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Content

# Design of a combinational ALU starting with
primitive gates And, Or and Not

# Combinational circuits as acyclic wiring
diagrams of primitive gates
# Introduction to BSV

= Intro to types — enum, typedefs, numeric types,
int#(32) vs integer, bool vs bit#(1), vectors

= Simple operations: concatenation, conditionals, loops
= Functions

= Static elaboration and a structural interpretation of
the textual code
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Combinational circuits
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Combinational circuits are
acyclic interconnections of
gates

# And, Or, Not
# Nand, Nor, Xor
& ...
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Arithmetic-Logic Unit (ALU)

Op

- Add, Sub, ...
- And, Or, Xor, Not, ...
- GT, LT, EQ, Zero, ...
Result
Comp?

ALU performs all the arithmetic
and logical functions

Each individual function can be described
as a combinational circuit
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Full Adder: A one-bit adder

function fa(a, b, c_in);
s = (a ” b)” c in;
c out = (a & b) | (c_in & (a ~ b));

endfunction

w >
[l L=

Structural code -
only specifies A
interconnection Cin
between boxes

return {c out,s};
‘J]j >0 X0
ol

Not quite correct -
needs type annotations

Cout
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Full Adder: A one-bit adder

corrected

’ function Bit#(2) fa(Bit# (1) a, Bit#(1) b,
Bit# (1) c_in);
Bit#(1l) s = (a ~ b)” c_in;
Bit#(l) c out = (a & b) | (c_in & (a * b));
return {c out,s};

endfunction

A-.ﬁl :
“Bit# (1) a” type

declaration says that B .

a is one bit wide Cin

{c_out, s} represents
bit concatenation

How big is {c out,s}?
2 bits

S

Cout
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Types

# A type is a grouping of values:
s Integer: 1, 2, 3, .
s Bool: True, False
= Bit: 0,1
A pair of Integers: Tuple2# (Integer, Integer)
= A function fname from Integers to Integers:
function Integer fname (Integer arg)

# Every expression and variable in a BSV program
has a type; sometimes it is specified explicitly
and sometimes it is deduced by the compiler

# Thus we say an expression has a type or belongs

to a type
The type of each expression is unique
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Parameterized types: #

# A type declaration itself can be
parameterized by other types

# Parameters are indicated by using the
syntax ‘#’
» For example Bit# (n) represents n bits and
can be instantiated by specifying a value of n
Bit# (1), Bit#(32), Bit#(8),
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Type synonyms

typedef bit [7:0] Byte;
> The same

typedef Bit#(8) Byte;

typedef Bit# (32) Word;

typedef Tuple2# (a,a) Pair# (type a);

typedef Int# (n) MyInt# (type n);

The same

typedef Int# (n) MyInt# (numeric type n);
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Type declaration versus
deduction

# The programmer writes down types of some
expressions in a program and the compiler
deduces the types of the rest of expressions

# If the type deduction cannot be performed or
the type declarations are inconsistent then the
compiler complains

function Bit# (2) fa(Bit# (1) a, Bit#(l) b,

Bit# (1) c_in);

Bit#(1l) s = (a ~ b)” c in;
Bit#(2) c out = (a & b) | (c in & (a ~ b));
return {c out,s};

endfunction type error

Type checking prevents lots of silly mistakes
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x[oq ly[O] xml ly[l]

2-bit Ripple-Carry Adder

fa can be used as a

c[1] black-box long as we
c[0]— fa fa [ —c[2] understand its type
signature
|sto] Js1]
function Bit#(3) add(Bit#(2) x, Bit#(2) vy,
Bit# (1) c0);
Bit#(2) s = 0; Bit#(3) c=0; c[0] = cO0;
let cs0 = fa(x[0], yI[0], c[0]);
cl[l] = ¢csO[1]; s[0] = ¢cs0[0];
let csl = fa(x[1], yI[1], cl1]);
cl[2] = csl[1]; s[l] = csl[0];

return {c[2],s};

endfunction

The “let” syntax avoids having
to write down types explicitly
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“let” syntax

types explicitly
m let csO fa(x[0],
s Bits#(2) fa(xl

csO0

September 6, 2013

# The “let” syntax: avoids having to write down

y[0], c[0]);
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The same
01, ylo0], C[O]);‘i>
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Selecting a wire: x[i]

‘ assume X is 4 bits wide

# Constant Selector: e.g., x[2]

X0 — X0 —

§%4’ [2] — x1 —
X3 —

X3 —

X2 ——— |

# Dynamic selector: x[i]

September 6, 2013

i i
X0 — x0 4.¢\|
X1 — H L, x] —
X2 — [I] X2 —
x3 X3 —
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no hardware;
x[2] is just
the name of
a wire

4-way mux
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A 2-way multiplexer

A A AND
: - Jor}—
S B |_,| AND
S
(s==0) ?A:B Gate-level implementation

S

Conditional expressions are also synthesized

using muxes
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A 4-way multiplexer

A —
case {sl,s0} matches —
0: A; B _’/T/
1: B; S; L,
2: C;
. . C —
3: D; féo
endcase D
1s,
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An w-bit Ripple-Carry Adder

’ function Bit# (w+1l) addN(Bit# (w) x, Bit# (w) vy,
Bit# (1) c0);
Bit#(w) s; Bit#(w+l) c=0; c[0] = cO0;
for (Integer i=0; i<w; 1i=i+1)

begin -
let cs = fa(x[il,y[il,cli]); Not quite correct
c[i+1l] = cs[1l]; s[i] = cs[0];

end

Unfold the loop to get

return {c[w],s}; the wiring diagram

endfunction
x[oq ly[ol x[1q ly[l] X[W-lw lY[W_l]
clo]—1 fa [ SES fa 121 clwet) fa clw]
| s[0] S[1] Stw-1]
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function Bit# (w+l) addN(Bit#(w) x, Bit#(w) vy,
Bit# (1) cO0);
Define add32, add3 .. using addN

Instantiating the parametric Adder

// concrete instances of addN!
function Bit# (33) add32 (Bit# (32) x, Bit#(32) vy,

function Bit# (4) add3 (Bit# (3) x, Bit#(3) vy,

Bit# (1) c0) = addN(x,y,cO0);

Bit# (1) c0) = addN(x,y,cO0);
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valueOf (w) Versus w

# Each expression has a type and a value and
these come from two entirely disjoint worlds

# w in Bit# (w) resides in the types world

# Sometimes we need to use values from the

types world into actual computation. The
function valueof allows us to do that

= Thus
i<w is not type correct
i<valueOf (w)is type correct
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TAdd# (w, 1) versus w+l

# Sometimes we need to perform operations in
the types world that are very similar to the
operations in the value world
s Examples: ndd, Mul, Log

# We define a few special operators in the types
world for such operations
s Examples: TAdd# (m,n), TMul# (m,n),
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A w-bit Ripple-Carry Adder

corrected
B
function Bit# (TAdd# (w,1))) addN(Bit# (w) x, Bit#(w) vy,
Bit# (1) c0);
Bit# (w) s; Bit# (TAdd# (w, ] c[0] = c0;
let valw types world
for (Integer i=0; i<valw; i=1i+1) equivalem‘ of w+l
begin
let cs = fa(x[i],yl[i],cl[i] LHTMg(JType
clitl] = cs[l]; sli] = cs[0]; into the value
end world
return {c(valw],s};
endfunction
Structural interpretation of a loop — unfold it to
generate an acyclic graph
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Static Elaboration phase

# When BSV programs are compiled, first type
checking is done and then the compiler gets
rid of many constructs which have no direct
hardware meaning, like Integers, loops

for (Integer i=0; i<valw; i=i+l) begin
let cs = fa(x[i],yl[i],c[i]);
cl[i+1l] = cs[1l]; s[i] = cs[0];
end
cs0 = fa(x[0], y[0], c[0]); cl[1]=csO[1]; s[0]=csO[O];
csl = fa(x[1], yl[1], c[1]); cl[2]=csl[1l]; s[l]=csl[0];
csw = fa(x[valw-1], yl[valw-1], clvalw-1]);
clvalw] = csw[l]; s[valw-1] = csw[0];
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Integer VErsus Int# (32)

# In mathematics integers are unbounded but in
computer systems integers always have a
fixed size

# BSV allows us to express both types of

integers, though unbounded integers are used
only as a programming convenience

for (Integer i=0; i<valw; i=i+1l)
begin
let cs
cli+1]
end

T
Q Hh
®
[
-
U}\I_’
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Shift operators

September 6, 2013
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Logical right shift by 2
® abcd
AR
00
i
OO0ab
# Fixed size shift operation is cheap in hardware
- just wire the circuit appropriately
# Rotate, sign-extended shifts - all are equally
easy
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Conditional operation:
shift versus no-shift

N T T |
| IR

s N 7

# We need a mux to select the appropriate wires: if
s is one the mux will select the wires on the left
otherwise it would select wires on the right

(s==0)?{a,b,c,d}:{0,0,a,b};
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Logical right shift by n

# Shift n can be broken down in
log n steps of fixed-length shifts
of size 1, 2, 4, ...
= Shift 3 can be performed by doing a st ﬁ\\ /

shift 2 and shift 1 P -

# We need a mux to omit a
particular size shift sO

# Shift circuit can be expressed as
log n nested conditional
expressions

—O |
l—O

M
—

o

L02-28
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A digression on types

# Suppose we have a variable c whose values
can represent three different colors
= We can declare the type of c to be Bit#(2) and say
that 00 represents Red, 01 Blue and 10 Green
# A better way is to create a new type called
Color as follows:

typedef enum {Red, Blue, Green}
Color deriving (Bits, Eq);

Types prevent T, : : . :
uS from mixing The compiler will automatically assign some bit
bits that representation to the three colors and also provide a
represent function to test if the two colors are equal. If you do
color from raw |not use “deriving” then you will have to specify the
bits representation and equality
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Enumerated types

typedef enum {Red, Blue, Green}
Color deriving (Bits, Eq);

typedef enum {Eqg, Neq, Le, Lt, Ge, Gt, AT, NT}
BrFunc deriving(Bits, Eq);

typedef enum {Add, Sub, And, Or, Xor, Nor, Slt, Sltu,
LShift, RShift, Sra}
AluFunc deriving(Bits, Eq);

Each enumerated type defines a new type
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Combinational ALU

function Data alu(Data a, Data b, AluFunc func);

Data.res.=.case(func) Given an implementation of
Add i (a + b); the primitive operations like
Sub : (a - Db)s addN, Shift, etc. the ALU
And : (a & b); can be implemented simply
Or : (a | b); by introducing a mux
Xor (a ~ b); controlled by op to select the
Nor : ~(a | b); appropriate circuit
S1t : zeroExtend( pack( signedLT(a, b) ) );
Sltu : zeroExtend( pack( a < b ) );

LShift: (a << b[4:0]);
RShift: (a >> b[4:0]);

Sra : signedShiftRight(a, b[4:0]);
endcase;
return res;
endfunction
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Comparison operators

val
function Bool aluBr (Data a, Data b, BrFunc brFunc);

Bool brTaken = case (brFunc)
Eq : (a == Db);
Neg : (a != b);
Le : signedLE(a, 0);
Lt : signedLT(a, 0);
Ge : signedGE(a, 0);
Gt : signedGT(a, 0);
AT : True;
NT : False;

endcase;

return brTaken;
endfunction
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ALU including Comparison
operators

Eq LShift| - | Add

,
,
,
,
,
,
,
,
.
,
,
.
,
,
,
,
,
,
,
,
,
— func
,
,
ux 4
m ,
,
-

brFunc
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Complex combinational
circuits
Multiplication
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Multiplication by repeated

addition
b Multiplicand 1101 (13) a0

a Muliplier 1011 a1 1
;
+ 1101
+ 0000 add4 ‘
+ 1101
a2 —» m2
10001111 (143) - | l |
add4
a3 m3
mi = (a[i]==0)2 0 : b; -

—="777! ||
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Combinational 32-bit multiply

function Bit# (64) mul32 (Bit#(32) a, Bit#(32) b);
Bit# (32) prod = 0;
Bit#(32) tp = 0;
for (Integer i = 0; 1 < 32; 1 = i+1l)

begin
Bit#(32) m = (a[1]==0)? 0 : b;
Bit#(33) sum = add32 (m, tp,0);
prod[i] = sum[O0];
tp = truncateLSB(sum) ;

end

return {tp,prod};

endfunction
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Design issues with
combinational multiply

# Lot of hardware
» 32-bit multiply uses 31 add32 circuits

# Long chains of gates

= 32-bit ripple carry adder has a 31-long
chain of gates

= 32-bit multiply has 31 ripple carry adders in
sequence!

The speed of a combinational circuit is

determined by its longest input-to-output
path

Can we do better?
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