Constructive Computer Architecture

Combinational circuits

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

Staff and students in 6.375 (Spring 2013),
6.5195 (Fall 2012), 6.S078 (Spring 2012)
= Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh
@ External
= Prof Amey Karkare & students at IIT Kanpur
= Prof Jihong Kim & students at Seoul Nation University
= Prof Derek Chiou, University of Texas at Austin
= Prof Yoav Etsion & students at Technion

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-2

Content

Design of a combinational ALU starting with
primitive gates And, Or and Not

Combinational circuits as acyclic wiring
diagrams of primitive gates
Introduction to BSV

= Intro to types — enum, typedefs, numeric types,
int#(32) vs integer, bool vs bit#(1), vectors

= Simple operations: concatenation, conditionals, loops
= Functions

= Static elaboration and a structural interpretation of
the textual code

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-3

Combinational circuits

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-4

Combinational circuits are
acyclic interconnections of
gates

And, Or, Not
Nand, Nor, Xor
& ...

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-5

Arithmetic-Logic Unit (ALU)

Op

- Add, Sub, ...
- And, Or, Xor, Not, ...
- GT, LT, EQ, Zero, ...
Result
Comp?

ALU performs all the arithmetic
and logical functions

Each individual function can be described
as a combinational circuit

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-6

Full Adder: A one-bit adder

function fa(a, b, c_in);
s = (a ” b)” c in;
c out = (a & b) | (c_in & (a ~ b));

endfunction

w >
[l L=

Structural code -
only specifies A
interconnection Cin
between boxes

return {c out,s};
‘J]j >0 X0
ol

Not quite correct -
needs type annotations

Cout

September 6, 2013 http://csg.csail.mit.edu/6.5s195

L02-7

Full Adder: A one-bit adder

corrected

’ function Bit#(2) fa(Bit# (1) a, Bit#(1) b,
Bit# (1) c_in);
Bit#(1l) s = (a ~ b)” c_in;
Bit#(l) c out = (a & b) | (c_in & (a * b));
return {c out,s};

endfunction

A-.ﬁl :
“Bit# (1) a” type

declaration says that B .

a is one bit wide Cin

{c_out, s} represents
bit concatenation

How big is {c out,s}?
2 bits

S

Cout

September 6, 2013 http://csg.csail.mit.edu/6.5s195

L02-8

Types

A type is a grouping of values:
s Integer: 1, 2, 3, .
s Bool: True, False
= Bit: 0,1
A pair of Integers: Tuple2# (Integer, Integer)
= A function fname from Integers to Integers:
function Integer fname (Integer arg)

Every expression and variable in a BSV program
has a type; sometimes it is specified explicitly
and sometimes it is deduced by the compiler

Thus we say an expression has a type or belongs

to a type
The type of each expression is unique

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-9

Parameterized types: #

A type declaration itself can be
parameterized by other types

Parameters are indicated by using the
syntax ‘#’
» For example Bit# (n) represents n bits and
can be instantiated by specifying a value of n
Bit# (1), Bit#(32), Bit#(8),

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-10

Type synonyms

typedef bit [7:0] Byte;
> The same

typedef Bit#(8) Byte;

typedef Bit# (32) Word;

typedef Tuple2# (a,a) Pair# (type a);

typedef Int# (n) MyInt# (type n);

The same

typedef Int# (n) MyInt# (numeric type n);

September 6, 2013 http://csg.csail.mit.edu/6.5s195

L02-11

Type declaration versus
deduction

The programmer writes down types of some
expressions in a program and the compiler
deduces the types of the rest of expressions

If the type deduction cannot be performed or
the type declarations are inconsistent then the
compiler complains

function Bit# (2) fa(Bit# (1) a, Bit#(l) b,

Bit# (1) c_in);

Bit#(1l) s = (a ~ b)” c in;
Bit#(2) c out = (a & b) | (c in & (a ~ b));
return {c out,s};

endfunction type error

Type checking prevents lots of silly mistakes

September 6, 2013 http://csg.csail.mit.edu/6.5s195

L02-12

x[oq ly[O] xml ly[l]

2-bit Ripple-Carry Adder

fa can be used as a

c[1] black-box long as we
c[0]— fa fa [—c[2] understand its type
signature
|sto] Js1]
function Bit#(3) add(Bit#(2) x, Bit#(2) vy,
Bit# (1) c0);
Bit#(2) s = 0; Bit#(3) c=0; c[0] = cO0;
let cs0 = fa(x[0], yI[0], c[0]);
cl[l] = ¢csO[1]; s[0] = ¢cs0[0];
let csl = fa(x[1], yI[1], cl1]);
cl[2] = csl[1]; s[l] = csl[0];

return {c[2],s};

endfunction

The “let” syntax avoids having
to write down types explicitly

September 6, 2013

http://csg.csail.mit.edu/6.5s195

L02-13

“let” syntax

types explicitly
m let csO fa(x[0],
s Bits#(2) fa(xl

csO0

September 6, 2013

The “let” syntax: avoids having to write down

y[0], c[0]);

http://csg.csail.mit.edu/6.5s195

The same
01, ylo0], C[O]);‘i>

L02-14

Selecting a wire: x[i]

‘ assume X is 4 bits wide

Constant Selector: e.g., x[2]

X0 — X0 —

§%4’ [2] — x1 —
X3 —

X3 —

X2 ——— |

Dynamic selector: x[i]

September 6, 2013

i i
X0 — x0 4.¢\|
X1 — H L, x] —
X2 — [I] X2 —
x3 X3 —

http://csg.csail.mit.edu/6.5s195

no hardware;
x[2] is just
the name of
a wire

4-way mux

L02-15

September 6, 2013

A 2-way multiplexer

A A AND
: - Jor}—
S B |_,| AND
S
(s==0) ?A:B Gate-level implementation

S

Conditional expressions are also synthesized

using muxes

http://csg.csail.mit.edu/6.5s195

L02-16

A 4-way multiplexer

A —
case {sl,s0} matches —
0: A; B _’/T/
1: B; S; L,
2: C;
. . C —
3: D; féo
endcase D
1s,
September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-17

An w-bit Ripple-Carry Adder

’ function Bit# (w+1l) addN(Bit# (w) x, Bit# (w) vy,
Bit# (1) c0);
Bit#(w) s; Bit#(w+l) c=0; c[0] = cO0;
for (Integer i=0; i<w; 1i=i+1)

begin -
let cs = fa(x[il,y[il,cli]); Not quite correct
c[i+1l] = cs[1l]; s[i] = cs[0];

end

Unfold the loop to get

return {c[w],s}; the wiring diagram

endfunction
x[oq ly[ol x[1q ly[l] X[W-lw lY[W_l]
clo]—1 fa [SES fa 121 clwet) fa clw]
| s[0] S[1] Stw-1]

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-18

function Bit# (w+l) addN(Bit#(w) x, Bit#(w) vy,
Bit# (1) cO0);
Define add32, add3 .. using addN

Instantiating the parametric Adder

// concrete instances of addN!
function Bit# (33) add32 (Bit# (32) x, Bit#(32) vy,

function Bit# (4) add3 (Bit# (3) x, Bit#(3) vy,

Bit# (1) c0) = addN(x,y,cO0);

Bit# (1) c0) = addN(x,y,cO0);

September 6, 2013 http://csg.csail.mit.edu/6.5s195

L02-19

valueOf (w) Versus w

Each expression has a type and a value and
these come from two entirely disjoint worlds

w in Bit# (w) resides in the types world

Sometimes we need to use values from the

types world into actual computation. The
function valueof allows us to do that

= Thus
i<w is not type correct
i<valueOf (w)is type correct
September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-20

10

TAdd# (w, 1) versus w+l

Sometimes we need to perform operations in
the types world that are very similar to the
operations in the value world
s Examples: ndd, Mul, Log

We define a few special operators in the types
world for such operations
s Examples: TAdd# (m,n), TMul# (m,n),

September 6, 2013 http://csg.csail.mit.edu/6.5s195

L02-21

A w-bit Ripple-Carry Adder

corrected
B
function Bit# (TAdd# (w,1))) addN(Bit# (w) x, Bit#(w) vy,
Bit# (1) c0);
Bit# (w) s; Bit# (TAdd# (w,] c[0] = c0;
let valw types world
for (Integer i=0; i<valw; i=1i+1) equivalem‘ of w+l
begin
let cs = fa(x[i],yl[i],cl[i] LHTMg(JType
clitl] = cs[l]; sli] = cs[0]; into the value
end world
return {c(valw],s};
endfunction
Structural interpretation of a loop — unfold it to
generate an acyclic graph
September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-22

11

Static Elaboration phase

When BSV programs are compiled, first type
checking is done and then the compiler gets
rid of many constructs which have no direct
hardware meaning, like Integers, loops

for (Integer i=0; i<valw; i=i+l) begin
let cs = fa(x[i],yl[i],c[i]);
cl[i+1l] = cs[1l]; s[i] = cs[0];
end
cs0 = fa(x[0], y[0], c[0]); cl[1]=csO[1]; s[0]=csO[O];
csl = fa(x[1], yl[1], c[1]); cl[2]=csl[1l]; s[l]=csl[0];
csw = fa(x[valw-1], yl[valw-1], clvalw-1]);
clvalw] = csw[l]; s[valw-1] = csw[0];
September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-23

Integer VErsus Int# (32)

In mathematics integers are unbounded but in
computer systems integers always have a
fixed size

BSV allows us to express both types of

integers, though unbounded integers are used
only as a programming convenience

for (Integer i=0; i<valw; i=i+1l)
begin
let cs
cli+1]
end

T
Q Hh
®
[
-
U}\I_’

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-24

12

Shift operators

September 6, 2013

http://csg.csail.mit.edu/6.5s195 L02-25
Logical right shift by 2
® abcd
AR
00
i
OO0ab
Fixed size shift operation is cheap in hardware
- just wire the circuit appropriately
Rotate, sign-extended shifts - all are equally
easy
September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-26

13

Conditional operation:
shift versus no-shift

N T T |
| IR

s N 7

We need a mux to select the appropriate wires: if
s is one the mux will select the wires on the left
otherwise it would select wires on the right

(s==0)?{a,b,c,d}:{0,0,a,b};

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-27

Logical right shift by n

Shift n can be broken down in
log n steps of fixed-length shifts
of size 1, 2, 4, ...
= Shift 3 can be performed by doing a st ﬁ\\ /

shift 2 and shift 1 P -

We need a mux to omit a
particular size shift sO

Shift circuit can be expressed as
log n nested conditional
expressions

—O |
l—O

M
—

o

L02-28

September 6, 2013 http://csg.csail.mit.edu/6.5s195

14

A digression on types

Suppose we have a variable c whose values
can represent three different colors
= We can declare the type of c to be Bit#(2) and say
that 00 represents Red, 01 Blue and 10 Green
A better way is to create a new type called
Color as follows:

typedef enum {Red, Blue, Green}
Color deriving (Bits, Eq);

Types prevent T, : : . :
uS from mixing The compiler will automatically assign some bit
bits that representation to the three colors and also provide a
represent function to test if the two colors are equal. If you do
color from raw |not use “deriving” then you will have to specify the
bits representation and equality
September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-29

Enumerated types

typedef enum {Red, Blue, Green}
Color deriving (Bits, Eq);

typedef enum {Eqg, Neq, Le, Lt, Ge, Gt, AT, NT}
BrFunc deriving(Bits, Eq);

typedef enum {Add, Sub, And, Or, Xor, Nor, Slt, Sltu,
LShift, RShift, Sra}
AluFunc deriving(Bits, Eq);

Each enumerated type defines a new type

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-30

15

Combinational ALU

function Data alu(Data a, Data b, AluFunc func);

Data.res.=.case(func) Given an implementation of
Add i (a + b); the primitive operations like
Sub : (a - Db)s addN, Shift, etc. the ALU
And : (a & b); can be implemented simply
Or : (a | b); by introducing a mux
Xor (a ~ b); controlled by op to select the
Nor : ~(a | b); appropriate circuit
S1t : zeroExtend(pack(signedLT(a, b)));
Sltu : zeroExtend(pack(a < b));

LShift: (a << b[4:0]);
RShift: (a >> b[4:0]);

Sra : signedShiftRight(a, b[4:0]);
endcase;
return res;
endfunction
September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-31

Comparison operators

val
function Bool aluBr (Data a, Data b, BrFunc brFunc);

Bool brTaken = case (brFunc)
Eq : (a == Db);
Neg : (a != b);
Le : signedLE(a, 0);
Lt : signedLT(a, 0);
Ge : signedGE(a, 0);
Gt : signedGT(a, 0);
AT : True;
NT : False;

endcase;

return brTaken;
endfunction

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-32

ALU including Comparison
operators

Eq LShift| - | Add

,
,
,
,
,
,
,
,
.
,
,
.
,
,
,
,
,
,
,
,
,
— func
,
,
ux 4
m ,
,
-

brFunc

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-33
Complex combinational
circuits
Multiplication

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-34

17

Multiplication by repeated

addition
b Multiplicand 1101 (13) a0

a Muliplier 1011 a1 1
;
+ 1101
+ 0000 add4 ‘
+ 1101
a2 —» m2
10001111 (143) - | l |
add4
a3 m3
mi = (a[i]==0)2 0 : b; -

—="777! ||

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-35

Combinational 32-bit multiply

function Bit# (64) mul32 (Bit#(32) a, Bit#(32) b);
Bit# (32) prod = 0;
Bit#(32) tp = 0;
for (Integer i = 0; 1 < 32; 1 = i+1l)

begin
Bit#(32) m = (a[1]==0)? 0 : b;
Bit#(33) sum = add32 (m, tp,0);
prod[i] = sum[O0];
tp = truncateLSB(sum) ;

end

return {tp,prod};

endfunction

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-36

Design issues with
combinational multiply

Lot of hardware
» 32-bit multiply uses 31 add32 circuits

Long chains of gates

= 32-bit ripple carry adder has a 31-long
chain of gates

= 32-bit multiply has 31 ripple carry adders in
sequence!

The speed of a combinational circuit is

determined by its longest input-to-output
path

Can we do better?

September 6, 2013 http://csg.csail.mit.edu/6.5s195 L02-37

19

