
6.S195: Lab 2

FFT Pipelining

Andy Wright∗

September 23, 2013

Due: Monday September 30, 2013

In this lab you will build up different versions of the FFT module which was
discussed in class, starting with a combinational FFT module. First you will
implement a folded 3-stage multi-cycle FFT module. This implementation shares
hardware between stages to reduce the area required. Next you will implement
an inelastic pipeline implementation of the FFT using registers between each
stage. Finally you will implement an elastic pipeline implementation of the FFT
using fifos between each stage.

1 Data Types

Multiple data types are provided to help with the implementation. The default
settings for the provided types describe an FFT implementation that works with
an input vector of 64 different 64-bit complex numbers. The type for the 64-bit
complex data is defined as ComplexData. FftPoints defines the number of
complex numbers, FftIdx defines the datatype required for accessing a point in
the vector, NumStages defines the number of stages, StageIdx defines a datatype
to access a particular stage, and BflysPerStage defines the number of butterfly
units in each stage. These type parameters are provided for your convenience,
feel free to use any of these in your implementations.

It should be noted that the goal of this lab is not to understand the FFT
algorithm, but rather to experiment with different control logics in a real-world
application. The getTwiddle and permute functions are provided with the
testbench for your convenience. However, their implementations are not strictly
adhering to the FFT algorithm, and may even change later. It would be
beneficial to focus not on the algorithm, but on changing the control logic of a
given datapath in order to enhance its characteristics.

∗The previous version of this lab was written by Muralidaran Vijayaraghavan and Sang-Woo
Jun

1



2 Butterfly unit

The module mkBfly4 implements a 4-way butterfly function which was discussed
in the lecture. This module should be instantiated exactly as many times as you
use it in your code.

interface Bfly4;

method Vector#(4,ComplexData) bfly4

(Vector#(4, ComplexData) t, Vector#(4, ComplexData) x);

endinterface

module mkBfly4(Bfly4);

method Vector#(4,ComplexData) bfly4

(Vector#(4, ComplexData) t, Vector#(4, ComplexData) x);

...

endmethod

endmodule

3 Different Implementations of the FFT

You will be implementing modules corresponding to the following FFT interface:

interface Fft;

method Action enq(Vector#(FftPoints, ComplexData) in);

method ActionValue#(Vector#(FftPoints, ComplexData)) deq();

endinterface

The modules mkFftCombinational, mkFftFolded, mkFftInelasticPipeline,
and mkFftElasticPipeline should all implement a 64-point FFT which is func-
tionally equivalent to the combinational model. The module mkFftCombinational
is given to you. Your job is to implement the other 3 modules, and demon-
strate their correctness using the provided combinational implementation as a
benchmark.

Each of the modules contain two FIFOs, inFifo and outFifo, which contain
the input complex vector and the output complex vector respectively, as shown
below.

module mkFftCombinational(Fft);

Fifo#(2,Vector#(FftPoints, ComplexData)) inFifo <- mkCFFifo;

Fifo#(2,Vector#(FftPoints, ComplexData)) outFifo <- mkCFFifo;

You will be learning about the different FIFO modules in details sometime in
the course. For this lab just use the fifo mkCFFifo; the CF stands for conflict-free.

Each module also contains a Vector or multiple Vectors of mkBfly4, as
shown below.

Vector#(3, Vector#(16, Bfly4)) bfly <- replicateM(mkBfly4);

2



The doFft rule should dequeue an input from inFifo, perform the FFT
algorithm, and finally enqueue the result into outFifo. This rule will usually
require other functions and modules to function correctly. The elastic pipeline
implementation will require multiple rules.

rule doFft;

...

endrule

The Fft interface provides methods to send data to the FFT module and
receive data from it. The interface only enqueues into inFifo and dequeues
from outFifo.

method Action enq(Vector#(FftPoints, ComplexData) in);

inFifo.enq(in);

endmethod

method ActionValue#(Vector#(FftPoints, ComplexData)) deq;

outFifo.deq;

return outFifo.first;

endmethod

endmodule

Exercise 1 (5 pts): In mkFftFolded, create a folded FFT implementation
that makes use of just 16 butterflys overall. This implementation should finish
the overall FFT algorithm (starting from dequeuing the input FIFO to enqueuing
the output FIFO) in exactly 3 cycles.

The makefile can be used to build simFold to test this implementation.
Compile and run using

$ make fold

$ ./simFold

Exercise 2 (5 pts): In mkFftInelasticPipeline, create an inelastic pipeline
FFT implementation. This implementation should make use of 48 butterflys
and 2 large registers, each carrying 64 complex numbers. The latency of this
pipelined unit must also be exactly 3 cycles, though its throughput would be 1
FFT operation every cycle.

The makefile can be used to build simInelastic to test this implementation.
Compile and run using

$ make inelastic

$ ./simInelastic

3



Exercise 3 (10 pts): In mkElasticPipeline, create an elastic pipeline FFT
implementation. This implementation should make use of 48 butterflys and two
large fifos. The stages between the fifos should be in their own rules that can fire
independently. The latency of this pipelined unit must also be exactly 3 cycles,
though its throughput would be 1 FFT operation every cycle.

The makefile can be used to build simElastic to test this implementation.
Compile and run using

$ make elastic

$ ./simElastic

4 Discussion Question

Write your answer to this question in the text file discussion.txt provided in
the lab3 repository.

1. Assume you are given a black box module that performs a 10-stage algo-
rithm. You can not look at its internal implementation, but you can test
this module by giving it data and looking at the output of the module.
You have been told that it is implemented as one of the structures covered
in this lab, but you do not know which one.

(a) How can you tell if it has a folded structure? (1 Point)

(b) How can you tell if it is an inelastic pipeline? (2 Points)

(c) How can you tell if it is an elastic pipeline? (2 Points)

Bonus

For an extra challenge, imlpement the polymorphic super-folded FFT module
that was introduced in the last few optional slides of the FFT presentation. This
super-folded FFT module performs the FFT operation given a limited number of
butterflys (either 1, 2, 4, 8, or 16) butterflys. The parameter for the number of
butterflys available is given by radix. Since radix is a type variable, we have to
introduce it in the interface for the module, so we define a new interface called
SuperFoldedFft as follows:

interface SuperFoldedFft#(radix);

method Action enq(Vector#(64, ComplexData inVec));

method ActionValue#(Vector#(64, ComplexData)) deq;

endinterface

We also have to declare provisos in the module mkFftSuperFolded in order
to inform the Bluespec compiler about the arithmetic constraints between radix

and FftPoints (namely that radix is a factor for FftPoints/4).
We finally instantiate a super-folded pipeline module with 4 butterflies, which

implements a normal Fft interface. This module will be used for testing. We

4



also show you the function which converts from a SuperFoldedFft#(radix, n)

interface to an Fft interface.
The makefile can be used to build simSfol to test this implementation.

Compile and run using

$ make sfol

$ ./simSfol

In order to do the super-folded FFT module, first try writing a super-folded
FFT module with just 2 butterflys, without any type parameters. Then try to
extrapolate the design to use any number of butterflys.

5


