFC interface receives the requests and transmits the responses.

TLMRecvIFC Interface
Name Type Description
tx Get#(resp) Transmits the response through the Get interface
rx Put#(req) Receives the request through the Put interface

interface TLMRecvIFC#(type req, type resp);
interface Get#(resp) tx;
interface Put#(req) rx;

endinterface

As illustrated in Figure 28, a TLMSendIFC is connectable to a TLMRecvIFC, just as a Get is connectable
to a Put. A transmitted request (tx) from a TLMSendIFC is received (rx) by the TLMRecvIFC and
visa versa.

instance Connectable#(TLMSendIFC#(req, resp), TLMRecvIFC#(req, resp));

A module with a TLMSendIFC interface creates a stream of requests. A module with a TLMRecvIFC
interface receives the requests and transmits responses. Some bus protocols have separate channels
for read and write operations. In these cases it is useful to have interfaces which bundle together
two sends or two receives. The TLMReadWriteSendIFC interface includes two send interfaces while
the TLMReadWriteRecvIFC interface bundles two receives.

405



Reference Guide Bluespec SystemVerilog

Figure 28: Connecting TLM Send And Receive Interfaces

TLMReadWriteSendIFC The TLMReadWriteSendIFC interface is composed of two TLMSendIFC
subinterfaces, one for a read channel and one for a write channel.

interface TLMReadWriteSendIFC#(type req, type resp);
interface TLMSendIFC#(req, resp) read;
interface TLMSendIFC#(req, resp) write;

endinterface

TLMReadWriteRecvIFC The TLMReadWriteRecvIFC interface is composed of two TLMRecvIFC
subinterfaces, one for a read channnel and one for a write channel.

interface TLMReadWriteRecvIFC#(type req, type resp);
interface TLMRecvIFC#(req, resp) read;
interface TLMRecvIFC#(req, resp) write;

endinterface

As illustrated in Figure 29, the TLMReadWriteSendIFC and TLMReadWriteRecvIFC interfaces are
connectable as well.

Figure 29: TLM Read/Write Interfaces

instance Connectable#(TLMRecvIFC#(req, resp), TLMSendIFC#(req, resp));
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Figure 30: TLMTransformIFC Interface

TLMTransformIFC The TLMTransformIFC provides a single TLMRecvIFC interface and a sin-
gle TLMSendIFC interface. This interface is useful in modules which convert one stream of TLM
operations into another. It is the interface provided by mkTLMReducer module for instance.

interface TLMTransformIFC#(type req, type resp);
interface TLMRecvIFC#(req, resp) in;
interface TLMSendIFC#(req, resp) out;

endinterface

Modules

The TLM package includes modules for creating and modifying TLM objects: mkTLMRandomizer,
mkTLMSource, and mkTLMReducer. Two TLM RAM modules are also provided: mkTLMRam which
provides a single read/write port and mkTLMReadWriteRam which provides two ports, a separate one
for reads and a separate one for writes.

mkTLMRandomizer Creates a stream of random TLM operations. The argument m_command is a Maybe
type which determines the value of the TLMRequest. A valid value of READ will
generate only reads, a valid value of WRITE will generate only writes, and an invalid
value will generate both reads and writes. The Randomize interface is defined in
the Randomizable package (Section C.8.2).

module mkTLMRandomizer#(Maybe#(TLMCommand) m_command) (Randomize#(a))
provisos(TLMRequestTC#(a, ‘TLM_PRM),

Bits#(RequestDescriptor#(‘TLM_PRM), s0),
Bounded#(RequestDescriptor#(‘TLM_PRM)),
Bits#(RequestData#(‘TLM_PRM), s1),
Bounded#(RequestData#(‘TLM_PRM)));

mkTLMSource Creates a wrapper around the mkTLMRandomize module. The provided interface
is now a TLMSendIFC interface whichK Gets requests and Puts responses. The
argument m_command has the same meaning as in mkTLMRandomizer. The verbose
argument controls whether or not $display outputs are provided when sending and
receiving TLM objects.

module mkTLMSource#(Maybe#(TLMCommand) m_command, Bool verbose)
(TLMSendIFC#(TLMRequestStd, TLMResponseStd));
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mkTLMReducer Converts a stream of (arbitrary) TLM operations into a stream with only single
reads and single writes.

module mkTLMReducer (TLMTransformIFC#(req_t, resp_t))
provisos(TLMRequestTC#(req_t, ‘TLM_PRM),

TLMResponseTC#(resp_t, ‘TLM_PRM),
Bits#(req_t, s0),
Bits#(resp_t, s1),
Bits#(RequestDescriptor#(‘TLM_PRM), s2));

Figure 31: TLMRAM

mkTLMRam Creates a TLM RAM with a single port for read and write operations. Provides the
TLMRecvIFC interface. The verbose argument controls whether or not $display
output is provided when performing a memory operation. The id argument pro-
vides an identifier for the instantiation which is used in the $display output if the
verbose flag is asserted.

module mkTLMRam#(parameter Bit#(4) id, Bool verbose)
(TLMRecvIFC#(req_t, resp_t))

provisos(TLMRequestTC#(req_t, ‘TLM_PRM),
TLMResponseTC#(resp_t, ‘TLM_PRM),
DefaultValue#(TLMResponse#(‘TLM_PRM)),
Bits#(TLMRequest#(‘TLM_PRM), s0),
Bits#(TLMResponse#(‘TLM_PRM), s1));

Figure 32: TLMReadWriteRAM
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mkTLMReadWriteRam Creates a RAM with separate ports for read and write operations. Provides the
TLMReadWriteRecvIFC interface. The verbose argument controls whether or not
$display output is provided when performing a memory operation. The id ar-
gument provides an identifier for the instantiation which is used in the $display
output if the verbose flag is asserted.

module mkTLMReadWriteRam#(parameter Bit#(4) id, Bool verbose)
(TLMReadWriteRecvIFC#(req_t, resp_t))

provisos(TLMRequestTC#(req_t, ‘TLM_PRM),
TLMResponseTC#(resp_t, ‘TLM_PRM),
DefaultValue#(TLMResponse#(‘TLM_PRM)),
Bits#(TLMRequest#(‘TLM_PRM), s0),
Bits#(TLMResponse#(‘TLM_PRM), s1),
FShow#(TLMRequest#(‘TLM_PRM)),
FShow#(TLMResponse#(‘TLM_PRM)));

The modules mkTLMBRAM and mkTLMBRAMBE allows BRAMs (Section C.2.4) to be accessed via a TLM
interface.

mkTLMBRAM The mkTLMBRAM module provides a TLMRecv interface and is built on any module that
provides a BRAMServer interface, for example, a mkBRAM1Server module (Section
C.2.4). byte_size needs to be a power of 2 (i.e. 1, 2, 4 ..)

module mkTLMBRAM (BRAMServer#(Bit#(anx), Bit#(dn)) bramifc,
TLMRecvIFC#(reqt, respt) ifc)

provisos(Bits#(respt, sr),
DefaultValue#(TLMResponse#(‘TLM_PRM)),
Div#(data_size, 8, byte_size),
Add#(anx, TLog#(byte_size), an),
Add#(anx, iax, addr_size),
Add#(an, ia, addr_size),
Add#(dn, id, data_size),
Add#(TDiv#(dn,8), xn, byte_size),
Div#(data_size,8,TDiv#(data_size,8)),
TLMRequestTC#(reqt, ‘TLM_PRM),
TLMResponseTC#(respt, ‘TLM_PRM),
FShow#(TLMRequest#(‘TLM_PRM)),
FShow#(RequestData#(‘TLM_PRM)));
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mkTLMBRAMBE The mkTLMBRAMBE module provides a TLMRecv interface and is built on any module
that provides a BRAMServerBE interface, for example, a mkBRAM1ServerBE module
(Section C.2.4). byte_size needs to be a power of 2 (i.e. 1, 2, 4 ..)

module mkTLMBRAMBE (BRAMServerBE#(Bit#(anx), Bit#(dn), nn) bramifc,
TLMRecvIFC#(reqt, respt) ifc)

provisos(Bits#(respt, sr),
DefaultValue#(TLMResponse#(‘TLM_PRM)),
Div#(data_size, 8, byte_size),
Add#(anx, TLog#(byte_size), an),
Add#(anx, iax, addr_size),
Add#(an, ia, addr_size),
Add#(dn, id, data_size),
Add#(nn, xn, byte_size),
Div#(data_size,8,TDiv#(data_size,8)),
TLMRequestTC#(reqt, ‘TLM_PRM),
TLMResponseTC#(respt, ‘TLM_PRM),
FShow#(TLMRequest#(‘TLM_PRM)),
FShow#(RequestData#(‘TLM_PRM)));

The mkTLMCBusAdapter module creates an adapter which allows the CBus (Section C.10.3) to be
accessed via a TLM interface.

typedef CBus#(caddr_size, data_size) TLMCBus#(‘TLM_PRM_DCL, numeric type caddr_size);
typedef ModWithCBus#(caddr_size, data_size, i) ModWithTLMCBus#(‘TLM_PRM_DCL, numeric type caddr_size, type i);
typedef CRAddr#(caddr_size, data_size) TLMCRAddr#(‘TLM_PRM_DCL, numeric type caddr_size);

mkTLMCBusAdapter Takes a TLMCBus interface as an argument. Provides the TLMRecvIFC interface.

module mkTLMCBusAdapter#(
function Bit#(caddr_size) mapTLMAddr(Bit#(addr_size) addr),
TLMCBus#(‘TLM_PRM, caddr_size) cfg)
(TLMRecvIFC#(req_t, resp_t))

provisos(TLMRequestTC#(req_t, ‘TLM_PRM),
TLMResponseTC#(resp_t, ‘TLM_PRM),
DefaultValue#(TLMResponse#(‘TLM_PRM)),
Bits#(TLMRequest#(‘TLM_PRM), s0),
Bits#(resp_t, s1),
Add#(ignore, caddr_size, addr_size));
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mkTLMCBusAdapterToReadWrite

Takes a TLMCBus interface as an argument. Provides the TLMReadWriteRecvIFC
interface. This configuration provides separate ports for read and write operations.

module mkTLMCBusAdapterToReadWrite#(
function Bit#(caddr_size) mapTLMAddr(Bit#(addr_size) addr),
TLMCBus#(‘TLM_PRM, caddr_size) cfg)
(TLMReadWriteRecvIFC#(req_t, resp_t))

provisos(TLMRequestTC#(req_t, ‘TLM_PRM),
TLMResponseTC#(resp_t, ‘TLM_PRM),
DefaultValue#(TLMResponse#(‘TLM_PRM)),
Bits#(TLMRequest#(‘TLM_PRM), s0),
Bits#(resp_t, s1),
Add#(ignore, caddr_size, addr_size));

Functions

getTLMCycleCount Returns a 1 if the command is a read, otherwise returns the burst_length.

function TLMUInt#(‘TLM_PRM)
getTLMCycleCount (RequestDescriptor#(‘TLM_PRM) desc);

getTLMBurstSize Returns the size of the burst (burst_size + 1) as a Bit#(n).

function Bit#(n) getTLMBurstSize (RequestDescriptor#(‘TLM_PRM) desc)
provisos(Add#(SizeOf#(TLMBurstSize#(‘TLM_PRM)), 1, n));

getTLMIncr Returns the TLM increment (burst_size + 1) as a Bit#(n). Returns 0 if the burst
mode is constant.

function Bit#(n) getTLMIncr (RequestDescriptor#(‘TLM_PRM) desc)
provisos(Add#(SizeOf#(TLMBurstSize#(‘TLM_PRM)), 1, n));

getTLMByteEn Returns the byte enable.

function TLMByteEn#(‘TLM_PRM) getTLMByteEn (
RequestDescriptor#(‘TLM_PRM) tlm_descriptor);
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incrTLMAddr Returns a TLM Address.

function RequestDescriptor#(‘TLM_PRM)
incrTLMAddr(RequestDescriptor#(‘TLM_PRM) desc);

countLSBZeros Returns the number of LSB zeros.

function Bit#(n) countLSBZeros (Bit#(n) value);

getTLMData Returns the data from a TLM request.

function TLMData#(‘TLM_PRM)
getTLMData(TLMRequest#(‘TLM_PRM) request);

createBasicRequestDescriptor Returns a generic TLM request with default values.

function RequestDescriptor#(‘TLM_PRM)
createBasicRequestDescriptor()

provisos(Bits#(RequestDescriptor#(‘TLM_PRM), s0));

createBasicTLMResponse Returns a generic TLM response with default values.

function TLMResponse#(‘TLM_PRM) createBasicTLMResponse()
provisos(Bits#(TLMResponse#(‘TLM_PRM), s0));

C.12 Premium Bus Fabric Libraries

The Axi and AHB packages support development of bus-based designs implementing AXI and AHB
protocols. These packages are AzureIP Premium offerings and are not provided as part of the Foun-
dation library. If you are interested in obtaining these packages, please contact your sales represen-
tative or sales@bluespec.com. Customers licensed under release 2009.10.B or earlier still have access
to the AXI and AHB libraries as part of the standard offering. Please contact support@bluespec.com
if you cannot access the latest libraries.
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C.12.1 Axi

Packages

import Axi :: * ;

Description

The AXI library includes interface, transactor, module and function definitions to implement the
Advanced eXtensible Interface (AXI) protocol with Bluespec SystemVerilog. The BSV AXI library
groups the AXI data and protocols into reusable, parameterized interfaces, which interact with TLM
interfaces. An AXI bus is implemented using AXI transactors to connect TLM interfaces on one
side with AXI interfaces on the other side. The TLM interfaces used by the Axi package are defined
in the TLM2 package.

The AXI library supports the following AXI Bus protocol features:

• Basic and Burst Transfers

• Aligned and Unaligned Transfers

The AXI library does not support the following AXI Bus protocol features:

• Exclusive/Locked Access

• Low Power Interface

• Cache Transaction Attributes

The basic structure of an AXI write bus is show in figure 33. The structure of a read bus is similar.
(Note that the nature of the AXI protocol is such that the read and write buses operate totally
independently of each other).

Figure 33: AXI Write Bus Example

The corresponding BSV AXI implementation is shown in figure 34. TLM Write requests are received
via the TLMRecvIFC interfaces of the master transactors. The request is then transmitted via the
AxiWrMaster interface out onto the AXI bus and on to the appropriate slave transactor. The slave
transactor receives the request via the AxiWrSlave interface, translates the request back into a
stream of TLM objects, and then transmits those objects via the TLMSendIFC interface. The TLM
response from the write operation follows the same path in reverse.

413



Reference Guide Bluespec SystemVerilog

Figure 34: BSV AXI Write Bus Implementation Using TLM Transactors

This package is an AzureIP Premium offering and is not provided as part of the Foundation li-
brary. If you are interested in obtaining this package, please contact your sales representative or
sales@bluespec.com. Customers licensed under release 2009.10.B or earlier still have access to this
library as part of the standard offering. Please contact support@bluespec.com if you cannot access
the latest library.

Data Structures

Inside the transactor modules, the AXI data is organized into the following data structures: the
address data is defined by AxiAddrCmd, the read response is defined by AxiRdResp, the write data
is defined by AxiWrData and the write response is defined by AxiWrResp.

AxiAddrCmd The AXI Address Bus is defined by a structure, AxiAddrCmd, the components of
which are described in the following table.

AxiAddrCmd
Member Name DataType Valid Values
id AxiId#(‘TLM_PRM) Bit#(id_size)
len AxiLen Bit#(4)
size AxiSize Bit#(3)
burst AxiBurst FIXED, INCR, WRAP
lock AxiLock NORMAL, EXCLUSIVE, LOCKED
cache AxiCache Bit#(4)
prot AxiProt Bit#(3)
addr AxiAddr#(‘TLM_PRM) Bit#(addr_size)

typedef struct {
AxiId#(‘TLM_PRM) id;
AxiLen len;
AxiSize size;
AxiBurst burst;
AxiLock lock;
AxiCache cache;
AxiProt prot;
AxiAddr#(‘TLM_PRM) addr;
} AxiAddrCmd#(‘TLM_PRM_DCL) deriving(Bits,Eq);
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AxiRdResp The AXI Read Bus is defined by the AxiRdResp structure, the components of which
are described in the following table.

AxiRdResp
Member Name DataType Valid Values
id AxiId#(‘TLM_PRM) Bit#(id_size)
data AxiData#(‘TLM_PRM) Bit#(data_size)
resp AxiResp OKAY, EXOKAY, SLVERR, DECERR
last Bool True, False

typedef struct {
AxiId#(‘TLM_PRM) id;
AxiData#(‘TLM_PRM) data;
AxiResp resp;
Bool last;
} AxiRdResp#(‘TLM_PRM_DCL) deriving(Bits,Eq);

The AXI Write Bus is defined by two structures, AxiWrData and AxiWrResp.

AxiWrData The components of AxiWrData are described in the following table.

AxiWrData
Member Name DataType Valid Values
id AxiId#(‘TLM_PRM) Bit#(id_size)
data AxiData#(‘TLM_PRM) Bit#(data_size)
strb AxiByteEn#(‘TLM_PRM) Bit#(TDiv#(data_size, 8))
last Bool True, False

typedef struct {
AxiId#(‘TLM_PRM) id;
AxiData#(‘TLM_PRM) data;
AxiByteEn#(‘TLM_PRM) strb;
Bool last;
} AxiWrData#(‘TLM_PRM_DCL) deriving(Bits,Eq);

AxiWrResp The components of AxiWrResp are described in the following table.

AxiWrResp
Member Name DataType Valid Values
id AxiId#(‘TLM_PRM) Bit#(id_size)
resp AxiResp OKAY, EXOKAY, SLVERR, DECERR

typedef struct {
AxiId#(‘TLM_PRM) id;
AxiResp resp;
} AxiWrResp#(‘TLM_PRM_DCL) deriving(Bits,Eq);

Bus Interfaces

This section describes the AXI bus master and slave interfaces used by the AXI transactor modules.
Since the AXI protocol supports read and write operations on separate buses, two flavors of each
interface exist, one for reads and one for writes.
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AxiRdMaster The AxiRdMaster interface issues AXI read requests and receives AXI read re-
sponses.

interface AxiRdMaster#(‘TLM_PRM_DCL);
// Address Outputs
method AxiId#(‘TLM_PRM) arID;
method AxiAddr#(‘TLM_PRM) arADDR;
method AxiLen arLEN;
method AxiSize arSIZE;
method AxiBurst arBURST;
method AxiLock arLOCK;
method AxiCache arCACHE;
method AxiProt arPROT;
method Bool arVALID;

// Address Inputs
method Action arREADY(Bool value);

// Response Outputs
method Bool rREADY;

// Response Inputs
method Action rID (AxiId#(‘TLM_PRM) value);
method Action rDATA (AxiData#(‘TLM_PRM) value);
method Action rRESP (AxiResp value);
method Action rLAST (Bool value);
method Action rVALID(Bool value);

endinterface

AxiWrMaster The AxiWrMaster interface issues AXI write requests and receives AXI write re-
sponses.

interface AxiWrMaster#(‘TLM_PRM_DCL);
// Address Outputs
method AxiId#(‘TLM_PRM) awID;
method AxiAddr#(‘TLM_PRM) awADDR;
method AxiLen awLEN;
method AxiSize awSIZE;
method AxiBurst awBURST;
method AxiLock awLOCK;
method AxiCache awCACHE;
method AxiProt awPROT;
method Bool awVALID;

// Address Inputs
method Action awREADY(Bool value);

// Data Outputs
method AxiId#(‘TLM_PRM) wID;
method AxiData#(‘TLM_PRM) wDATA;
method AxiByteEn#(‘TLM_PRM) wSTRB;
method Bool wLAST;
method Bool wVALID;
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// Data Inputs
method Action wREADY(Bool value);

// Response Outputs
method Bool bREADY;

// Response Inputs
method Action bID (AxiId#(‘TLM_PRM) value);
method Action bRESP (AxiResp value);
method Action bVALID(Bool value);

endinterface

AxiRdSlave The AxiRdSlave interface receives AXI read requests and returns AXI read re-
sponses.

interface AxiRdSlave#(‘TLM_PRM_DCL);
// Address Inputs
method Action arID (AxiId#(‘TLM_PRM) value);
method Action arADDR (AxiAddr#(‘TLM_PRM) value);
method Action arLEN (AxiLen value);
method Action arSIZE (AxiSize value);
method Action arBURST(AxiBurst value);
method Action arLOCK (AxiLock value);
method Action arCACHE(AxiCache value);
method Action arPROT (AxiProt value);
method Action arVALID(Bool value);

// Address Outputs
method Bool arREADY;

// Response Inputs
method Action rREADY(Bool value);

// Response Outputs
method AxiId#(‘TLM_PRM) rID;
method AxiData#(‘TLM_PRM) rDATA;
method AxiResp rRESP;
method Bool rLAST;
method Bool rVALID;

endinterface

AxiWrSlave The AxiWrSlave interface receives AXI write requests and returns AXI write re-
sponses.

interface AxiWrSlave#(‘TLM_PRM_DCL);
// Address Inputs
method Action awID (AxiId#(‘TLM_PRM) value);
method Action awADDR (AxiAddr#(‘TLM_PRM) value);
method Action awLEN (AxiLen value);
method Action awSIZE (AxiSize value);
method Action awBURST(AxiBurst value);
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method Action awLOCK (AxiLock value);
method Action awCACHE(AxiCache value);
method Action awPROT (AxiProt value);
method Action awVALID(Bool value);

// Address Outputs
method Bool awREADY;

// Data Inputs
method Action wID (AxiId#(‘TLM_PRM) value);
method Action wDATA (AxiData#(‘TLM_PRM) value);
method Action wSTRB (AxiByteEn#(‘TLM_PRM) value);
method Action wLAST (Bool value);
method Action wVALID(Bool value);

// Data Ouptuts
method Bool wREADY;

// Response Inputs
method Action bREADY(Bool value);

// Response Outputs
method AxiId#(‘TLM_PRM) bID;
method AxiResp bRESP;
method Bool bVALID;

endinterface

The AxiRdMaster and AxiRdSlave interfaces as well as the AxiWrMaster and AxiWrSlave interfaces
are connectable.

instance Connectable#(AxiRdMaster#(‘TLM_PRM), AxiRdSlave#(‘TLM_PRM));

instance Connectable#(AxiWrMaster#(‘TLM_PRM), AxiWrSlave#(‘TLM_PRM));

Fabric Interfaces

When used in the context of a bus or switch, AXI transactor modules must communicate with address
decoding logic. As with the BSV implementation of the AHB bus, bus fabric interfaces are provided
to support this communication. Unlike the AHB protocol however, with the AXI bus protocol no
explicit communication between the arbiter and the master transactor modules is required. Thus
the AxiRdFabricMaster and AxiWrFabricMaster interfaces are simply wrappers around the bus
interfaces themselves.

interface AxiRdFabricMaster#(‘TLM_PRM_DCL);
(* prefix = "" *)
interface AxiRdMaster#(‘TLM_PRM) bus;

endinterface

interface AxiWrFabricMaster#(‘TLM_PRM_DCL);
(* prefix = "" *)
interface AxiWrMaster#(‘TLM_PRM) bus;

endinterface
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The AxiRdFabricSlave and AxiWrFabricSlave interfaces each provide an addrMatch method which
given an AXI address returns an Boolean value indicating whether the given address maps to the
associated slave. By polling this method for each slave on the bus, the decoding logic can determine
the appropriate destination for each bus transaction.

interface AxiRdFabricSlave#(‘TLM_PRM_DCL);
(* prefix = "" *)
interface AxiRdSlave#(‘TLM_PRM) bus;
method Bool addrMatch(AxiAddr#(‘TLM_PRM) value);

endinterface

interface AxiWrFabricSlave#(‘TLM_PRM_DCL);
(* prefix = "" *)
interface AxiWrSlave#(‘TLM_PRM) bus;
method Bool addrMatch(AxiAddr#(‘TLM_PRM) value);

endinterface

Transactor Interfaces

Each AXI transactor module provides AXI and TLM interfaces to implement a translation between
a stream of TLM operations and the AXI bus protocol. Each transactor has two subinterfaces:
a subinterface for the connection with the AXI bus and a subinterface to send and receive TLM
objects. The AXI library package includes two master transactor interfaces and two slave trans-
actor interfaces; The AXIRdMasterXActor and AXIWrMasterXActor interfaces for masters and the
AXIRdSlaveXActor and AXIWrSlaveXActor interfaces for slaves. Since the AXI protocol supports
read and write transaction on separate buses, two transactor implementations are required for mas-
ters and two implementations for slaves. The AXI subinterface definitions can be found in section
C.12.1. The TLM interfaces are described in Section C.11.1.

AxiRdMasterXActorIFC The AxiRdMasterXActorIFC has two subinterfaces: an AxiRdFabricMaster
subinterface and a TLMRecvIFC subinterface. The associated transactor converts TLM read requests
into the AXI protocol, and converts the AXI response back into TLM.

interface AxiRdMasterXActorIFC#(‘TLM_RR_DCL, ‘TLM_PRM_DCL);
interface TLMRecvIFC#(‘TLM_RR) tlm;
(* prefix = "" *)
interface AxiRdFabricMaster#(‘TLM_PRM) fabric;

endinterface

AxiWrMasterXActorIFC The AxiWrMasterXActorIFC has two subinterfaces: an AxiWrFabricMaster
subinterface and a TLMRecvIFC subinterface. The associated transactor converts TLM write requests
into the AXI protocol, and converts the AXI response back into TLM.

interface AxiWrMasterXActorIFC#(‘TLM_RR_DCL, ‘TLM_PRM_DCL);
interface TLMRecvIFC#(‘TLM_RR) tlm;
(* prefix = "" *)
interface AxiWrFabricMaster#(‘TLM_PRM) fabric;

endinterface
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Figure 35: AXIMasterXActor Interfaces (Read and Write Versions)

AxiRdSlaveXActorIFC The AxiRdSlaveXActorIFC has two subinterfaces: an AxiRdFabricSlave
subinterface and a TLMSendIFC subinterface. The associated transactor converts an AXI read request
into TLM and the TLM response back into the AXI protocol.

interface AxiRdSlaveXActorIFC#(‘TLM_RR_DCL, ‘TLM_PRM_DCL);
interface TLMSendIFC#(‘TLM_RR) tlm;
(* prefix = "" *)
interface AxiRdFabricSlave#(‘TLM_PRM) fabric;

endinterface

AxiWrSlaveXActorIFC The AxiWrSlaveXActorIFC has two subinterfaces: an AxiWrFabricSlave
subinterface and a TLMSendIFC subinterface. The associated transactor converts an AXI write re-
quest into TLM and the TLM response back into the AXI protocol.

interface AxiWrSlaveXActorIFC#(‘TLM_RR_DCL, ‘TLM_PRM_DCL);
interface TLMSendIFC#(‘TLM_RR) tlm;
(* prefix = "" *)
interface AxiWrFabricSlave#(‘TLM_PRM) fabric;

endinterface

Figure 36: AXISlaveXActor Interfaces (Read and Write Versions)
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Modules

The following constructors are used to create AXI transactor modules. Versions with associated syn-
thesis boundaries are also available. These versions are called mkAxiRdMasterStd, mkAxiWrMasterStd,
mkAxiRdSlaveStd, and mkAxiWrSlaveStd. The specific TLM parameter values for these synthesized
versions are as specified by the preprocessor macro TLM_STD_TYPES (see section C.11.1).

mkAxiRdMaster Creates an AXI master read transactor module. Provides an AxiRdMasterXActorIFC
interface.

module mkAxiRdMaster (AxiRdMasterXActorIFC#(‘TLM_XTR))
provisos(Bits#(req_t, s0),

Bits#(resp_t, s1),
TLMRequestTC#(req_t, ‘TLM_PRM),
TLMResponseTC#(resp_t, ‘TLM_PRM),
DefaultValue#(cstm_type),
AxiConvert#(AxiProt, cstm_type)
AxiConvert#(AxiCache, cstm_type),
AxiConvert#(AxiLock, cstm_type));

mkAxiWrMaster Creates an AXI master write transactor module. Provides an AxiWrMasterXActorIFC
interface.

module mkAxiWrMaster (AxiWrMasterXActorIFC#(‘TLM_XTR))
provisos(Bits#(req_t, s0),

Bits#(resp_t, s1),
TLMRequestTC#(req_t, ‘TLM_PRM),
TLMResponseTC#(resp_t, ‘TLM_PRM),
DefaultValue#(cstm_type),
Bits#(cstm_type, s2),
AxiConvert#(AxiProt, cstm_type)
AxiConvert#(AxiCache, cstm_type),
AxiConvert#(AxiLock, cstm_type));

mkAxiRdSlave Creates an AXI slave read transactor module. Provides an AxiRdSlaveXActorIFC
interface.

module mkAxiRdSlave#(Integer max_flight,
function Bool addr_match(AxiAddr#(‘TLM_PRM) addr))

(AxiRdSlaveXActorIFC#(‘TLM_XTR))
provisos (TLMRequestTC#(req_t, ‘TLM_PRM),

TLMResponseTC#(resp_t, ‘TLM_PRM),
Bits#(req_t, s0),
Bits#(resp_t, s1),
Bits#(cstm_type, s2),
AxiConvert#(AxiCustom, cstm_type));
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mkAxiWrSlave Creates an AXI slave write transactor module. Provides an AxiWrSlaveXActorIFC
interface.

module mkAxiWrSlave#(Integer max_flight,
function Bool addr_match(AxiAddr#(‘TLM_PRM) addr))

(AxiWrSlaveXActorIFC#(‘TLM_XTR))
provisos(TLMRequestTC#(req_t, ‘TLM_PRM),

TLMResponseTC#(resp_t, ‘TLM_PRM),
Bits#(req_t, s0),
Bits#(resp_t, s1),
Bits#(cstm_type, s2),
AxiConvert#(AxiCustom, cstm_type));

The following two module constructors are each used to create an AXI bus fabric. mkAxiRdBus is
used to create a read bus while mkAxiWrBus is used to create a write bus.

mkAxiRdBus Given a vector of AxiRdFabricMaster interfaces and a vector of AxiRdFabricSlave
interfaces, mkAxiRdBus creates an AXI read bus.

module mkAxiRdBus#(Vector#(master_count,
AxiRdFabricMaster#(‘TLM_PRM)) masters,

Vector#(slave_count,
AxiRdFabricSlave#(‘TLM_PRM))slaves) (Empty)

provisos(Log#(master_count, size_m),
Add#(slv_count, 1, slave_count),
Log#(slave_count, size_s),
Add#(ignore0, size_m, id_size),
Add#(ignore1, size_s, id_size));

mkAxiWrBus Given a vector of AxiWrFabricMaster interfaces and a vector of AxiWrFabricSlave
interfaces, mkAxiWrBus creates an AXI write bus.

module mkAxiWrBus#(Vector#(master_count,
AxiWrMaster#(‘TLM_PRM)) masters,

Vector#(slave_count,
AxiWrSlave#(‘TLM_PRM)) slaves) (Empty)

provisos(Log#(master_count, size_m),
Add#(slv_count, 1, slave_count),
Log#(slave_count, size_s),
Add#(ignore0, size_m, id_size),
Add#(ignore1, size_s, id_size));

The following module is used to add probe signals for each of the AXI bus signals. This facilitates
debugging and waveform viewing of the created bus fabric.
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mkAxiMonitor Adds a probe module for each of the AXI bus signals. The include_pc value indicates
whether or not the monitor module should include an instantiation of an AXI protocol
checker module (available from ARM). If the protocol checker is not available, the value
of include_pc should be set to False.

module mkAxiMonitor#(Bool include_pc,
AxiWrMaster#(‘TLM_PRM) master_wr,
AxiWrSlave#(‘TLM_PRM) slave_wr,
AxiRdMaster#(‘TLM_PRM) master_rd,
AxiRdSlave#(‘TLM_PRM) slave_rd)
(AxiMonitor#(‘TLM_PRM));

Functions

The following functions convert from TLM to AXI

getAxiAddrCmd Returns an AxiAddrCmd from a TLM RquestDescriptor

function AxiAddrCmd#(‘TLM_PRM) getAxiAddrCmd (
RequestDescriptor#(‘TLM_PRM) tlm_descriptor)

provisos(AxiConvert#(AxiProt, cstm_type),
AxiConvert#(AxiCache, cstm_type),
AxiConvert#(AxiLock, cstm_type) );

getFirstAxiWrData Returns the AxiWrData from the TLM RequestDesriptor

function AxiWrData#(‘TLM_PRM) getFirstAxiWrData (
RequestDescriptor#(‘TLM_PRM) tlm_descriptor);

getAxiByteEn Returns the AxiByteEn from the TLM RequestDesriptor

function AxiByteEn#(‘TLM_PRM) getAxiByteEn (
RequestDescriptor#(‘TLM_PRM) tlm_descriptor);

getAxiLen Returns the AxiLen from the TLM burst_length

function AxiLen getAxiLen(TLMUInt#(‘TLM_PRM) burst_length);
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getAxiSize Returns the AxiSize from the TLM incr

function AxiSize getAxiSize(TLMBurstSize#(‘TLM_PRM) incr);

getAxiSize Returns the AxiSize from the TLM incr

function AxiSize getAxiSize(TLMBurstSize#(‘TLM_PRM) incr);

getAxiBurst Returns the AxiBurst from the TLM burst_mode

function AxiBurst getAxiBurst(TLMBurstMode burst_mode);

getAxiId Returns the AxiId from the TLM transaction_id

function AxiId#(‘TLM_PRM) getAxiId(TLMId#(‘TLM_PRM) transaction_id);

The following functions convert from Axi to TLM

fromAxiAddrCmd Returns the TLM RequestDescriptor from the AXI addr_cmd

function RequestDescriptor#(‘TLM_PRM) fromAxiAddrCmd (
AxiAddrCmd#(‘TLM_PRM) addr_cmd)

provisos(Bits#(RequestDescriptor#(‘TLM_PRM), s0),
AxiConvert#(AxiCustom, cstm_type));

fromAxiLen Returns the TLM burst_length from the AXI len

function TLMUInt#(‘TLM_PRM) fromAxiLen(AxiLen len);
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fromAxiBurst Returns the TLM burst_mode from the AXI burst

function TLMBurstMode fromAxiBurst(AxiBurst burst);

fromAxiSize Returns the TLM burst_size from the AXI size

function TLMBurstSize#(‘TLM_PRM) fromAxiSize(AxiSize size);

fromAxiId Returns a TLM id from the AXI id

function TLMId#(‘TLM_PRM) fromAxiId(AxiId#(‘TLM_PRM) id);

fromAxiResp Returns the TLM status from the AXI resp

function TLMStatus fromAxiResp(AxiResp resp);

C.12.2 AHB

Packages

import AHB :: * ;

Description

The AHB library includes interface, transactor, module and function definitions to implement the
AHB protocol with Bluespec SystemVerilog. The BSV AHB library groups the AHB data and
protocols into reusable, parameterized interfaces, which interact with TLM interfaces. An AHB bus
is implemented using AHB transactors - interfaces which connect TLM interfaces on one side with
AHB interfaces on the other side.

The AHB library supports the following AHB Bus protocol features:

• Basic and Burst Transfers

• Locked Transfers

The AHB library does not support the following AHB Bus protocol features:

• Early Burst Termination
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Figure 37: AHB Bus Example

• Split Transfers

• Retry Transfers

This package is an AzureIP Premium offering and is not provided as part of the Foundation li-
brary. If you are interested in obtaining this package, please contact your sales representative or
sales@bluespec.com. Customers licensed under release 2009.10.B or earlier still have access to this
library as part of the standard offering. Please contact support@bluespec.com if you cannot access
the latest library.

Data Structures

Inside the transactor modules, the AHB data is organized into the following data structures: the ad-
dress and control information is defined by AHBCtrl, the write data is defined by AHBData. These two
structures are bundled into an AHBRequest. Finally, the response data is defined by AHBResponse.

AHBRequest An AHB request is defined by the AHBRequest structure as described below.

AHBRequest
Member DataType Valid Values

cntrl AHBCtrl#(‘TLM_PRM) see above
data AHBData#(‘TLM_PRM) Bit#(data_size)

typedef struct {
AHBCtrl#(‘TLM_PRM) ctrl;
AHBData#(‘TLM_PRM) data;
} AHBRequest#(‘TLM_PRM_DCL) ‘dv;

AHBCtrl The control fields in an AHBRequest are described by the AHBCtrl structure, the com-
ponents of which are defined in the following table.
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AHBCtrl
Member DataType Valid Values

command AHBWrite READ, WRITE
size AHBSize BITS8, BITS16, BITS32, BITS64, BITS128,

BITS256, BITS512, BITS1024
burst AHBBurst SINGLE, INCR, WRAP4, INCR4, WRAP8, INCR8,

WRAP16, INCR16
transfer AHBTransfer IDLE, BUSY, NONSEQ, SEQ
prot AHBProt Bit#(4)
addr AHBAddr#(‘TLM_PRM) Bit#(addr_size)

typedef struct {
AHBWrite command;
AHBSize size;
AHBBurst burst;
AHBTransfer transfer;
AHBProt prot;
AHBAddr#(‘TLM_TYPES) addr;
} AHBCtrl#(‘TLM_PRM_DCL) ‘dv;

AHBResponse An AHBResponse consists of a status fields and data (when responding to a read
request). The components of the structure are described in the following table.

AHBResponse
Member DataType Valid Values

status AHBResp OKAY, ERROR, RETRY, SPLIT
data AHBData Bit#(data_size)
command Maybe#(AHBWrite) READ, WRITE

typedef struct {
AHBResp status;
AHBData#(‘TLM_PRM) data;
Maybe#(AHBWrite) command;
} AHBResponse#(‘TLM_PRM_DCL) ‘dv;

Bus Interfaces

The two basic bus interfaces included in the AHB library are the AHBMaster interface and the
AHBSlave interface.

AHBMaster The AHBMaster interface issues AHB requests and receives AHB responses.

(* always_ready, always_enabled *)
interface AHBMaster#(‘TLM_PRM_DCL);

// Outputs
(* result = "HADDR" *)
method AHBAddr#(‘TLM_PRM) hADDR;
(* result = "HWDATA" *)
method AHBData#(‘TLM_PRM) hWDATA;
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Figure 38: AHB Master Interface

(* result = "HWRITE" *)
method AHBWrite hWRITE;
(* result = "HTRANS" *)
method AHBTransfer hTRANS;
(* result = "HBURST" *)
method AHBBurst hBURST;
(* result = "HSIZE" *)
method AHBSize hSIZE;
(* result = "HPROT" *)
method AHBProt hPROT;
// Inputs
(* prefix = "", result = "unused0" *)
method Action hRDATA((* port = "HRDATA" *) AHBData#(‘TLM_PRM) data);
(* prefix = "", result = "unused1" *)
method Action hREADY((* port = "HREADY" *) Bool value);
(* prefix = "", result = "unused2" *)
method Action hRESP((* port = "HRESP" *) AHBResp response);

endinterface

AHBSlave The AHBSlave interface receives AHB requests and returns AHB responses.

Figure 39: AHB Slave Interface

(* always_ready, always_enabled *)
interface AHBSlave#(‘TLM_PRM_DCL);

// Inputs
(* prefix = "", result = "unused0" *)
method Action hADDR((* port = "HADDR" *) AHBAddr#(‘TLM_PRM) addr);
(* prefix = "", result = "unused1" *)
method Action hWDATA((* port = "HWDATA" *) AHBData#(‘TLM_PRM) data);
(* prefix = "", result = "unused2" *)
method Action hWRITE((* port = "HWRITE" *) AHBWrite value);
(* prefix = "", result = "unused3" *)
method Action hTRANS((* port = "HTRANS" *) AHBTransfer value);
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(* prefix = "", result = "unused4" *)
method Action hBURST((* port = "HBURST" *) AHBBurst value);
(* prefix = "", result = "unused5" *)
method Action hSIZE((* port = "HSIZE" *) AHBSize value);
(* prefix = "", result = "unused6" *)
method Action hPROT((* port = "HPROT" *) AHBProt value);

// Outputs
(* result = "HRDATA" *)
method AHBData#(‘TLM_PRM) hRDATA;
(* result = "HREADY" *)
method Bool hREADY;
(* result = "HRESP" *)
method AHBResp hRESP;

endinterface

The AHBMaster and AHBSlave interfaces are connectable.

instance Connectable#(AHBMaster#(‘TLM_PRM), AHBSlave#(‘TLM_PRM));

Fabric Interfaces

When used in the context of a bus or switch, AHB Master and Slave modules must communicate
with the arbiter and with address decoding logic. Two additional interfaces are provided to support
this communication.

AHBMasterArbiter The AHBMasterArbiter interface connects the master module with the bus
arbiter. Through this interface, the master can request control of the bus and determine when
control has been granted.

(* always_ready, always_enabled *)
interface AHBMasterArbiter;

(* result = "HBUSREQ" *)
method Bool hBUSREQ;
(* result = "HLOCK" *)
method Bool hLOCK;
(* prefix = "" *)
method Action hGRANT((* port = "HGRANT" *) Bool value);

endinterface

AHBMasterArbiterDual

(* always_ready, always_enabled *)
interface AHBMasterArbiterDual;

(* prefix = "", result = "unused7" *)
method Action hBUSREQ((* port = "HBUSREQ" *) Bool value);
(* prefix = "", result = "unused8" *)
method Action hLOCK((* port = "HLOCK" *) Bool value);
(* result = "HGRANT" *)
method Bool hGRANT;

endinterface
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AHBSlaveSelector The AHBSlaveSelector interface provides an addrMatch method which given
an AHB address returns an Boolean value indicating whether the given address maps to the associ-
ated slave. By polling this method for each slave on the bus, the decoding logic can determine the
appropriate destination for each bus transaction. The AHBSlaveSelector interface also provides a
select method by which the decoding logic can indicate which slave is the selected destination.

interface AHBSlaveSelector#(‘TLM_PRM_DCL);
method Bool addrMatch(AHBAddr#(‘TLM_PRM) value);
(* prefix = "" *)
method Action select((* port = "HSEL" *) Bool value);

endinterface

AHBFabricMaster The AHBFabricMaster interface bundles two sub-interfaces, an AHBMaster
interface and an AHBMasterArbiter interface. It is this interface that is provided as an argument
when constructing an AHB bus and as the bus side interface of an AHB master transactor module.

interface AHBFabricMaster#(‘TLM_PRM_DCL);
(* prefix = "" *)
interface AHBMaster#(‘TLM_PRM) bus;
(* prefix = "" *)
interface AHBMasterArbiter arbiter;

endinterface

AHBFabricSlave The AHBFabricSlave interface bundles two sub-interfaces, an AHBSlave inter-
face and an AHBSlaveSelector interface. It is this interface that is provided as an argument when
constructing an AHB bus and as the bus side interface of an AHB slave transactor module

interface AHBFabricSlave#(‘TLM_PRM_DCL);
(* prefix = "" *)
interface AHBSlave#(‘TLM_PRM) bus;
(* prefix = "" *)
interface AHBSlaveSelector#(‘TLM_PRM) selector;

endinterface

Transactor Interfaces

An AHB transactor module provides AHB and TLM interfaces to implement a translation between
a stream of TLM operations and the AHB bus protocol. Each transactor has two subinterfaces:
a subinterface for the connection with the AHB bus and a subinterface to send and receive TLM
objects.

The AHB library package includes two transactor interfaces; The AHBMasterXActor interface for
the master and AHBSlaveXActor interface for the slave. The AHB protocol doesn’t separate read
and write transactions, so there is a single transactor implementation for masters and a single
implementation for slaves.

AHBMasterXActor The AHBMasterXActor has two subinterfaces: an AHBFabricMaster subin-
terface and a TLMRecvIFC subinterface. The TLM interface is described in Section C.11.1. The
transactor converts TLM requests into the AHB protocol, and converts the AHB response back into
TLM.
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Figure 40: AHBMasterXActor Interface

interface AHBMasterXActor#(‘TLM_RR_DCL, ‘TLM_PRM_DCL);
interface TLMRecvIFC#(‘TLM_RR) tlm;
(* prefix = "" *)
interface AHBFabricMaster#(‘TLM_PRM) fabric;

endinterface

Figure 41: AHBSlaveXActor Interface

AHBSlaveXActor The AHBSlaveXActor has two subinterfaces: AHBFabricSlave subinterface
and a TLMSendIFC subinterface. The TLM interface is described in Section C.11.1. The transactor
converts an AHB request into TLM and the TLM response back into the AHB protocol.

interface AHBSlaveXActor#(‘TLM_RR_DCL, ‘TLM_PRM_DCL);
interface TLMSendIFC#(‘TLM_RR) tlm;
(* prefix = "" *)
interface AHBFabricSlave#(‘TLM_PRM) fabric;

endinterface

Modules

The following constructors are used to create AHB transactor modules. Versions with associated syn-
thesis boundaries are also available. These versions are called mkAHBMasterStd, and mkAHBSlaveStd.
The specific TLM parameter values for these synthesized versions are as specified by the preprocessor
macro TLM_STD_TYPES (see section C.11.1).
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mkAHBMaster Creates an AHB Master transactor module. Provides a AHBMasterXActor interface.
This version is polymorphic.

module mkAHBMaster (AHBMasterXActor#(‘TLM_RR, ‘TLM_PRM))
provisos(TLMRequestTC#(req_t, ‘TLM_PRM),

TLMResponseTC#(resp_t, ‘TLM_PRM),
DefaultValue#(TLMResponse#(‘TLM_PRM)),
Bits#(req_t, s0),
Bits#(resp_t, s1),
Bits#(RequestDescriptor#(‘TLM_PRM), s2),
AHBConvert#(AHBProt, cstm_type),
AHBConvert#(AHBResp, cstm_type)

);

mkAHBMasterStd Creates an AHB Master transactor module. Provides a AHBMasterXActor interface.

module mkAHBMasterStd (AHBMasterXActor#(‘TLM_RR_STD, ‘TLM_PRM_STD));

mkAHBSlave Creates an AHB Slave transactor module. Provides an AHBSlaveXActor interface.
This version is polymorphic.

module mkAHBSlave#(function Bool addr_match(AHBAddr#(‘TLM_PRM) addr))
(AHBSlaveXActor#(‘TLM_RR, ‘TLM_PRM))

provisos(TLMRequestTC#(req_t, ‘TLM_PRM),
TLMResponseTC#(resp_t, ‘TLM_PRM),
DefaultValue#(RequestDescriptor#(‘TLM_PRM)),
Bits#(req_t, s0),
Bits#(resp_t, s1),
AHBConvert#(AHBProt, cstm_type));

mkAHBSlaveStd Creates an AHB Slave transactor module. Provides an AHBSlaveXActor interface.
This version is not polymorphic.

module mkAHBSlaveStd#(function Bool addr_match(AHBAddr#(‘TLM_PRM_STD) addr))
(AHBSlaveXActor#(‘TLM_RR_STD, ‘TLM_PRM_STD));

mkAHBSlaveDummy This is the recipient of everything that doesn’t have a slave destination.

module mkAHBSlaveDummy (AHBFabricSlave#(‘TLM_PRM));
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The following module constructor is used to create an AHB bus fabric.

mkAHBBus Given a vector of AHBFabricMaster interfaces and a vector of AHBFabricSlave
interfaces, mkAHBBus creates an AHB bus fabric.

module mkAHBBus#(Vector#(master_count, AHBFabricMaster#(‘TLM_PRM)) masters,
Vector#(slv_count, AHBFabricSlave#(‘TLM_PRM)) slvs) (Empty)

provisos(Add#(slv_count, 1, slave_count));

The following module is used to add probe signals for each of the AHB bus signals. This facilitates
debugging and waveform viewing of the created bus fabric.

mkAHBMasterMonitor Adds a probe module for each of the AHB bus signals. The include_pc value
indicates whether or not the monitor module should include an instantiation of an
AHB protocol checker module (available from ARM). If the protocol checker is not
available, the value of include_pc should be set to False.

module mkAHBMasterMonitor#(AHBFabricMaster#(‘TLM_PRM) master)
(AHBMasterMonitor#(‘TLM_PRM));

getCurrentSlave Returns the slave_num of the current slave.

module getCurrentSlave#(AHBFabricMaster#(‘TLM_PRM) master,
Vector#(slave_count,

AHBFabricSlave#(‘TLM_PRM)) slaves)
(ReadOnly#(LBit#(slave_count)));
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addToCollection (ModuleCollect function),
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bsv_assert_no_overflow (module), 343
bsv_assert_no_transition (module), 343
bsv_assert_no_underflow (module), 344
bsv_assert_odd_parity (module), 344
bsv_assert_one_cold (module), 344
bsv_assert_one_hot (module), 344
bsv_assert_proposition (module), 345
bsv_assert_quiescent_state (module), 345
bsv_assert_range (module), 345
bsv_assert_time (module), 345
bsv_assert_transition (module), 346
bsv_assert_unchange (module), 346
bsv_assert_width (module), 346
bsv_assert_win_change (module), 346
bsv_assert_win_unchange (module), 347
bsv_assert_window (module), 347
bsv_assert_zero_one_hot (module), 347
buildVersion, 186
BVI import (keyword)

in interfacing to Verilog, 126
BypassWire (interface), 177

C (scheduling annotations), 49
case (keyword), 61, 82, 83
case expression, 83
case statements

ordinary, 61
pattern matching, 82

casting, type, 74
CBus (interface), 389
CBus (package), 388
ceil (Real function), 273
CF (scheduling annotations), 49
CGetPut (package), 304
clear (FIFOF interface method), 89
clear (FIFO interface method), 89
Client (interface), 302
ClientServer (package), 302
Clock (type), 168, 349
clock_ancestors= (attribute), 111
clock_family= (attribute), 111
clock_prefix= (attribute), 109
ClockDividerIfc (interface), 357
clocked_by=(attribute), 112
clockOf (function), 350
Clocks (package), 349
cmplx (complex function), 276
cmplxMap (complex function), 276
cmplxSwap (complex function), 276
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cmplxWrite (complex function), 276
collectCBusIFC (module), 389
comment

block, 14
one-line, 14

compare (Ord class method), 154
compiler directives, 17
compilerVersion, 186
CompletionBuffer (interface), 315
CompletionBuffer (package), 315
Complex (package), 275
compose (function), 183
composeM (function), 183
concat (List function), 254
concat (Vector function), 230
conditional expressions, 67

pattern matching in, 84
conditional statements, 61
ConfigReg (package,interface), 191
conflict_free (attribute), 106
Connectable (class), 301
Connectable (package), 301
Cons (List constructor), 253
cons (List function), 253
cons (Vector function), 229
constFn (function), 183
context, see provisos
context too weak (overloading resolution), 118
continuousAssert, 328
Control (interface), 309
cos (Real function), 272
cosh (Real function), 272
countElem (Vector function), 238
countIf (Vector function), 238
countLSBZeros (function), 412
countOnes (function), 184
countOnesAlt (bit-vector function), 240
countZerosLSB (function), 184
countZerosMSB (function), 184
curry (function), 183

date, 186
decodeReal (Real function), 274
default (keyword), 62, 82
default_clock(BVI import statement), 131
default_clock_gate= (attribute), 110
default_clock_osc= (attribute), 110
default_gate_inhigh (attribute), 110
default_gate_unused (attribute), 110
default_reset(BVI import statement), 134
default_reset= (attribute), 110
DefaultValue (package), 325
‘define (compiler directive), 18
delay (StmtFSM function), 291

deq (FIFOF interface method), 89
deq (FIFO interface method), 89
deriving

Bits, 122
Bounded, 123
Eq, 123
brief description, 26
for isomorphic types, 124

descending_urgency (attribute), 103
dbgProbe (module), 323
Div (type provisos), 25, 171
div (Integer function), 162
doc= (attribute), 113
documentation attributes, 113
don’t-care expression, see ?
DReg (package,interface), 192
drop (List function), 256
drop (Vector function), 233
dropWhile (List function), 257
dropWhileRev (List function), 257
DualPortRamIfc (interface), 370
dumpoff, 95
dumpon, 95
dumpvars, 95
DWire (interface), 178
dynamicAssert, 328

elem (List function), 261
elem (Vector function), 237
‘else (compiler directive), 19
else (keyword), 61
‘elsif (compiler directive), 19
Empty (interface), 30
emptyRules (Rules variable), 170
enable= (attribute), 98
end (keyword), 61, 69
‘endif (compiler directive), 19
endpackage (keyword), 20
enq (FIFOF interface method), 89
enq (FIFO interface method), 89
enum, 51
enumerations, 51
epochTime, 186
epsilon (FixedPoint function), 279
Eq (type class), 24, 150

deriving, 123
UInt, Int type instances, 87

error (forced error), 181
errorM (forced error), 182
execution_order (attribute), 105
exp_e (Arith class method), 152
export (keyword), 20
export, identifiers from a package, 20
exposeCBusIFC (module), 389

437



Reference Guide Bluespec SystemVerilog

exposeCollection (ModuleCollect function),
386

exposeCurrentClock (function), 349
exposeCurrentReset (function), 349
extend (BitExtend class method), 158

False (Bool constant), 162
FIFO (package), 194
FIFO (interface type), 89
FIFOCountIfc (interface), 203
FIFOF (package), 194
FIFOF (interface type), 89
fifofToFifo (function), 199
FIFOLevel (package), 201
FIFOLevelIfc (interface), 202
fifoToGet (GetPut function), 300
fifoToPut (GetPut function), 300
File (type), 92
select (filter function), 256
find (List function), 257
find (Vector function), 238
findElem (Vector function), 238
findIndex (Vector function), 239
finite state machines, 86
fire_when_enabled (attribute), 101
first (FIFOF interface method), 89
first (FIFO interface method), 89
FixedPoint (package), 277
flatten (function), 399
flatten0 (function), 399
flip (function), 183
floor (Real function), 274
Fmt (type), 164
fold (List function), 266
fold (Vector function), 245
foldl (List function), 266
foldl (Vector function), 244
foldl1 (List function), 266
foldl1 (Vector function), 244
foldr (List function), 265
foldr (Vector function), 244
foldr1 (List function), 266
foldr1 (Vector function), 244
fromAxiAddrCmd (function), 424
fromAxiBurst (function), 424
fromAxiId (function), 425
fromAxiLen (function), 424
fromAxiResp (function), 425
fromAxiSize (function), 425
fromInt (FixedPoint function), 279
fromInteger (Literal class method), 150, 162
fromInteger (converting unsized integer lit-

erals to specific types), 15
fromMaybe (Maybe function), 165

fromReal (RealLiteral class method), 151
fromSizedInteger (SizedLiteral class method),

151
fromSizedInteger(SizedLiteral class method),

15
fromUInt (FixedPoint function), 279
FShow (data type), 321
FShow (package), 321
fshow (function), 323
FSMs, 86
function calls, 73
function definitions, 64
fxptGetFrac (FixedPoint function), 279
fxptGetInt (FixedPoint function), 279
fxptMult (FixedPoint function), 280
fxptSignExtend (FixedPoint function), 283
fxptTruncate (FixedPoint function), 280
fxptTruncateRoundSat (FixedPoint function),

281
fxptTruncateSat (FixedPoint function), 281
fxptWrite (FixedPoint function), 283
fxptZeroExtend (FixedPoint function), 283

gate= (attribute), 111
gate_default_clock (attribute), 110
gate_inhigh (attribute), 111
gate_input_clocks= (attribute), 110
gate_prefix= (attribute), 109
gate_unused (attribute), 111
GatedClockIfc (interface), 351
gcd (function), 185
Gearbox (interface), 226
Gearbox (package), 226
genC, 185
generated clock port renaming, 109
genVector (Vector function), 229
genVerilog, 186
genWith (Vector function), 229
genWithM (Vector function), 250
Get (interface), 297
getAxiAddrCmd (function), 423
getAxiBurst (function), 424
getAxiByteEn (function), 423
getAxiId (function), 424
getAxiLen (function), 423
getAxiSize (function), 424
getCurrentSlave (module), 433
getFirstAxiWrData (function), 423
GetPut (package), 297
Gettable (typeclass), 397
getTLMBurstSize (function), 411
getTLMByteEn (function), 411
getTLMCycleCount (function), 411
getTLMData (function), 412
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getTLMIncr (function), 411
grammar, 13
Gray (package), 313
GrayCounter (package), 312
grayDecode (function), 314
grayDecr (function), 314
grayEncode (function), 314
grayIncr (function), 314
grayIncrDecr (function), 314
group (List function), 260
groupBy (List function), 260

HAppend (typeclass), 396
head (List function), 255
head (Vector function), 232
HHead (typeclass), 395
higher order functions, 124
HLength (typeclass), 396
HList (package), 395
HSplit (typeclass), 396
HTail (typeclass), 396

id (function), 183
Identifier (grammar terminal), 14
identifier (grammar terminal), 14
identifiers, 14

case sensitivity, 14
export from a package, 20
import into a package, 21
qualified, 21
static scoping, 21
with $ as first letter, 14

if (keyword), 61
in method implicit conditions, 35

if statements, 61
pattern matching in, 84

if-else statements, 61
‘ifdef (compiler directive), 19
‘ifndef (compiler directive), 19
implicit conditions, 35

on interface methods, 35
import (keyword), 20
import "BDPI" (keyword), 140
import "BVI" (keyword), 126
import, identifiers into a package, 21
‘include (compiler directive), 17
incrTLMAddr (function), 412
infix operators

associativity, 67
precedence, 67
predefined, 67

init (List function), 256
init (Vector function), 232
Inout (type), 168

inout(BVI import statement), 139
input_clock(BVI import statement), 130
input_reset(BVI import statement), 133
instance (of overloading group), 117
instance (of type class), 117
Int (type), 87, 161
int (type), 87, 161
Integer (type), 87, 162
Integer literals, 14
interface

expression, 77
instantiation, 33

interface (BVI import statement), 139
interface (keyword)

in interface declarations, 28
in interface expressions, 77

interfaces, 28
definition of, 27

Invalid
tagged union member ofMaybe type, 55

Invalid (type constructor), 165
invert (Bitwise class method), 155
isAncestor (function), 350
isInfinite (Real function), 274
isNegativeZero (Real function), 274
isResetAsserted (module), 378
isValid (Maybe function), 165
IWithCBus (interface), 389

joinActions (List function), 266
joinActions (Vector function), 245
joinRules (List function), 267
joinRules (Vector function), 245

last (List function), 256
last (Vector function), 232
lcm (function), 185
length (List function), 261
let, 57
LevelFIFO, see FIFOLevel
LFSR (package), 306
‘line (compiler directive), 18
List (type), 253
ListN (type), 252
Literal (type class), 24, 150

UInt, Int type instances, 87
Literals

Integer, 14
real, 15
String, 16

Log (type provisos), 25, 171
log (Arith class method), 152
log10 (Arith class method), 152
log2 (Arith class method), 152
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logb (Arith class method), 152
lookup (List function), 257
loop statements

statically unrolled, 63
temporal, in FSMs, 288

lsb (Bitwise class method), 156

macro invocation (compiler directive), 19
MakeClockIfc (interface), 351
MakeResetIfc (interface), 373
map (List function), 263
map (Vector function), 242
mapAccumL (List function), 269
mapAccumL (Vector function), 248
mapAccumR (List function), 269
mapAccumR (Vector function), 248
mapCollection (ModuleCollect function), 386
mapM (Monad function on List), 270
mapM (Monad function on Vector), 249
mapM_ (List function), 270
mapM_ (Vector function), 249
mapPairs (List function), 267
mapPairs (Vector function), 245
match (keyword), 85
Max (type provisos), 25, 171
max (Ord class method), 154
max (function), 182
maxBound (Bounded class method), 155
Maybe (type), 55, 165
message (compilation message), 181
messageM (compilation message), 182
meta notation, see grammar
method(BVI import statement), 129
method calls, 73
methods

of an interface, 28
pattern matching in, 85

Min (type provisos), 171
min (Ord class method), 154
min (function), 182
minBound (Bounded class method), 155
mk1toNGearbox (module), 227
mkAbsoluteClock (module), 353
mkAbsoluteClockFull (module), 354
mkAHBMaster (module), 431
mkAHBMasterMonitor (module), 433
mkAHBMasterStd (module), 432
mkAHBSlave (module), 432
mkAHBSlaveDummy (module), 432
mkAHBSlaveStd (module), 432
mkAlignedFIFO (module), 225
mkArbiter (module), 311
mkAsyncReset (module), 374
mkAsyncResetFromCR (module), 374

mkAutoFSM, 291
mkAxiRdMaster (module), 421
mkAxiRdSlave (module), 421
mkAxiWrMaster (module), 421
mkAxiWrSlave (module), 422
mkBRAM1Server (module), 213
mkBRAM1ServerBE (module), 213
mkBRAM2Server (module), 214
mkBRAMCore1 (module), 217
mkBRAMCore1BE (module), 217
mkBRAMCore1BELoad (module), 218
mkBRAMCore1Load (module), 217
mkBRAMCore2 (module), 218
mkBRAMCore2Load (module), 218
mkBRAMStore1W2R (module), 225
mkBRAMStore2W1R (module), 225
mkBypassFIFO (module), 222
mkBypassFIFOF (module), 222
mkBypassFIFOLevel (module), 222
mkBypassWire (module), 177
mkCBRegFile (module), 391
mkCBRegR (module), 390
mkCBRegRC (module), 390
mkCBRegRW (module), 390
mkCBRegW (module), 390
mkCClientServer (function), 305
mkCGetPut (function), 305
mkClientCServer (function), 305
mkClock (module), 352
mkClockDivider (module), 357
mkClockDividerOffset (module), 357
mkClockInverter (module), 357
mkClockMux (module), 355
mkClockSelect (module), 356
mkCompletionBuffer (module), 316
mkConfigReg (module), 191
mkConfigRegA (module), 191
mkConfigRegU (module), 191
mkConstrainedRandomizer (module), 309
mkDepthParamFIFO (module), 197
mkDepthParamFIFOF (module), 197
mkDReg (module), 192
mkDRegA (module), 192
mkDRegU (module), 192
mkDualRam (module), 370
mkDWire (module), 178
mkFeedLFSR(module), 307
mkFIFO (module), 195
mkFIFO (FIFO function), 89
mkFIFO1 (module), 196
mkFIFOCount (module), 205
mkFIFOF (module), 196
mkFIFOF (FIFOF function), 89
mkFIFOF1 (module), 196
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mkFIFOLevel (module), 205
mkFSM, 291
mkFSMServer, 295
mkFSMWithPred, 291
mkGatedClock (module), 353
mkGatedClockDivider (module), 357
mkGateClockFromCC (module), 353
mkGatedClockInverter (module), 357
mkGDepthParamFIFOF (module), 198
mkGenericRandomizer (module), 309
mkGetCPut (function), 305
mkGFIFOCount (module), 205
mkGFIFOF (module), 197
mkGFIFOF1 (module), 198
mkGFIFOLevel (module), 205
mkGLFIFOF (module), 198
mkGPFIFO (GetPut module), 299
mkGPFIFO1 (GetPut module), 299
mkGPSizedFIFO (GetPut module), 299
mkGrayCounter (module), 313
mkGSizedFIFOF (module), 198
mkInitialReset (module), 376
mkLFIFO (module), 198
mkLFIFOF (module), 198
mkNto1Gearbox (module), 227
mkNullCrossingReg (module), 372
mkNullCrossingRegA (module), 372
mkNullCrossingRegU (module), 372
mkNullCrossingWire (module), 372
mkOnce, 291
mkPipelineFIFO (module), 221
mkPipelineFIFOF (module), 222
mkPulseWire (module), 178
mkPulseWireOR (module), 178
mkReg (Reg function), 88, 173
mkRegA (Reg function), 173
mkRegFile (RegFile module), 188
mkRegFileFull (RegFile module), 188
mkRegFileFullFile (RegFileLoad function),

189
mkRegFileLoad (RegFileLoad function), 189
mkRegStore (module), 224
mkRegU (Reg function), 88, 173
mkRegVectorStore (module), 224
mkReset (module), 376
mkResetEither (module), 378
mkResetInverter (module), 378
mkResetMux (module), 377
mkResetSync (module), 376
mkRevertingVirtualReg (module), 193
mkRWire (RWire module), 176
mkSizedBRAMFIFO (module), 219
mkSizedBRAMFIFOF (module), 219
mkSizedBypassFIFOF (module), 222

mkSizedFIFO (module), 196
mkSizedFIFO (FIFO function), 89
mkSizedFIFOF (module), 196
mkSizedFIFOF (FIFOF function), 89
mkStickyArbiter (module), 312
mkSyncBit (module), 359
mkSyncBit05 (module), 362
mkSyncBit05FromCC (module), 363
mkSyncBit05ToCC (module), 363
mkSyncBit1 (module), 361
mkSyncBit15 (module), 360
mkSyncBit15FromCC (module), 361
mkSyncBit15ToCC (module), 361
mkSyncBit1FromCC (module), 362
mkSyncBit1ToCC (module), 362
mkSyncBitFromCC (module), 360
mkSyncBitToCC (module), 360
mkSyncBRAM2Server (module), 214
mkSyncBRAMCore2 (module), 218
mkSyncBRAMCore2Load (module), 218
mkSyncBRAMFIFO (module), 220
mkSyncBRAMFIFOFromCC (module), 220
mkSyncBRAMFIFOToCC (module), 220
mkSyncFIFO (module), 368
mkSyncFIFO1 (module), 370
mkSyncFIFOCount (module), 206
mkSyncFIFOFromCC (module), 369
mkSyncFIFOLevel (module), 206
mkSyncFIFOToCC (module), 369
mkSyncHandshake (module), 365
mkSyncHandshakeFromCC (module), 366
mkSyncHandshakeToCC (module), 366
mkSyncPulse (module), 364
mkSyncPulseFromCC (module), 364
mkSyncPulseToCC (module), 365
mkSyncReg (module), 367
mkSyncRegFromCC (module), 367
mkSyncRegToCC (module), 367
mkSyncReset (module), 374
mkSyncResetFromCR (module), 374
mkTLMBRAM (module), 409
mkTLMBRAMBE (module), 409
mkTLMCBusAdapter (module), 410
mkTLMCBusAdapterToReadWrite (module), 410
mkTLMRam (module), 408
mkTLMRandomizer (module), 407
mkTLMReadWriteRam (module), 408
mkTLMReducer (module), 407
mkTLMSource (module), 407
mkTriState, 332
mkUGDepthParamFIFOF (module), 197
mkUGFIFOF (module), 197
mkUGFIFOF1 (module), 197
mkUGLFIFOF (module), 198
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mkUGSizedFIFOF (module), 197
mkUngatedClock (module), 352
mkUngatedClockMux (module), 355
mkUngatedClockSelect (module), 356
mkUniqueWrappers (UniqueWrappers module),

318
mkUnsafeDWire (module), 178
mkUnsafePulseWire (module), 178
mkUnsafePulseWireOR (module), 178
mkUnsafeRWire (RWire module), 176
mkUnsafeWire (module), 177
mkWire (module), 177
mkZBus (function), 334
mkZBusBuffer (function), 334
mod (Integer function), 162
module

definition of, 31
instantiation, 33

ModuleCollect (package), 384
ModuleCollect (type), 385
ModuleContext (package), 379
modules

definition of, 27
module (keyword), 31

msb (Bitwise class method), 156
Mul (type provisos), 25, 171
mutually_exclusive (attribute), 106
MuxClockIfc (interface), 354
MuxRstIfc (interface), 373

negate (Arith class method), 152
newVector (Vector function), 229
Nil (List constructor), 253
nil (Vector function), 230
no_implicit_conditions (attribute), 102
noAction (empty action), 70, 170
noClock (function), 350
noinline (attribute), 97
noReset (function), 351
nosplit (attribute), 107
not (Bool function), 162
NumAlias, 51, 160
NumberTypes (package), 285

OInt (package), 284
OInt (type), 284
oneHotSelect (List function), 255
operators

infix, 67
prefix, 67

or (List function), 261
or (Vector function), 238
Ord (type class), 24, 117, 154

UInt, Int type instances, 87

Ordering (type), 165
osc= (attribute), 111
output_clock(BVI import statement), 133
output_reset(BVI import statement), 136
overloading groups, see type classes
overloading, of types, 117
OVLAssertions (package), 335

pack (Bits type class overloaded function),
121, 149

package, 20
package (keyword), 20
parameter, 31
parameter(BVI import statement), 128
parity (function), 184
path(BVI import statement), 138
pattern matching, 80

error, 83
in assignment statements, 85
in case expressions, 83
in case statements, 82
in conditional expressions, 84
in if statements, 84
in methods, 85
in rules, 84

patterns, 80
pi (Real constant), 271
polymorphism, 24
port(BVI import statement), 130
port= (attribute), 99, 113
pow (Real function), 273
preempts (attribute), 107
prefix= (attribute), 99
Prelude, see Standard Prelude
Probe (package), 329
provisos, 117, 171

brief description, 24
PulseWire (interface), 178
pulseWireToReadOnly (function), 181
Put (interface), 297

quot (Integer function), 162

Randomizable (package), 308
Randomize (interface), 309
ReadOnly (interface), 180
readReadOnly (function), 181
readReg (Reg function), 173
readVReg (Vector function), 240
ready= (attribute), 98
Real (package), 271
Real (type), 163
real (type), 163
Real literals, 15
RealLiteral (type class), 151
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reburyContext (module), 382
records, see struct
reduceAnd (BitReduction class method), 157
reduceNand (BitReduction class method), 157
reduceNor (BitReduction class method), 157
reduceOr (BitReduction class method), 157
reduceXnor (BitReduction class method), 157
reduceXor (BitReduction class method), 157
Reg (interface), 366
Reg (type), 88, 173
RegFile (interface type), 188
RegFileLoad (package), 189
register assignment, 58

array element, 59
partial, 59

register writes, 58
regToReadOnly (function), 180
rem (Integer function), 162
replicate (List function), 254
replicate (Vector function), 229
replicateM (List function), 271
replicateM (Vector function), 250
RequestData (data structure), 401
RequestDescriptor (data structure), 401
Reserved (type), 330
Reserved (package), 330
ReservedOne (type), 330
ReservedZero (type), 330
Reset (type), 168, 349
clear, 287
reset= (attribute), 111
reset_by=(attribute), 113
reset_prefix= (attribute), 109
‘resetall (compiler directive), 19
resetOf (function), 350
result= (attribute), 99
reverse (List function), 259
reverse (Vector function), 236
reverseBits (function), 184
RevertingVirtualReg (package), 193
rJoin (Rules operator), 170
rJoinConflictFree (Rules operator), 170
rJoinDescendingUrgency (Rules operator),

170
rJoinExecutionOrder (Rules operator), 170
rJoinMutuallyExclusive (Rules operator),

170
rJoinPreempts (Rules operator), 170
rotate (List function), 259
rotate (Vector function), 235
rotateBitsBy (bit-vector function), 240
rotateBy (Vector function), 235
rotateR (List function), 259
rotateR (Vector function), 235

round (Real function), 273
rules, 38

expression, 78
pattern matching in, 84

Rules (type), 78, 170
runWithContext (function), 382
runWithContexts (function), 383
RWire, 175

SA (scheduling annotations), 49
same_family(BVI import statement), 136
sameFamily (function), 350
SAR (scheduling annotations), 49
satMinus (SaturatingArith class method),

159
satPlus (SaturatingArith class method), 159
SaturatingArith (type class), 159
SB (scheduling annotations), 49
SBR (scheduling annotations), 49
sbtrctBIUInt (function), 286
scanl (List function), 269
scanl (Vector function), 247
scanr (List function), 268
scanr (Vector function), 246
schedule(BVI import statement), 137
scheduling annotations, 49
select (List function), 255
select (Vector function), 231
SelectClockIfc (interface), 354
send (PulseWire interface method), 178
Server (interface), 303
shiftInAt0 (Vector function), 235
shiftInAtN (Vector function), 235
shiftOutFrom0 (Vector function), 235
shiftOutFromN (Vector function), 236
signedMul (function), 182
signExtend (BitExtend class method), 158
signum (Arith class method), 152
sin (Real function), 271
sinh (Real function), 272
size types, 23

type classes for constraints, 25
SizedLiteral (type class), 151
SizeOf (pseudo-function on types), 122, 173
sort (List function), 259
sortBy (List function), 259
SpecialFIFOs (package), 220
split (Bit function), 86, 161
split (attribute), 107
splitReal (Real function), 274
sqrt (Real function), 273
sscanl (List function), 269
sscanl (Vector function), 247
sscanr (List function), 268
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sscanr (Vector function), 247
Standard Prelude, 22, 70, 86, 87, 118, 149
start, 287
staticAssert, 328
StmtFSM (package), 287
strConcat (String concatenation operator),

164
String (type), 87, 164
String literals, 16
struct

type definition, 52
’struct’,52
structs

member selection, 75
update, 57

sub (RegFile interface method), 188
subinterfaces

declaration of, 30
definition of, 37

SyncBitIfc (interface), 359
SyncFIFOCountIfc (interface), 204
SyncFIFOIfc (interface), 368
SyncFIFOLevelIfc (interface), 204
SyncPulseIfc (interface), 364
synthesize

modules, 41
synthesize (attribute), 97
system functions, 90

$bitstoreal, 96
$realtobits, 96
$stime, 95
$test$plusargs, 96
$time, 95

system tasks, 90
$display, 90
$displayb, 90
$displayh, 90
$displayo, 90
$dumpoff, 95
$dumpon, 95
$dumpvars, 95
$fclose, 92
$fdisplay, 93
$fdisplayb, 93
$fdisplayh, 93
$fdisplayo, 93
$fflush, 95
$fgetc, 94
$finish, 95
$fopen, 92
$fwrite, 93
$fwriteb, 93
$fwriteh, 93
$fwriteo, 93

$sformat, 94
$sformatAV, 94
$stop, 95
$swrite, 94
$swriteAV, 94
$swriteb, 94
$swritebAV, 94
$swriteh, 94
$swritehAV, 94
$swriteo, 94
$swriteoAV, 94
$ungetc, 94
$write, 90
$writeb, 90
$writeh, 90
$writeo, 90

TAdd (type functions), 172
’tagged’,see union
tagged union

member selection, see pattern matching
member selection using dot notation, 76
type definition, 52
update, 57

tail (List function), 256
tail (Vector function), 232
take (List function), 256
take (Vector function), 233
takeAt (Vector function), 233
takeWhile (List function), 257
takeWhileRev (List function), 257
tan (Real function), 272
tanh (Real function), 272
TDiv (type functions), 172
TExp (type functions), 172
TieOff (package), 327
TLM.defines, 402
TLM2 (package), 400
TLM_PRM_DCL, 402
TLM_PRM_STD, 402
TLM_TYPE, 402
TLMReadWriteRecvIFC (interface), 406
TLMReadWriteSendIFC (interface), 406
TLMRecvIFC (interface), 405
TLMRequest (data structure), 401
TLMResponse (data structure), 402
TLMSendIFC (interface), 405
TLMTransformIFC (interface), 407
TLog (type functions), 172
TMax (type functions), 172
TMin (type functions), 172
TMul (type functions), 172
toChunks (Vector function), 252
toGet (function), 297
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toList (Vector function), 252
toPut (function), 297
toVector (Vector function), 252
Transactors, 419
transpose (List function), 259
transpose (Vector function), 236
transposeLN (Vector function), 236
TriState (interface), 332
TriState (package), 331
True (Bool constant), 162
trunc (Real function), 273
truncate (BitExtend class method), 158
truncateLSB (function), 184
TSub (type functions), 172
tuples

expressions, 87, 167
patterns, 88
selecting components, 87, 167
type definition, 87, 166

type assertions
static, 74

type casting, 74
type classes, 117, 149
type declaration, 22
type variables, 24
typedef (keyword), 49
types, 22

parameterized, 23
polymorphic, 24

uaMap (function), 399
uaMapM (function), 399
UInt (type), 87, 161
unburyContext (module), 381
unburyContextWithClocks (module), 381
uncurry (function), 183
‘undef (compiler directive), 19
underscore, see
’union’,52
union tagged

type definition, 52
UnitAppendList (package), 399
unpack (Bits type class overloaded function),

121, 149
unsignedMul (function), 182
unwrap (function), 286
unwrapBI (function), 286
unzip (List function), 263
unzip (Vector function), 241
upd (RegFile interface method), 188
update (List function), 255
update (Vector function), 232
upto (List function), 253

Valid

tagged union member ofMaybe type, 55
Valid (type constructor), 165
Value Change Dump, 95
valueOf (pseudo-function of size types), 26,

173
valueof (pseudo-function of size types), 173
variable assignment, 56
variable declaration, 55
variable initialization, 55
variables, 55
VCD, 94, 95
Vector, 228
vectorToArray (Vector function), 252
Void (type), 165
void (type, in tagged unions), 53

warning (forced warning), 181
warningM (forced warning), 182
wget (RWire interface method), 175
when (function), 185
while (function), 185
Wire (interface), 176
wrap (function), 286
Wrapper (interface type), 318
WriteOnly (interface), 181
writeReg (Reg function), 173
writeVReg (Vector function), 240
wset (RWire interface method), 175

ZBus (package), 333
ZBusBusIFC (interface), 334
ZBusClientIFC (interface), 334
ZBusDualIFC (interface), 333
zeroExtend (BitExtend class method), 158
zip (List function), 262
zip (Vector function), 240
zip3 (List function), 262
zip3 (Vector function), 241
zip4 (List function), 263
zip4 (Vector function), 241
zipAny (Vector function), 241
zipWith (List function), 264
zipWith (Vector function), 242
zipWith3 (List function), 264
zipWith3 (Vector function), 243
zipWith3M (List function), 270
zipWith3M (Vector function), 249
zipWith4 (List function), 264
zipWithAny (Vector function), 242
zipWithAny3 (Vector function), 243
zipWithM (List function), 270
zipWithM (Vector function), 249
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AHB
getCurrentSlave, 433
mkAHBBus, 433
mkAHBMaster, 431
mkAHBMasterMonitor, 433
mkAHBMasterStd, 432
mkAHBSlave, 432
mkAHBSlaveDummy, 432
mkAHBSlaveStd, 432

AlignedFIFOs
mkAlignedFIFO, 225
mkBRAMStore1W2R, 225
mkBRAMStore2W1R, 225
mkRegStore, 224
mkRegVectorStore, 224

AXI
fromAxiAddrCmd, 424
fromAxiBurst, 424
fromAxiId, 425
fromAxiLen, 424
fromAxiResp, 425
fromAxiSize, 425
getAxiAddrCmd, 423
getAxiBurst, 424
getAxiByteEn, 423
getAxiId, 424
getAxiLen, 423
getAxiSize, 424
getFirstAxiWrData, 423
mkAxiMonitor, 422
mkAxiRdBus, 422
mkAxiRdMaster, 421
mkAxiRdSlave, 421
mkAxiWrBus, 422
mkAxiWrMaster, 421
mkAxiWrSlave, 422

BRAM
mkBRAM1Server, 213
mkBRAM1ServerBE, 213
mkBRAM2Server, 214
mkBRAMCore1, 217
mkBRAMCore1BE, 217
mkBRAMCore1BELoad, 218
mkBRAMCore1Load, 217
mkBRAMCore2, 218
mkBRAMCore2Load, 218
mkSyncBRAM2Server, 214
mkSyncBRAMCore2, 218
mkSyncBRAMCore2Load, 218

BRAMFIFO
mkSizedBRAMFIFO, 219
mkSizedBRAMFIFOF, 219
mkSyncBRAMFIFO, 220
mkSyncBRAMFIFOFromCC, 220
mkSyncBRAMFIFOToCC, 220

CBus
collectCBusIFC, 389
exposeCBusIFC, 389
mkCBRegFile, 391
mkCBRegR, 390
mkCBRegRC, 390
mkCBRegRW, 390
mkCBRegW, 390

Clocks
clockOf, 350
exposeCurrentClock, 349
exposeCurrentReset, 349
isAncestor, 350
isResetAsserted, 378
mkAbsoluteClock, 353
mkAbsoluteClockFull, 354
mkAsyncReset, 374
mkAsyncResetFromCR, 374
mkClock, 352
mkClockDivider, 357
mkClockDividerOffset, 357
mkClockInverter, 357
mkClockMux, 355
mkClockSelect, 356
mkDualRam, 370
mkGatedClock, 353
mkGatedClockDivider, 357
mkGatedClockFromCC, 353
mkGatedClockInverter, 357
mkInitialReset, 376
mkNullCrossingReg, 372
mkNullCrossingRegA, 372
mkNullCrossingRegU, 372
mkNullCrossingWire, 372
mkReset, 376
mkResetEither, 378
mkResetInverter, 378
mkResetMux, 377
mkResetSync, 376
mkSyncBit, 359
mkSyncBit05, 362
mkSyncBit05FromCC, 363
mkSyncBit05ToCC, 363
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mkSyncBit1, 361
mkSyncBit15, 360
mkSyncBit15FromCC, 361
mkSyncBit15ToCC, 361
mkSyncBit1FromCC, 362
mkSyncBit1ToCC, 362
mkSyncBitFromCC, 360
mkSyncBitToCC, 360
mkSyncFIFO, 368
mkSyncFIFO1, 370
mkSyncFIFOFromCC, 369
mkSyncFIFOToCC, 369
mkSyncHandshake, 365
mkSyncHandshakeFromCC, 366
mkSyncHandshakeToCC, 366
mkSyncPulse, 364
mkSyncPulseFromCC, 364
mkSyncPulseToCC, 365
mkSyncReg, 367
mkSyncRegFromCC, 367
mkSyncRegToCC, 367
mkSyncReset, 374
mkSyncResetFromCR, 374
mkUngatedClock, 352
mkUngatedClockMux, 355
mkUngatedClockSelect, 356
noClock, 350
noReset, 351
resetOf, 350
sameFamily, 350

FIFO
fifofToFifo, 199
mkDepthParamFIFO, 197
mkFIFO, 196
mkFIFO1, 196
mkLFIFO, 198
mkSizedFIFO, 196

FIFOF
mkDepthParamFIFOF, 197
mkFIFOF, 196
mkFIFOF1, 196
mkGDepthParamFIFOF, 198
mkGFIFOF, 197
mkGFIFOF1, 198
mkGLFIFOF, 198
mkGSizedFIFOF, 198
mkLFIFOF, 198
mkSizedFIFOF, 196
mkUGDepthParamFIFOF, 197
mkUGFIFO1, 197
mkUGFIFOF, 197
mkUGLFIFOF, 198
mkUGSizedFIFOF, 197

FIFOLevel
mkFIFOCount, 205
mkFIFOLevel, 205
mkGFIFOCount, 205
mkGFIFOLevel, 205
mkSyncFIFOCount, 206
mkSyncFIFOLevel, 206

FixedPoint
fxptTruncateSat, 281

Gearbox
mk1toNGearbox, 227
mkNto1Gearbox, 227

GetPut
fifoToGet, 300
fifoToPut, 300
mkGPFIFO, 299
mkGPFIFO1, 299
mkGPSizedFIFO, 299
toGet, 297
toPut, 297

Gray
grayDecode, 314
grayDecr, 314
grayEncode, 314
grayIncr, 314
grayIncrDecr, 314

GrayCounter
mkGrayCounter, 313

HList
Gettable, 397
HAppend, 396
HHead, 395
HLength, 396
hSplit, 396
HTail, 396

List
all, 261
and, 262
any, 261
append, 254
concat, 254
cons, 253
drop, 256
dropWhile, 257
dropWhileRev, 257
elem, 261
filter, 256
find, 257
fold, 266
foldl, 266
foldl1, 266
foldr, 265
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foldr1, 266
group, 260
groupBy, 260
head, 255
init, 256
joinActions, 266
joinRules, 267
last, 256
length, 261
lookup, 257
map, 263
mapAccumL, 269
mapAccumR, 269
mapM, 270
mapM_, 270
mapPairs, 267
oneHotSelect, 255
or, 261
replicate, 254
replicateM, 271
reverse, 259
rotate, 259
rotateR, 259
scanl, 269
scanr, 268
select, 255
sort, 259
sortBy, 259
sscanl, 269
sscanr, 268
tail, 256
take, 256
takeWhile, 257
takeWhileRev, 257
transpose, 259
unzip, 263
update, 255
upto, 253
zip, 262
zip3, 262
zip4, 263
zipWith, 264
zipWith3, 264
zipWith3M, 270
zipWith4, 264
zipWithM, 270

ModuleContext
applyToContext, 380
applyToContextM, 380
reburyContext, 382
runWithContext, 382, 383
unburyContext, 381
unburyContextWithClocks, 381

NumberTypes
addBIUInt, 286
addUInt, 287
sbtrctBIUInt, 286
unwrap, 286
unwrapBI, 286
wrap, 286

OVLAssertions
bsv assert always, 339
bsv assert always on edge, 339
bsv assert change, 340
bsv assert cycle sequence, 340
bsv assert decrement, 340
bsv assert delta, 340
bsv assert even parity, 341
bsv assert fifo index, 341
bsv assert frame, 341
bsv assert handshake, 342
bsv assert implication, 342
bsv assert increment, 342
bsv assert never, 342
bsv assert never unknown, 342
bsv assert never unknown async, 343
bsv assert next, 343
bsv assert no overflow, 343
bsv assert no transition, 343
bsv assert no underflow, 344
bsv assert odd parity, 344
bsv assert one cold, 344
bsv assert one hot, 344
bsv assert proposition, 345
bsv assert quiescent state, 345
bsv assert range, 345
bsv assert time, 345
bsv assert transition, 346
bsv assert unchange, 346
bsv assert width, 346
bsv assert win change, 346
bsv assert win unchange, 347
bsv assert window, 347
bsv assert zero one hot, 347

Prelude
!=, 150
<<, 156
>>, 156
|, 155, 157
*, 152
**, 152
+, 152, 164
-, 152
/, 152
<, 154
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<=, 154
==, 150
>, 154
>=, 154
$bitstoreal, 164
$realtobits, 164
%, 152
&, 155, 157
ˆ, 155, 157
ˆ˜, 155, 157
˜, 155, 157
˜|, 157
˜ˆ, 155, 157
abs, 152, 182
addRules, 170
asReg, 173
buildVersion, 186
compare, 154
compilerVersion, 186
compose, 183
composeM, 183
constFn, 183
countOnes, 184
countZerosLSB, 184
countZerosMSB, 184
curry, 183
date, 186
div, 162
epochTime, 186
error, 181
errorM, 182
exp, 152
extend, 158
flip, 183
fromInteger, 150, 162
fromMaybe, 165
fromReal, 151
fromSizedInteger, 151
gcd, 185
genC, 185
genVerilog, 186
id, 183
invert, 155
isValid, 165
lcm, 185
log, 152
log10, 152
log2, 152
logb, 152
lsb, 156
max, 154, 182
maxBound, 155
message, 181
messageM, 182

min, 154, 182
minBound, 155
mkBypassWire, 177
mkDWire, 178
mkPulseWire, 178
mkPulseWireOR, 178
mkReg, 173
mkRegA, 173
mkRegU, 173
mkRWire, 176
mkUnsafeDWire, 178
mkUnsafePulseWire, 178
mkUnsafePulseWireOR, 178
mkUnsafeRWire, 176
mkUnsafeWire, 177
mkWire, 177
mod, 162
msb, 156
negate, 152
not, 162
pack, 149
parity, 184
pulseWireToReadOnly, 181
quot, 162
readReadOnly, 181
readReg, 173
reduceAnd, 157
reduceNand, 157
reduceNor, 157
reduceOr, 157
reduceXNor, 157
reduceXor, 157
regToReadOnly, 180
rem, 162
reverseBits, 184
rJoin, 170
rJoinConflictFree, 170
rJoinDescendingUrgency, 170
rJoinExecutionOrder, 170
rJoinMutuallyExclusive, 170
rJoinPreempts, 170
satMinus, 159
satPlus, 159
signedMul, 182
signExtend, 158
signum, 152
SizeOf, 173
split, 161
strConcat, 164
TAdd, 172
TDiv, 172
TExp, 172
TLog, 172
TMax, 172
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TMin, 172
TMul, 172
truncate, 158
truncateLSB, 184
TSub, 172
unpack, 149
unsignedMul, 182
valueOf, 173
warning, 181
warningM, 182
when, 185
while, 185
writeReg, 173
zeroExtend, 158

Real
acosh, 272
asinh, 272
atan2, 273
atanh, 272
ceil, 273
cos, 272
cosh, 272
decodeReal, 274
floor, 274
isInfinite, 274
isNegativeZero, 274
pow, 273
round, 273
sin, 271
sinh, 272
splitReal, 274
sqrt, 273
tan, 272
tanh, 272
trunc, 273

SpecialFIFOs
mkBypassFIFO, 222
mkBypassFIFOF, 222
mkBypassFIFOLevel, 222
mkPipelineFIFO, 221
mkPipelineFIFOF, 222
mkSizedBypassFIFOF, 222

StmtFSM
await, 291
callServer, 295
delay, 291
mkAutoFSM, 291
mkFSM, 291
mkFSMServer, 295
mkFSMwithPred, 291
mkOnce, 291

TLM

countLSBZeros, 412
getTLMBurstSize, 411
getTLMByteEn, 411
getTLMCycleCount, 411
getTLMData, 412
getTLMIncr, 411
incrTLMAddr, 412
mkTLMBRAM, 409
mkTLMBRAMBE, 409
mkTLMCBusAdapter, 410
mkTLMCBusAdapterToReadWrite, 410
mkTLMRam, 408
mkTLMRandomizer, 407
mkTLMReadWriteRam, 408
mkTLMReducer, 407
mkTLMSource, 407

UnitAppendList
flatten, 399
flatten0, 399
uaMap, 399
uaMapM, 399

Vector, 252
all, 237
and, 238
any, 237
append, 230
arrayToVector, 252
concat, 230
cons, 229
countElem, 238
countIf, 238
countOnesAlt, 240
drop, 233
elem, 237
find, 238
findElem, 238
findIndex, 239
fold, 245
foldl, 244
foldl1, 244
foldr, 244
foldr1, 244
genVector, 229
genWith, 229
genWithM, 250
head, 232
init, 232
joinActions, 245
joinRules, 245
last, 232
map, 242
mapAccumL, 248
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mapAccumR, 248
mapM, 249
mapM_, 249
mapPairs, 245
newVector, 229
nil, 230
or, 238
readVReg, 240
replicate, 229
replicateM, 250
reverse, 236
rotate, 235
rotateBitsBy, 240
rotateBy, 235
rotateR, 235
scanl, 247
scanr, 246
select, 231
shiftInAt0, 235
shiftInAtN, 235
shiftOutFrom0, 235
shiftOutFromN, 236
sscanl, 247
sscanr, 247
tail, 232
take, 233
takeAt, 233
toChunks, 252
toList, 252
transpose, 236
transposeLN, 236
unzip, 241
update, 232
vectorToArray, 252
writeVReg, 240
zip, 240
zip3, 241
zip4, 241
zipAny, 241
zipWith, 242
zipWith3, 243
zipWith3M, 249
zipWithAny, 242
zipWithAny3, 243
zipWithM, 249
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AHB, 425
AHBBus, 425
AHBDefines, 425
AHBMaster, 425
AHBMonitor, 425
AHBPC, 425
AHBSlave, 425
AlignedFIFOs, 222
Arbiter, 310
Axi, 413
AxiDefines, 413
AxiMaster, 413
AxiMonitor, 413
AxiPC, 413
AxiRdBus, 413
AxiSlave, 413
AxiWrBus, 413

BRAM, 209
BRAMFIFO, 219

CBus, 388
Complex, 275

DefaultValue, 325

FixedPoint, 277
FShow, 321

Gearbox, 226
Gray, 313
GrayCounter, 312

HList, 395

ModuleContext, 379

NumberTypes, 285

Randomizable, 308

SpecialFIFOs, 220

TieOff, 327
TLM, 400
TLMCBusAdapter, 400
TLMDefines, 400
TLMRam, 400
TLMReadWriteRam, 400
TLMReduce, 400
TLMUtils, 400

UnitAppendList, 399

452



Typeclasses

Arith, 152

BitExtend, 158
BitReduction, 157
Bits, 149
Bitwise, 155
Bounded, 155

Connectable, 301

DefaultValue, 325

Eq, 150

FShow, 321

Literal, 150

Ord, 154

Randomizable, 309
RealLiteral, 151

SaturatingArith, 159
SizedLiteral, 151

TieOff, 327
ToGet, 297
ToPut, 297
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