
1

Constructive Computer Architecture:

Bluespec execution model and
concurrency semantics

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

Staff and students in 6.375 (Spring 2013),
6.S195 (Fall 2012), 6.S078 (Spring 2012)

 Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh

External

 Prof Amey Karkare & students at IIT Kanpur

 Prof Jihong Kim & students at Seoul Nation University

 Prof Derek Chiou, University of Texas at Austin

 Prof Yoav Etsion & students at Technion

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-2

2

Finite State Machines
(Sequential Ckts)
Present
state
Q1 Q2

Next State,
Output
X=0

Next State,
Output
X=1

00 11,0 01,0

01 11,0 00,0

10 10,0 11,1

11 10,0 10,1

September 13, 2013 L04-3 http://csg.csail.mit.edu/6.s195

Typical description:
State Transition Table or Diagram

Easily translated into circuits

http://www.ee.usyd.edu.au/tutorials/digital_tutorial/part3/t-diag.htm

Finite State Machines
(Sequential Ckts)

A computer (if fact all digital hardware) is an
FSM

Neither State tables nor diagrams is suitable
for describing very large digital designs

 large circuits must be described in a modular fashion
-- as a collection of cooperating FSMs

Bluespec is a modern programming language
to describe cooperating FSMs

 This lecture is about understanding the semantics of
Bluespec

September 13, 2013 L04-4 http://csg.csail.mit.edu/6.s195

http://www.ee.usyd.edu.au/tutorials/digital_tutorial/part3/t-diag.htm
http://www.ee.usyd.edu.au/tutorials/digital_tutorial/part3/t-diag.htm
http://www.ee.usyd.edu.au/tutorials/digital_tutorial/part3/t-diag.htm

3

In this lecture we will use
pseudo syntax, and assume
that type checking has been
performed (programs are
type correct)

September 13, 2013 L04-5 http://csg.csail.mit.edu/6.s195

KBS0: A simple language for
describing Sequential ckts -1

A program consists of a collection of registers
(x,y, ...) and rules

 Registers hold the state from one clock cycle to the
next

 A rule specifies how the state is to be modified each
clock cycle

 All registers are read at the beginning of the clock
cycle and updated at the end of the clock cycle

September 13, 2013 L04-6 http://csg.csail.mit.edu/6.s195

4

KBS0: A simple language for
describing Sequential ckts - 2

<a> ::= x:= <e> register assignment

 | <a> ; <a> parallel actions

 | if (<e>) <a> conditional action

 | let t = <e> in <a> binding

<e> ::= c constants

 | t value of a binding

 | x.r register read

 | op(<e>,<e>) operators like And, Or, Not, +, ...

 | let t = <e> in <e> binding

We will assume that the names in the bindings (t …) can
be defined only once (single assignment restriction)

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-7

A rule is simply an action <a> described below.
Expression <e> is a way of describing combinational ckts

Evaluating expressions and
actions

The state of the system s is defined
as the value of all its registers

An expression is evaluated by
computing its value on the current
state

An action defines the next value of
some of the state elements based on
the current value of the state

A rule is evaluated by evaluating the
corresponding action and
simultaneously updating all the
affected state elements

x y z ...

rule

x’ y’ z’ ...

  

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-8

5

Bluespec Execution Model

Repeatedly:

Select a rule to execute

Compute the state updates

Make the state updates

One-rule-at-a-time-semantics: Any legal
behavior of a Bluespec program can be
explained by observing the state updates
obtained by applying only one rule at a time

Highly non-
deterministic;
User annotations
can be used in
rule selection

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-9

Need a evaluator to define how a rule
transforms the state

KBS0 Evaluator
We will write the evaluator as a software
program using case-by-case analysis of syntax

September 13, 2013 L04-10 http://csg.csail.mit.edu/6.s195

evalE :: (Bindings, State, e) -> Value
evalA :: (Bindings, State, a) -> (Bindings, StateUpdates)

Bindings is a set of (variable name,value) pairs

State is a set of (register name, value) pairs.
s.x gives the value of register x in the current state

Syntax is represented as [[…]]

6

KBS0: Expression evaluator

evalE (bs, s, [[c]]) = c

evalE (bs, s, [[t]]) = bs[t]

evalE (bs, s, [[x.r]]) = s[x]

evalE (bs, s, [[op(e1,e2)]]) =

 op(evalE(bs, s, [[e1]]), evalE(bs, s, [[e2]]))

evalE (bs, s, [[(let t = e in e1)]]) =

 { v = evalE(bs, s, [[e]]);

 return evalE(bs+(t,v), s, [[e1]])}

evalE :: (Bindings, State, exp) -> Value

lookup t; if t does
not exist in bs then
the rule is illegal

Bindings bs is empty initially

add a new binding to
bs. The operation is
illegal if t is already
present in bs

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-11

KBS0: Action evaluator

evalA (bs, s, [[x.w(e)]]) = (x, evalE(bs, s, [[e]]))

evalA (bs, s, [[a1 ; a2]]) =

 { u1 = evalA(bs, s, [[a1]]);

 u2 = evalA(bs’, s, [[a2]])

 return u1 + u2 }

evalA (bs, s, [[if (e) a]]) =

 if evalE(bs, s, [[e]]) then evalA(bs, s, [[a]])

 else {}

evalA (bs, s, [[(let t = e in a)]]) =

 { v = evalE(bs, s, [[e]])

 return evalA(bs+(t,v), s, [[a]]) }

evalA :: (Bindings, State, a) -> StateUpdates

initially bs is empty and s contains old register values

merges two sets of
updates; the rule is
illegal if there are
multiple updates for
the same register

extends the
bindings by
including one
for t

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-12

7

Rule evaluator
To apply a rule, we compute the state updates
using EvalA and then simultaneously update
all the state variables that need to be updated

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-13

Evaluation in the presence
of modules

It is easy to extend the evaluator we have
shown to include non-primitive method calls

 An action method, just like a register write, can be
called at most once from a rule

 The only additional complication is that a value
method with parameters can also be called at most
once from an action

 It these conditions are violated then it is an illegal
rule/action/expression

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-14

8

Evaluation in the presence
of guards

In the presence of guards the expression
evaluator has to return a special value – NR
(for “not ready”). This ultimately affects
whether an action can affect the state or not.

Instead of complicating the evaluator we will
give a procedure to lift when’s to the top of a
rule. At the top level a guard behaves just like
an “if”

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-15

Guard Elimination

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-16

9

Guards vs If’s

A guard on one action of a parallel group of
actions affects every action within the group

 (a1 when p1); a2

 ==> (a1; a2) when p1

A condition of a Conditional action only affects
the actions within the scope of the conditional
action

 (if (p1) a1); a2

 p1 has no effect on a2 ...

Mixing ifs and whens
 (if (p) (a1 when q)) ; a2

  ((if (p) a1); a2) when ((p && q) | !p)

  ((if (p) a1); a2) when (q | !p)

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-17

Method calls have implicit
guards

Every method call, except the primitive
method calls, i.e., x,r, x.w, has an implicit
guard associated with it

 m.enq(x), the guard indicated whether one can
enqueue into fifo m or not

Make the guards explicit in every method call
by naming the guard and separating it from
the unguarded body of the method call, i.e.,
syntactically replace m.g(e) by

 m.gB(e) when m.gG

 Notice m.gG has no parameter because the guard
value should not depend upon the input

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-18

10

Make implicit guards explicit
<a> ::= x.w(<e>)

 | <a> ; <a>

 | if (<e>) <a>

 | m.g(<e>)

 | let t = <e> in <a>

 | <a> when <e>

m.gB(<e>) when m.gG

<a> ::= <a> ; <a>

 | if (<e>) <a>

 | m.g(<e>)

 | let t = <e> in <a>

 | <a> when <e>

methods without guards

The new
kernel

language

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-19

Lifting implicit guards

rule foo if (True);
 (if (p) fifo.enq(8)); x.w(7)

rule foo if (fifo.enqG | !p);
 if (p) fifo.enqB(8); x.w(7)

All implicit guards are made explicit, and lifted and
conjoined to the rule guard

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-20

11

Guard Lifting Axioms
without Let-blocks

All the guards can be “lifted” to the top of a rule

 (a1 when p) ; a2 

 a1 ; (a2 when p) 

 if (p when q) a 

 if (p) (a when q) 

 (a when p1) when p2 

 m.gB(e when p) 

similarly for expressions ...

 Rule r (a when p) 

(a1 ; a2) when p

(a1 ; a2) when p

(if (p) a) when q

(if (p) a) when (q | !p)

a when (p1 & p2)

m.gB(e) when p

Rule r (if (p) a)

We will call this guard lifting transformation WIF,
for when-to-if

A complete guard lifting procedure also requires
rules for let-blocks

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-21

Optional: A complete
procedure for guard lifting

September 13, 2013 L04-22 http://csg.csail.mit.edu/6.s195

12

Let-blocks: Variable names
and guards

let t = e in f(t)

Since e can have a guard, a variable name, t,
can also have an implicit guard

Essentially every expression has two parts:
unguarded and guarded and consequently t
has two parts tB and tG

Each use of the variable name has to be
replaced by (tB when tG)

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-23

Lift procedure

Bindings is a collection of (t,e) pairs where e is
restricted to be

c | x.r | t | op(t,t) | m.h(t) | {body: t, guard: t}

The bindings of the type (t, {body:tx,
guard:ty}) are not needed after When Lifting
because all such t’s would have been
eliminated from the returned expressions

LWE :: (Bindings, Exp) -> (Bindings, ExpB, ExpG)
LW :: (Bindings, Exp) -> (Bindings, ActionB, ExpG)
Returned exp, actions and bindings are all free of when’s

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-24

13

Bindings
The bindings that LW and LWE return are
simply a collection of (t,e) pairs where e is
restricted to be

c | x.r | x.r0| x.r1 | t | op(t,t) | m.h(t)

 | {body: t, guard: t}

The bindings of the type (t, {body:tx,
guard:ty}) are not needed after When Lifting
because all such t’s would have been
eliminated from the returned expressions

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-25

LWE: procedure for lifting
when’s in expressions

LWE (bs, [[c]]) = (bs, c, T) ; LWE (bs, [[x.r]]) = (bs, x.r, T)

LWE (bs, [[x.r0]]) = (bs, x.r0, T); LWE (bs, [[x.r1]]) = (bs, x.r1, T)

LWE (bs, [[t]]) = (bs, bs[t].body, bs[t].guard)
LWE (bs, [[Op(e1,e2)]]) = {bs1, t1B , t1G = LWE(bs, [[e1]]);
 bs2, t2B , t2G = LWE(bs1, [[e2]]);
 return bs2, Op(t1B, t2B), (t1G&t2G)}
LWE(bs, [[m.h(e)]]) = {bs1, tB , tG = LWE(bs, [[e]]);
 return bs1, m.hB(tB), (tG&m.hG)}
LWE (bs, [[e1 when e2]]) = {bs1, t1B , t1G = LWE(bs, [[e1]]);
 bs2, t2B , t2G = LWE(bs1, [[e2]]);
 bs3 = bs2+(tx, t2B&t2G)
 return bs3, t1B, (tx&t1G)}
LWE(bs, [[let t=e1 in e2]]) = {bs1, tB , tG = LWE(bs, [[e1]]);
 bs2 = bs1+(tx,tB)+(ty,tG)
 +(t,{body:tx,guard:ty})
 return LWE(bs2, [[e2]]}

LWE :: (Bindings, Exp) -> (Bindings, ExpB, ExpG)

tx, ty are
new variable

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-26

14

LW: procedure for lifting
when’s in actions

LW (bs, [[x.w(e)]]) = {bs1, tB , tG = LWE(bs, [[e]]);
 return bs1, x.w(tB), tG}
LW (bs, [[m.g(e)]]) = {bs1, tB , tG = LWE(bs, [[e]]);
 return bs1, m.gB(tB), (tG&m.gG)}
LW (bs, [[a1;a2]]) = {bs1, a1B , g1 = LW(bs, [[a1]]);
 bs2, a2B , g2 = LW(bs1, [[a2]]);
 return bs2, (a1B; a2B), (g1&g2)}
LW (bs, [[if (e) a]]) = {bs1, tB , tG = LWE(bs, [[e]]);
 bs2, aB , g = LW(bs1, [[a]]);
 bs3 = bs2+(tx,tB)+(ty,tG)
 return bs3, aB, (g | !tx) & ty)}
LW (bs, [[a when e]]) = {bs1, tB , tG = LWE(bs, [[e]]);
 bs2, aB , g = LW(bs1, [[a]]);
 return bs2+(tx, tB&tG), aB, (tx&g)}
LW(bs, [[let t=e in a]]) = {bs1, tB , tG = LWE(bs, [[e]]);
 bs2 = bs1+(tx,tB)+(ty,tG)
 +(t,{body:tx,guard:ty})
 return LW(bs2, [[a]]}

LW :: (Bindings, Exp) -> (Bindings, ActionB, ExpG)

tx, ty are
new variable

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-27

WIF: when-to-if transformation

Given rule ra a,

 WIF(ra) returns

 rule ra (let bs in (if (g) aB))

 assuming LW({}, a) returns (bs, aB, g)

Notice,

 WIF(ra) has no when’s

 WIF(a1;a2) ≠ (WIF(a1);WIF(a2))

September 13, 2013 http://csg.csail.mit.edu/6.s195 L04-28

