
6.S195: Lab 6

6-Stage SMIPS Pipeline with Simple Branch

Predictor

October 24, 2013

Due: Sunday November 3, 2013

Note: This lab uses a different infrastructure than the previous SMIPS
lab in order to compile to FPGAs. Future SMIPS labs will use this
same infrastructure.

1 Introduction

In this lab you will be provided a two stage pipelined implementation of a
SMIPS processor, and you will be further pipelining the processor into a six
stage pipeline and adding a simple branch target buffer (BTB) as a branch
predictor. This 6 stage pipeline will be your starting point for more advanced
branch predictors and memory caches in later labs.

This lab also introduces the flow to compile Bluespec designs for an FPGA.
By compiling your designs with FPGA synthesis tools, you can get metrics about
your design’s performance such as area and clock speed. This will allow you to
better compare the performance of two different designs.

2 The Processor Infrastructure

A large amount of work has already been done for you in setting up the infras-
tructure to run, test, evaluate performance, and debug your SMIPS processor in
simulation and on the FPGA. This section describes that infrastructure.

2.1 Getting Started

The code for this lab is in the lab6.git repo. You can clone this repo to a local
directory by running the following command.

$ git clone $GITROOT/lab6.git

This will create a directory called lab6 with the code for this lab.
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2.2 The Source Code

The included processor has a 2 cycle pipeline connected with conflict-free fifos.
Currently the processor uses memories implemented as massive register files.
This implementation will not fit on an FPGA, so these memory implementations
will be replaced with a memory module that will be synthesized to on board
ram in the FPGA.

The source code implementing the processor and all of its components is split
into files in the src/ directory as follows.

AddrPred.bsv Implementations of a simple pc plus 4 address predictor and a
branch target buffer predictor.

Cop.bsv Implementation of the coprocessor module.

DMemory.bsv Implementation of the data memory using a massive register file.

Decode.bsv Implementation of the instruction decoding.

Ehr.bsv Implementation of Ehrs as described in the lectures.

Exec.bsv Implementation of the instruction execution.

FPGAMemory.bsv Implementation of a memory module that will be synthesized
to internal FPGA RAM. This memory module will be used for both
instruction and data memory.

Fifo.bsv Implementation of a variety of Fifos using Ehrs as described in the
lectures.

IMemory.bsv Implementation of the instruction memory using a massive register
file.

MemInit.bsv Modules for downloading the initial contents of instruction and
data memories from the host pc.

MemTypes.bsv Common types relating to memory.

Proc.bsv A two cycle pipelined implementation of the SMIPS processor. You
will be modifying this file during lab to make your 6 stage pipeline.

ProcTypes.bsv Common types relating to the processor.

RFile.bsv Implementation of the register file.

Scoreboard.bsv Implementation of a scoreboard for handling data hazards.

Types.bsv Common types.
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Figure 1: SceMi Setup

2.3 The SceMi Setup

Figure 1 shows the SceMi setup for the lab. The SceMiLayer instantiates
the processor from Proc.bsv and SceMi ports for the processors’s hostToCpu,
cpuToHost, iMemInit, and dMemInit interfaces. The SceMiLayer also provides a
SceMi port for reseting the core from the test bench, allowing multiple programs
to be run on the Processor without reprogramming the FPGA.

Source code for the SceMiLayer and Bridge are in the scemi/ directory. The
SceMi link goes over a TCP bridge for simulation and a PCIe bridge when
running on the actual FPGA.

2.4 Building the Project

The file scemi/sim/project.bld describes how to build the project using the
build command which is part of the Bluespec installation. Run build --doc for
more information on the build command. The full project, including hardware
and testbench, can be rebuilt from scratch by running the command build -v

from the scemi/sim/ directory.
The file scemi/sim/sim.bspec is a Bluespec Workstation project file that

can be used to build the project from within the Bluespec Workstation rather
than building from the command line. This project can also be used to to run
the schedule analysis tool in the Bluespec GUI. To build the project in the
Workstation, run from the scemi/sim/ directory:

bluespec sim.bspec&

This opens up the Workstation. From there you can compile and link
to generate the two executables bsim dut and tb. The executable bsim dut

simulates the hardware; tb is the test bench.
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The fpga/ directory contains its own project.bld and fpga.bspec for
building the project for the FPGA. Building for the FPGA includes running
synthesis, map, and place-and-route, and takes on the order of an hour to
complete. When the build has completed, the FPGA can be programmed
using the programfpga command on the FPGA servers. Building for FPGA
also creates a tb executable for the test bench. Note: you will not be able to
successfully synthesize for the FPGA until after completing problem 1 of this
lab.

In order to use the xilinx tools, the xilinx settings must be sourced. The
course locker includes a script called xilinx which runs a command with the
xilinx settings sourced. For example, to build for the FPGA:

fpga$ xilinx build -v xupv5_dut

(... wait a long time ...)

fpga$ build -v tb

2.5 Compiling the Assembly Tests and Benchmarks

Our SceMi test bench runs SMIPS programs specified in Verilog Memory Hex
(vmh) format. The programs/ directory contains the source code for a number
of assembly tests and benchmark programs you can try out on your processor.
A Makefile is provided for compiling the programs to the required .vmh format.

To compile all the assembly tests and benchmarks, go to the programs/

directory and run the command:

programs$ make

This will create a new directory under the programs/ directory called build/,
which contains the generated .vmh files along with other intermediate results.
Compile the assembly tests and benchmarks now.

Those files in the programs/build/ with the .asm.vmh extension are assem-
bly tests. These are microbenchmarks written in assembly which test specific
instructions. Running the assembly tests is a good way to check for errors in
your processor implementation and to narrow down which instructions are the
source of any problems.

It is highly recommended you rerun all the assembly tests after making any
changes to your processor to verify you didn’t break anything. Also, run the
assembly tests when trying to locate a bug, as they will narrow down which
instructions are problematic.

Those files in the programs/build/ directory with the extension .bench.vmh

are benchmarks which can be used to evaluate the performance of your processor.
When completed, the benchmarks print out the total number of instructions
executed and the number of cycles required to execute those instructions. Per-
formance is measured in instructions-per-cycle (IPC). The greater the IPC the
better. For our pipeline we can never exceed an IPC of 1, but we should be able
to get close to it with a good branch predictor and proper bypassing.
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2.6 Using the Test Bench

Our SceMi test bench is software run on the host processor which interacts with
the SMIPS processor over the SceMi link, as shown in figure 1. The test bench
loads a program for the SMIPS processor to execute, starts the processor, and
handles toHost requests until the processor indicates it has completed, either
successfully or unsuccessfully.

The test bench takes a single command line argument which is the .vmh file
with the program to run on the SMIPS processor.

To run the test bench, first build the project as described in section 2.4
and compile the SMIPS programs as described in section 2.5. For simulation
the executable bsim dut will be created, which should be running when you
start the test bench. For the FPGA you should first program the FPGA with
programfpga on one of the FPGA servers, and wrap the call to tb in runtb.

For example, to run the qsort benchmark on the processor in simulation you
could use the commands:

sim$ ./bsim_dut 2> qsort.err > qsort.out &

sim$ ./tb ../../programs/build/qsort.bench.vmh

To run the qsort benchmark on the FPGA, assuming the design has been
synthesized already, you could use the commands:

fpga$ programfpga

fpga$ runtb ./tb ../../programs/build/qsort.bench.vmh

The test bench outputs the result of the program and statistics. The SMIPS
program could either fail, or pass, as determined by a value in the toHost register
in the SMIPS Processor, which is set by the running SMIPS program.

In simulation the test bench can also be run from the Bluespec Workstation.
By default the qsort benchmark is run in the workstation. To change which pro-
gram to run on the SMIPS processor in the workstation go to Project->Options,
choose the Sce-Mi tab and change the command line arguments to tb in the
simulate command field. When simulating from the workstation, output from
the bsim dut is redirected to bsum dut.out and bsum dut.err.

For your convenience, we have provided scripts run assembly and run benchmarks

in the sim/ and fpga/ directories which run all of the compiled assembly tests
and benchmarks respectively. The scripts in the fpga/ directory require the
FPGA has already been programmed.

3 The Memory Interface and Block RAMs

The processor implementation you are provided makes use of memories with com-
binational reads. These are modeled in src/IMemory.bsv and src/DMemory.bsv

using RegFiles. Each of these memories is too large to fit in the FPGA as they
are implemented. Fortunately the FPGA has some built in RAM that can be
used, but the processor needs to be changed in order to use it because the reads
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are sequential. That means read data is available the cycle after the read request.
This is just like the delayed memory used for the 4 cycle processor in the first
SMIPS lab.

3.1 Block RAMs

The registers you instantiate in your hardware designs are mapped to slice
registers on the FPGA. Slice registers are not well suited for memories because
they are not very dense and require large muxing logic to select the data.

Block RAMs are on-chip memory resources available to use on the FPGA.
They are much denser than slice registers and have built-in logic to perform the
address decoding. To read from a Block RAM, you give it the address to read
from, and the data will be available on the next cycle. The XUPv5 FPGAs we
are using have about 600K bytes worth of Block RAM storage.

Another form of memory storage available on the XUPv5 is DRAM. In
contrast to Block RAMs, DRAM is off-chip memory. DRAM has a capacity of
1G bytes worth of storage, but may take 10s of cycles to access. In practice,
Block RAMs are much easier to use than DRAM.

The RegFiles used to model the memory in IMemory.bsv and DMemory.bsv

use 16 bit addresses. This was chosen specifically so that the 2 memories, with
64K words, and 4 bytes per word take up only 2 ∗ 64K ∗ 4 = 512K bytes and
can be implemented on the FPGA using Block RAMs. Fortunately this amount
of memory is adequate for all the assembly tests and benchmark programs.

A module has already been written for you that implements block RAMs
that can be used for instruction and data memory. The file FPGAMemory.bsv

contains the interface and implementation of mkFPGAMemory. The interface is
shown below:

interface FPGAMemory;

method Action req(MemReq r);

method ActionValue#(MemResp) resp;

interface MemInitIfc init;

endinterface

The interface is identical to the DelayedMemory from the first SMIPS lab
except this interface contains a MemInitIfc sub interface. MemInitIfc interfaces
are used to fill up the memories through the scemi interface. Like the delayed
memory, this memory is designed to only give responses on reads, not writes.

4 Lab Exercises

When you are done with the exercises in this section, you will have a six stage
pipelined SMIPS processor with a BTB branch predictor that can be synthesized
on an FPGA. These exercises will guide you by introducing incremental changes
to the processor to get to the final goal.
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Exercise 1 (30 Points): Split the two stage pipeline in Proc.bsv to a six
stage pipeline covering instruction fetch, decode, register fetch, execute, memory,
and write back. This will reduce the critical path so your processor can function
with the default clock frequency provided by the scemi interface. This processor
will not fit on an fpga yet since it does not use block RAM yet.

To test this processor run the following:

$ cd scemi/sim

$ build -v

$ ./run_assembly

... check that all tests print PASSED ...

$ ./run_benchmarks

... check that all tests printed the number of cycles

and instructions and printed PASSED ...

This tells you your processor is functional, but it does not tell you if the rules
are firing concurrently as you want them to. To check what your processor is
doing each cycle you can add $display statements to each your rules. You can
see the output from these statements by building your processor and running
run_assembly_loud and run_benchmarks_loud. If you see your rules firing in
parallel and no unexpected bubbles, then your processor works!

When you are done with this part, turn it in and create a checkpoint for
yourself by running the following git command in the lab6 folder:

$ git commit -am "Finished Exercise 1"

$ git push

Exercise 2 (10 Points): Replace the memories with block RAM memories
found in FPGAMemory.bsv. Use the module mkFPGAMemory to create two
block RAMs, an instruction one and a data one. Refer to section 3 for more
information about this new memory module. You can test the processor by
running the same commands as you ran for the previous exercise.

When you are done with this part, turn it in and create a checkpoint for
yourself by running the following git command in the lab6 folder:

$ git commit -am "Finished Exercise 2"

$ git push

Exercise 3 (10 Points): Now it is time to replace the pc + 4 branch predictor
with one shown in class: the branch target buffer. The file AddrPred.bsv has
an implementation for mkBtb that implements the BTB for you. Replace the pc
+ 4 branch predictor with the BRB and connect all the needed predictor update
and mispredict signals for the predictor. You can test the processor by running
the same commands as you ran for the previous exercises.

When you are done with this part, turn it in and create a checkpoint for
yourself by running the following git command in the lab6 folder:
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$ git commit -am "Finished Exercise 3"

$ git push

5 FPGA Synthesis

At this point, your processor will be almost ready for FPGA synthesis. Because
of the way the fifos and the scoreboards are implemented, their sizes need to be
powers of two. If they are not powers of two, xilinx’s tools can’t create hardware
for them. At this point, change the fifo and scoreboard sizes so they are powers
of two if they aren’t already.

Once you are done sizing your fifos and scoreboard, you can run FPGA
synthesis by running the following command:

$ cd scemi/fpga

$ xilinx build -v xupv5_dut

... wait for a long time (~1 hour) ...

This command takes a lot of computing resources, so try to run it on a machine
with little load. You can check the load of a machine with the top command.

5.1 FPGA synthesis reports

The Xilinx tools output reports to the xilinx/ directory from which we can
learn the area and critical path of our design. The file xilinx/mkBridge.srp is
the synthesis report. It contains summary information about how many slices
our design takes up and the critical paths in our design. The Device utilization
summary near the end of the file shows the resources our design uses. The
Timing summary lists the critical path and its length for each clock in the design.
The clock for our processor is called scemi_clk_port_clkgen/current_clk1.

The file xilinx/mkBridge.par is the place-and-route report. If the design
fails to meet timing constraints, it is reported in this file. You should always
verify near the end of xilinx/mkBridge.par that it says ”All constraints were
met”. It is not always obvious if not all timing constraints are met, so look
carefully. If place-and-route fails to meet all the timing constraints, you can look
at the synthesis report xilinx/mkBridge.srp as described above to understand
what the failing critical path is. You can also get more detailed information
about the failing timing constraint by reading xilinx/mkBridge.twr, which
gives a detailed description of what went wrong for any timing constraints not
met.

Finally, we can get additional information about which parts of our design
take which resources from the file xilinx/mkBridge map.mrp, which shows a
detailed report of resource utilization by hierarchy in the section Utilization by
Hierarchy. This shows the resources used for each synthesized module in the
design, hierarchically.
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Exercise 4 (10 Points): Synthesize your processor for an FPGA and look
at the output logs in the xilinx/ folder. Answer the following questions in
lab6/discussion.txt:

1. Did your design meet all the constraints when synthesizing? Copy the
relevant lines from the appropriate report.

2. What clock frequency can your design run at? Copy the relevant lines
from the appropriate report.

3. Using the clock frequency from question 2, calculate the IPC and IPS
(instructions per second) for each benchmark using the simulation results
from run_benchmarks.

4. Where is the critical path in your design? Copy the relevant lines from
the appropriate report.

5. What (if anything) could you do to further reduce your critical path?

5.2 Running on an FPGA

If the design compiled without errors, then your design met the timing require-
ments and should work if programmed to an FPGA. If you want to try running it,
log into a vlsifarm computer with an available FPGA board (vlsifarm-03.mit.edu,
vlsifarm-04.mit.edu, and vlsifarm-06.mit.edu) and run the following: Update
10/31/2013: The FPGA boards are currently hung up. Once I get them up and
running, I’ll let you know. Also, you need to update the script run_assembly

to include runtb before ./tb just like run_benchmarks.

$ cd scemi/fpga

$ build -v tb

$ programfpga

$ ./run_assembly

$ ./run_benchmarks

You should see the same output as simulation if the FPGA is working.

6 Submitting the lab

When you are done with this lab, commit all your changes and push your changes
back to be graded by running the following commands:

$ git commit -am "Done with lab 6"

$ git push
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