
6.S195: Lab 8

Caches

November 13, 2013

Due: Friday November 22, 2013

Note: This lab is a direct continuation of Lab 7. You will start with
the 6-stage pipeline with BTB and BHT you created for that lab.

1 Introduction

By now you have a 6-stage pipelined SMIPS processor with target and direction
branch predictors. Unfortunately your processor is limited to running programs
that can fit in a 256 KB FPGA block RAM. This works fine for the small
benchmark programs we are running, such as a 250 item quicksort, but most
interesting applications are (much) larger than 256 KB. Luckily the FPGA
boards we are using have 256 MB of DDR2 DRAM accessible by the FPGA.
This is great for storing large programs, but this may hurt the performance since
DRAM has long latencies when reading data from them.

This lab will focus on using DRAM instead of block RAM for main program
and data storage to store larger programs and adding caches to reduce the
performance penalty from long latency DRAM loads.

First you will write a translator module that takes memory requests from
the CPU and translates them to memory requests for a wrapped DRAM. This
module will enable a larger storage space for your programs, but it will see a large
decrease in performance since your are reading from DRAM almost every cycle.
Next you will implement a cache to reduce the amount of times you need to read
from the DRAM, therefore improving your processors performance. Lastly you
will synthesize your design for an FPGA and run very large benchmarks that
require DRAM.

2 DRAM Interface

The XUPV5 board has 256 MB of DDR2 DRAM. DDR2 memory has a 64 bit
wide data bus, but 4 64 bit chunks are sent per transfer, so effectively it acts like
a 256 bit wide memory. DDR2 memories have high throughput, but the also
have high latencies for reads.

1



The DRAM controller used in this lab works similarly to the FPGAMem-
ory modules. ProcExample.bsv connects the DRAM’s interface to two fifos:
dramReqQ and dramRespQ. dramReqQ takes requests of type DDR2Request which
is defined and described below.

typedef struct {

// writeen: Enable writing.

// Set the ith bit of writeen to 1 to write the ith byte of

// datain to the ith byte of data at the given address.

// If writeen is 0, this is a read request, and a response

// is returned.

// If writeen is not 0, this is a write request, and no

// response is returned.

Bit#(32) writeen;

// Address to read to or write from.

// The DDR2 is 64 bit word addressed, but in bursts of 4

// 64-bit words. The address should always be a multiple of

// 4 (bottom 2 bits 0), otherwise strange things will happen.

// For example:

// address 0 refers to the first 4 64 bit words in memory.

// address 4 refers to the second 4 64 bit words in memory.

DDR2Address address;

// Data to write.

// For read requests this is ignored.

// Only those bytes with corresponding bit set in writeen

// will be written.

DDR2Data datain;

} DDR2Request deriving(Bits, Eq);

dramRespQ returns values of type DDR2Response which is an alias for Bit#(256).
The module mkDDRWrapper takes in the interfaces to the two DRAM fifos,

and returns a more managable interface for the processor to use. This interface
will allow an instruction cache and a data cache to use the same DRAM. The
interface DDRWrapper and the associated interfaces and types are defined below.

interface DRAMWrapper;

interface WideMemory iMem;

interface WideMemory dMem;

interface MemInitIfc init;

endinterface

interface WideMemory;

method Action req(WideMemReq r);

method ActionValue#(CacheLine) resp;

2



endinterface

typedef struct{

Bit#(8) write_en;

Addr addr;

CacheLine data;

} WideMemReq deriving(Eq,Bits);

typedef Vector#(8, Data) CacheLine

WideMemReq is very similar to DDR2Request except addr is byte-addressed and
the last 5-bits of the address should be 0, each write_en bit refers to 32-bit
word, and the data taken in is a vector of 32-bit words.

The caches in this lab will use the following interface.

interface Cache;

method Action req(MemReq r);

method ActionValue#(MemResp) resp;

endinterface

This is just like FPGAMemory except there is no sub-interface for initialization.
That means you should be able to easily replace your current mkFPGAMemory

module constructors with a cache constructor (assuming you change types and
remove references to the initialization sub-interface of FPGAMemory).

From here, if you could translate MemReq to WideMemReq and CacheLine to
MemResp appropriately, then you could use the DRAM right away. For the first
exercise, that is exactly what we are going to do, but first you need to get the
code for lab 8.

3 Starting Off

To get your personal git repository for lab 8 run the following command.

$ git clone $GITROOT/lab8.git

This will create a folder called lab8 with some support code for this lab.
Next, copy all the *.bsv files from lab7/src to lab8/src. Add all your

source files to the git repo by running the following commands.

$ cd lab8

$ git add src/*

$ git commit -am "Initial code from lab 7."

$ git push

At this point neither simulation or fpga synthesis will work because the dut
wrapper files assume a different processor interface than the one from lab 7. This
will all be fixed in the first exercise.

3



4 Using the DRAM Without a Cache

Now that you have the code for lab 8, take a look at ProcExample.bsv; this
file contains a skeleton for a processor using DRAM. You need to modify your
Proc.bsv to use the same interface as ProcExample.bsv, and you need to add
the dram code from ProcExample.bsv. Once you have modified Proc.bsv you
are ready to implement mkTranslator in Cache.bsv to get your processor to
use the DRAM.

Exercise 1 (10 Points): Implement mkTranslator in Cache.bsv to translate
from MemReq to WideMemReq and from CacheLine back to MemResp appropri-
ately. You will need to add a state element to this module to keep track of
what what word in the output CacheLine to select for MemResp. Once you
have implemented it, incorporate it into your pipeline by replacing references to
mkFPGAMemory with mkTranslator. Since there is a DDR2 functional model for
simulation included in the lab 8 repo, you can simulate this design in the same way
you simulated labs 6 and 7. Record benchmark performance in discussion.txt.

If you want to get this processor running on the FPGA, you will have to add
the following rule to mkProc.

rule drainMemResponses( !cop.started );

dramRespQ.deq;

endrule

This rule clears the DRAM response queue when the processor is not running.
This is needed because the processor implementation without a cache will have
DRAM traffic when the processor is reset between programs, and outstanding
DRAM responses will mess up the processor when it is started again for the
next program.

5 Using the DRAM With a Cache

By running the benchmarks with simulated DRAM, you should have noticed
that your processor slows down a lot. You can speed up your processor again by
remembering previous DRAM loads in a cache as described in class. There are
many different types of caches that you can implement, but for this lab, you will
be implementing a direct mapped cache that writes-through on write hits and
does not allocate on write misses.

Exercise 2 (20 Points): Implement a mkCache to be a direct mapped cache
that writes-through on write hits and does not allocate on write misses. Use
the typedefs in CacheTypes.bsv to size your cache. Incorporate this cache in
your pipeline and simulate the processor with the cache. Record benchmark
performance in discussion.txt.

4



6 Running Large Programs

Now that you have a processor with a significant amount of memory, you can
run larger benchmarks. Unfortunately larger benchmarks take many processor
cycles to complete, and therefore will take too long to simulate. Luckily you
have access to FPGAs that can run much faster than simulation, so you are
going to compile your processor for the FPGAs.

Exercise 3 (5 Points): Synthesize your processor from exercise 2 for the
FPGA by running xilinx build -v xupv5_dut in scemi/fpga, and build the
test bench executable by running build -v tb. Run either w, top, or ps -af

to see if someone else is using the FPGA currently, if it is free, run programfpga

to program the FPGA. Run the standard run_assembly and run_benchmarks

to test your processor and caches initially. Record the normal benchmark perfor-
mance in discussion.txt.

There are much larger versions of the original benchmarks contained in
/mit/6.s195/large-programs. Instead of working on hundreds of memory
locations, these benchmarks work with millions of memory locations.

Exercise 4 (5 Points): Run these larger benchmarks on your processor using
run_large_benchmarks. These will take much longer to run on the FPGA, but
most of the time will be spent waiting for the memories to be programmed through
the SceMi interface. The actual execution will be very fast. Record the number
of cycles and instructions for these larger benchmarks in discussion.txt.

7 Discussion Questions

Answer these questions in discussion.txt.

Exercise 5 (10 Points):

1. How does the latency of the DDR2 simulation model compare to the
latency of the actual DDR2 DRAM on the FPGA?

2. What advantage does your write-through policy for write hits have over
a write-back policy? What advantage does a write-back policy have over
write-through?

3. Do you think you could see an improvement in cache performance by using
a smaller cache line? What about a larger cache line? Assume you are still
using the same number of bits in your cache.

5



8 Submitting the lab

When you are done with this lab, commit all your changes and push your changes
back to be graded by running the following commands:

$ git commit -am "Done with lab 8"

$ git push

6


	Introduction
	DRAM Interface
	Starting Off
	Using the DRAM Without a Cache
	Using the DRAM With a Cache
	Running Large Programs
	Discussion Questions
	Submitting the lab

