
6.S195: Lab 1

Multiplexers and Adders

Andy Wright∗

September 6, 2013

Due: Friday September 13, 2013

1 Introduction

In this lab you will build multiplexers and adders from basic gate primitives.
First, you will build a 1-bit multiplexer using and, or, and not gates. Next, you
will write a polymorphic multiplexer using for-loops. Then you will switch to
working with adders, constructing a 4-bit adder using full adders. Lastly you
will modify an 8-bit ripple carry adder to change it to a carry select adder.

This lab is used as an introduction to simple combinational circuits and an
introduction to BSV. Even though BSV contains higher level functions to create
circuits, this lab will focus on using low level gates to create blocks that are used
in higher level circuits such as adders. This is done to stress the hardware that
is being generated by the Bluespec compiler.

1.1 Multiplexers

Multiplexers (or muxes for short) are blocks that are used to select between
multiple signals. A multiplexer has multiple data inputs inN , a select input sel,
and a single output out. The value of sel determines which input is shown on
the output.

The muxes in this lab are all 2-way muxes. That means there will be two
inputs to select between (in0 and in1) and sel will be a single bit. If the sel

is 0, then out = in0. If the sel is 1, then out = in1.
Figure 1a shows the symbol used for a mux, and figure 1b shows pictorially

the function of a mux.

∗The previous version of this lab was written by Muralidaran Vijayaraghavan and Sang-Woo
Jun

1



in0 

in1 

sel 

out 
0 

1 

(a) Multiplexer symbol

in0 

in1 

0 

out 
in0 

in1 

1 

out 

(b) Multiplexer functionality

Figure 1: Symbol and functionality of 1 bit multiplexer

1.2 Adders

Adders are essential building blocks for digital systems. There are many different
adder architectures that all compute the same result, but they get to the results
in different ways. Different adder architectures also differ in area, speed, and
power, and there is no architecture that dominates all other adders in all the
areas. Therefore hardware designers choose adders based on system area, speed,
and power constraints.

The adder architectures we are going to explore are the ripple carry adder and
the carry select adder. The ripple carry adder is the simplest adder architecture.
It is made up of a chain of full adder blocks connected through the carry chain.
A 4-bit ripple carry adder can be seen in figure 2b. It is very small, but it is
also very slow because each full adder has to wait for the previous full adder to
finish before it can compute its bit.

+ 

a b cin 

cout s 

(a) Full adder

+ 

a0 b0 

s0 

cin 

+ 

a1 b1 

s1 

+ 

a2 b2 

s2 

+ 

a3 b3 

s3 cout 

(b) 4-bit ripple carry adder built from full adders

+ cin cout 

s[3:0] 

a[3:0] b[3:0] 

(c) Symbol for 4-bit adder

+ cin 

s[3:0] 

a[3:0] b[3:0] 

+ cout 

s[7:4] 

a[7:4] b[7:4] 

(d) 8-bit ripple carry adder

Figure 2: Construction of a 4-bit adder and an 8-bit adder from full adder blocks

2



The carry select adder adds prediction or speculation to the ripple carry
adder to speed up execution. It computes the bottom bits the same way the
ripple carry adder computes them, but it differs in the way it computes the top
bits. Instead of waiting for the carry signal from the lower bits to be computed,
it computes two possible results for the top bits: one results assumes there is no
carry from the lower bits and the other assumes there is a bit carried over. Once
that carry bit is calculated, a mux is used to select the top bits that correspond
to the carry bit. An 8-bit carry select adder can be seen in figure 3.

+ cin 

s[3:0] 

a[3:0] b[3:0] + 

a[7:4] b[7:4] 

+ 

cout 

a[7:4] b[7:4] 

0 

1 

1 

1 

0 

0 

s[7:4] 

Figure 3: 8-bit carry select adder

1.3 Testbenches

The testbenches to test your code have already been written, and links to the
testbenches are included in the repository for this lab. The file TestBench.bsv

contains multiple testbenches that can be individually compiled by using the
provided Makefile. The Makefile has a target for each simulator executable,
and the use of each target and executable is explained in this handout. Each
executable prints out PASSED when the program works, and FAILED when there
was an error.

The testbenches ending in Simple have a simplified structure, and they
output all the data that came from the unit during the test so you can see the
unit working. If you are interested in testing your own cases for these units, you
can modify the simple testbenches to input the values you request. The normal
testbench generates random numbers for input values.

3



2 Building Multiplexers in Bluespec

The first step in constructing our carry select adder is to build a basic multiplexer
from gates. Let’s first examine Multiplexer.bsv.

function Bit#(1) multiplexer1(Bit#(1) sel, Bit#(1) a, Bit#(1) b);

return (sel == 0)? a: b;

endfunction

The first line begins a definition of a new function called multiplexer1. This
multiplexer function takes several arguments which will be used in defining the
behavior of the multiplexer. This multiplexer operates on single bit values, the
concrete type Bit#(1). Later we will learn how to implement polymorphic
functions, which can handle arguments of any width.

This function uses C-like constructs in its definition. Simple code, such as
the multiplexer can be defined at the high level without implementation penalty.
However, because hardware compilation is a dificult, multi-dimensional problem,
tools are limited in the kinds of optimizations that they can do.

The return statement, which constitutes the entire function, takes two input
and selects between them using sel. The endfunction keyword completes the
definition of our multiplexer function. You should be able to compile the module.

Exercise 1 (4 Points): Using the and, or, and not gates, re-implement the
function multiplexer1 in Multiplexer.bsv. How many gates are needed? (The
required functions, called and1, or1 and not1, respectively, are provided)

2.1 Static Elaboration

Many muxes in real world systems are larger than 1-bit wide. The data path
of the SMIPS processor is 32 bits wide, so there are many 32-bit muxes in
that processor. We will need multiplexers that are larger than a single bit, but
writing the code to manually instantiate 32 single-bit multiplexers to form a
32-bit multiplexer would be tedious. Fortunately, Bluespec provides constructs
for powerful static elaboration which we can use to make writing the code easier.
Static elaboration refers to the process by which the Bluespec compiler evaluates
expressions at compile time, using the results to generate the hardware. Static
elaboration can be used to express extremely flexible designs in only a few lines
of code.

In Bluespec we can use bracket notation ([]) to index individual bits in a
wider Bit type, for example bitVector[1] selects the second least significant
bit in bitVector (bitVector[0] selects the least significant bit since Bluespec’s
indexing starts at 0). We can use a for-loop to copy many lines of code which
have the same form. For example, to aggregate the multiplexer1 function to
form a 5-bit multiplexer that will be useful in the carry select adder, we could
write:

4



function Bit#(5) multiplexer5(Bit#(1) sel, Bit#(5) a, Bit#(5) b);

Bit#(5) aggregate;

for(Integer i = 0; i < 5; i = i + 1)

aggregate[i] = multiplexer1(sel, a[i], b[i]);

return aggregate;

endfunction

The Bluespec compiler, during its static elaboration phase, will replace this
for loop with its fully unrolled version.

aggregate[0] = multiplexer1(sel, a[0], b[0]);

aggregate[1] = multiplexer1(sel, a[1], b[1]);

aggregate[2] = multiplexer1(sel, a[2], b[2]);

aggregate[3] = multiplexer1(sel, a[3], b[3]);

aggregate[4] = multiplexer1(sel, a[4], b[4]);

Exercise 2 (1 Point): Complete the implementation of the function multiplexer5

in Multiplexer.bsv using for loops (in other words, copy the above code that uses
the for loop).

Check the correctness of the code by running the multiplexer testbench:

$ make mux

$ ./simMux

An alternate test bench can be used to see outputs from the unit by running:

$ make muxsimple

$ ./simMuxSimple

2.2 Polymorphism and Higher-order Constructors

So far, we have implemented two versions of the multiplexer function, but it is
easy to imagine needing an n-bit multiplexer. It would be nice if we did not have
to completely re-implement the multiplexer whenever we want to use a different
width. Using the for-loops introduced in the previous section, our multiplexer
code is already somewhat parametric because we use a constant size and the
same type throughout. We can do better by giving a name (N) to the size of the
multiplexer using typedef. Our new multiplexer code looks like:

typedef 5 N;

function Bit#(N) multiplexerN(Bit#(1) sel, Bit#(N) a, Bit#(N) b);

Bit#(N) aggregate;

for(Integer i = 0; i < valueOf(N); i = i + 1)

aggregate[i] = multiplexer1(sel, a[i], b[i]);

return aggregate;

endfunction

5



The typedef gives us the ability to change the size of our multiplexer at will.
The valueOf function introduces a small subtlety in our code: N is not an Integer
but a numeric type and must be converted to an Integer before being used in
an expression. Even though it is improved, our implementation is still missing
some flexibility. All instantiations of the multiplexer must have the same type,
and we still have to produce new code each time we want a new multiplexer.
However, in Bluespec, we can further parameterize the module to allow different
instantiations to have instantiation-specific parameters. This sort of module is
polymorphic, the implementation of the hardware changes automatically based
on compile time configuration. Polymorphism is the essence of design-space
exploration in Bluespec.

The truly polymorphic multiplexer can be started as follows:

//typedef 32 N; // Not needed

function Bit#(n) multiplexer_n(Bit#(1) sel, Bit#(n) a, Bit#(n) b);

The variable n represents the width of the multiplexer, replacing the concrete
value N (=32). In Bluespec type variables (n) start with a lower case whereas
concrete types (N) start with an upper case.

Exercise 3 (2 Points): Complete the definition of the function multiplexer_n.
Verify that this function is correct by replacing the original definition of multi-
plexer5 to only have: return multiplexer_n(sel, a, b);. This redefinition
allows the test benches to test your new implementation without modication.

3 Building Adders in Bluespec

We will now move on to building adders. The fundamental cell for adding is the
full adder which is shown in Figure 2a. This cell adds two input bits and a carry
in bit, and it produces a sum bit and a carry out bit. Adders.bsv contains two
function definitions to describe the behavior of the full adder. fa_add computes
the add output of a full adder, and fa_carry computes the carry output. These
functions contain the same logic as the full adder presented in lecture 2.

An adder that operates on 4-bit numbers can be made by chaining together
4 full adders as shown in Figure 2b. This adder architecture is known as a ripple
carry adder because of the structure of the carry chain. To generate this adder
without writing out each of the explicit full adders, a for loop can be used similar
to multiplexer5.

Exercise 4 (2 Points): Complete the code for add4 by using a for loop to
properly connect all the uses of fa_sum and fa_carry.

Now with a 4-bit adder, larger adders can be constructed by connecting
4-bit adders just like the 4-bit adder was constructed by connecting full adders.

6



Adders.bsv contains two modules for adders constructed using add4 and connect-
ing circuitry: mkRCAdder and mkCSAdder. Note that, unlike the other adders
to this point, these adders are implemented as a module instead of a function.
This is a subtle, but important distinction. In Bluespec, functions are inlined by
the compiler automatically, while modules must be explicitly instantiated using
the ’<-’ notation. If we made the 8-bit adder a function, using it in multiple
locations in BSV code would instantiate multiple adders. By making it a module,
multiple sources can use the same 8-bit adder.

The full implementation for the 8-bit ripple carry adder shown in Figure 2d
is included in the module mkRCAdder. It can be tested by running the following:

$ make rca

$ ./simRca

Since mkRCAdder is constructed by combining add4 instances, running ./simRCA

will also test add4. An alternate test bench can be used to see outputs from the
unit by running:

$ make rcasimple

$ ./simRcaSimple

There is also a mkCSAdder module that is intended to implement the carry
select adder shown in Figure 3, but its implementation is not included.

Exercise 5 (5 Points): Complete the code for the carry select adder in the
module mkCSAdder. Use Figure 3 as a guide for the required hardware and
connections. This module can be tested by running the following:

$ make csa

$ ./simCsa

An alternate test bench can be used to see outputs from the unit by running:

$ make csasimple

$ ./simCsaSimple

4 Discussion Questions

Write your answers to these questions in the text file discussion.txt provided
in the lab1 repository.

1. How many gates does your one-bit multiplexer use? The 5-bit multiplexer?
Write down a formula for an N-bit multiplexer. (2 Points)

2. Assume a single full adder requires 5 gates. How many gates does the 8-bit
ripple carry adder require? How many gates does the 8-bit carry select
adder require? (2 Points)

7



3. Assume a single full adder requires A time unit to compute its outputs
once all its inputs are valid and a mux requires M time unit to compute
its output. In terms of A and M , how long does the 8-bit ripple carry
adder take? How long does the 8-bit carry select adder take? (2 Points)

When you are done with everything, add any necessary files to the repository
using git add, commit the changes with git commit -am "Final Submission",
and push the modifications for grading with git push.

8


