Constructive Computer Architecture

FFT: An example of complex
combinational circuits

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

September 16, 2013 http://csg.csail.mit.edu/6.s195 LO5-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

@ Staff and students in 6.375 (Spring 2013),

6.5195 (Fall 2012), 6.S078 (Spring 2012)

» Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh

@ External

= Prof Amey Karkare & students at IIT Kanpur

= Prof Jihong Kim & students at Seoul Nation University

= Prof Derek Chiou, University of Texas at Austin

= Prof Yoav Etsion & students at Technion

September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-2

Contents

domain

time domain

= Two calculations are identical- the same hardware

can be used

New BSV concepts
n structure type
= overloading

FFT and IFFT: Another complex combinational
circuit and its folded implementations
= FFT: Converts signals from time domain to frequency

= IFFT: Converts signals from frequency domain to

September 16, 2013 http://csg.csail.mit.edu/6.s195 LO5-3
in0 N o out0
inl 7 Bfly4 Bfly4 Bfly4 —|out1
ol / Bfly4 3 Bfly4 g Bflya : out2
in3 5 s 5
in 16 @ @ @ \ out3
in4 out4

Bfly4 Bfly4 Bfly4

t
September 1%, 2013 http://csg.csail.mit.edu/6.s195

All numbers are complex
and represented as two
sixteen bit quantities.
Fixed-point arithmetic is
used to reduce area,
POWEr, ...

LO5-4

4-way Butterfly Node

function Vector# (4,Complex) bfly4
(Vector# (4,Complex) t, Vector#(4,Complex) x);

t's (twiddle coefficients) are mathematically
derivable constants for each bfly4 and depend
upon the position of bfly4 the in the network

FFT and IFFT calculations differ only in the use
of Twiddle coefficients in various butterfly
nodes

September 16, 2013 http://csg.csail.mit.edu/6.s195 LO5-5

BSV code: 4-way Butterfly

function Vector# (4,Complex# (s)) bfly4
(Vector# (4,Complex# (s)) t, Vector# (4,Complex#(s)) x);

Vector# (4,Complex#(s)) m, vy, z;

m[0]-= x[0] -*-£[0]; m[1] = x[1]
m[2] = x[2] * t[2]; m[3] = x[3]
y[0] = m[0] + m[2]; y[1] = m[O]
y[2] = m[1l] + m[3]; y[3] = i*(m[1]
z[0] = y[0] + y[2]; z[1] = y[1] + y[3]; Polymorphic code:
z[2] = y[0] - yI[2]; z[3] = yl[1] - yI[3]; works on any type
Erasin k) of numbers for
recurni(z) ; w
) which *, + and -
endfunction

have been defined

Note: Vector does not mean storage; just
a group of wires with names
September 16, 2013 http://csg.csail.mit.edu/6.s195 LO5-6

Language notes: Sequential
assignments

#® Sometimes it is convenient to reassign a variable
(x is zero every where except in bits 4 and 8):

Bit#(32) x = 0;
x[4] = 1; x[8] = 1;

This will usually result in introduction of muxes in
a circuit as the following example illustrates:

Bit#(32) x = 0;
let vy x+1;
if(p) x = 100;
let z = x+1;

September 16, 2013 http://csg.csail.mit.edu/6.s195 LO5-7

Complex Arithmetic
~ & Addition

= Zp = Xgt Yr
m Zp =Xt Y

Multiplication

— * oy X

B Zg = XR T YRTXITYI
—_ b 3 b3

= Zp = Xp T Yt X1 YR

September 16, 2013 http://csg.csail.mit.edu/6.s195 L0O5-8

Representing complex
numbers as a struct

typedef struct/{
Int#(t) r;
Int#(t) 1;
} Complex# (numeric type t) deriving (Eg,Bits);

Notice the Complex type is parameterized by the size of
Int chosen to represent its real and imaginary parts

If x isda struct then its fields can be selected by writing x.r
and X.i

September 16, 2013 http://csg.csail.mit.edu/6.s195

L05-9

BSV code for Addition

typedef struct/{
Int#(t) r;
Int#(t) i;
} Complex# (numeric type t) deriving (Eqg,Bits);

function Complexi# (t) cAdd
(Complex# (t) x,
Int#(t) real = x.r ¥ y.r;
Int# (t) imag x.1 + y.i;
return (Complex{r:real, i:imag});
endfunction

What is the type of this + ?

September 16, 2013 http://csg.csail.mit.edu/6.s195

L05-10

Overloading (Type classes)

The same symbol can be used to represent
different but related operators using Type
classes

A type class groups a bunch of types with
similarly named operations. For example, the
type class Arith requires that each type
belonging to this type class has operators +,-,
* /| etc. defined

We can declare Complex type to be an
instance of Arith type class

September 16, 2013 http://csg.csail.mit.edu/6.s195 LO5-11

Overloading +, *

instance Arith# (Complexi# (t));
function Complex# (t) \+
(Complex# (t) x, Complexi# (t) vy);
Int#(t) real = x.r + y.r;
Int#(t) imag = x.1i + y.i;
return (Complex{r:real, i:imag});
endfunction

function Complex# (t) *
(Complex# (t) x, Complex# (t) vy);
Int#(t) real = x.r*y.r — x.i*y.i;
Int#(t) imag = x.r*y.i + x.i*y.r;
return (Complex{r:real, i:imag});
endfunction

The context allows the compiler to pick the
appropriate definition of an operator

endinstance

September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-12

Combinational IFFT

in0 N - outO

inl 7 Bfly4 Bfly4 Bfly4 |— o fout1

ok / Bfly4 5 Bfly4 g Bflya g out2

in3 E; % % \out3

- x16

in4 out4|
Bfly4 Bfly4 Bfly4

’

stage f function

function Vector# (64, Complex# (n)) stage_ £
(Bit# (2) stage, Vector# (64, Complex#(n)) stage in);

function Vector# (64, Complex#(n)) ifft repeat stage f
(Vector# (64, Complex# (n)) in data); |three times

September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-13

BSV Code: Combinational
IFFT

function Vectori# (64, Complex# (n)) ifft
(Vector# (64, Complex#(n)) in data);

//Declare vectors

Vector# (4,Vector# (64, Complex#(n))) stage data;

stage data[0] = in data;

for (Bit#(2) stage = 0; stage < 3; stage = stage + 1)
stage data[stage+l] = stage_f(stage,stageidata[stage]);

return (stage data[3]);
endfunction

The for-loop is unfolded and stage_f

is inlined during static elaboration

\ Note: no notion of loops or procedures during execution \

September 16, 2013 http://csg.csail.mit.edu/6.s195 LO5-14

BSV Code: Combinational
IFFT- Unfolded

function Vector# (64, Complex# (n)) ifft
(Vector# (64, Complex#(n)) in data);

//Declare vectors
Vector# (4,Vector# (64, Complex#(n))) stage data;

stage data[0] = in data;
— stage_data[1l] stage f (0,stage data[0]); stage+1)}—
— stage datal2] stage f (1,stage data[l]); datafstagel);
stage data[3] stage f (2,stage_datal2]);
return (stage data[3]);
endfunction

Stage_f can be inlined now; it could have been inlined
before loop unfolding also.

Does the order matter?

September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-15

BSV Code for stage f

function Vector# (64, Complex#(n)) stage_ f

(Bit#(2) stage, Vector# (64, Complex#(n)) stage in);
Vector# (64, Complex# (n)) stage temp, stage out;
for (Integer 1 = 0; 1 < 16; i =1 + 1)

begin
Integer idx = 1 * 4;
Vector# (4, Complex# (n)) x;
x[0] = stage in[idx]; x[1] = stage in[idx+1];
x[2] = stage in[idx+2]; x[3] = stage in[idx+3];

let
let v = bfly !
staqe_temp[idx]

getTwiddle (stage, fromInteger(i));
id, x);

stage temp[idx+1l] = y[1];

stage temp[idx+2] = y[2]; age temp[idx+3] = y[3];
end
//Permutation b
T T twid’s are
for (Integer 1 = 0; 1 < 64; i =1 + 1) .
R .., . | mathematically
stage out[i] = stage temp|[permute[i]]; J
- - = derivable
return (stage out);
constants

endfunction .
September 16, 2013 http://csg.csail.mit.edu/6.s195 LO5-16

Higher-order functions:

function fO0(x)= stage f(0,x);

function fl (x)= stage f(l,x);

function f2(x)= stage f(2,x);

What is the type of £0 (x) ?

function Vector# (64, Complex)
(Vector# (64, Complex)

f0

X);

Stage functions f1, f2 and f3

September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-17
Suppose we want to reduce
the area of the circuit
in0 N o out0
inl —/: Bfly4 Bfly4 Bfly4 ~fout1
in2 / Bfly4 ‘5 Bfly4 %Dj Bfly4 g §°”t2
3 / \out3
in4 out4
Bfly4 Bfly4 Bfly4
in63 \-

a

Reuse the same circuit three times
to reduce area

September 16, 2013 http://csg.csail.mit.edu/6.s195

L05-18

Reusing a combinational
block

@ «-— |, Introduce state
E_' f g elements to hold
intermediate
values

we expect:
Throughput to decrease - less parallelism
Area to decrease - reusing a block

The clock needs to run faster for the
same throughput

September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-19

Folded IFFT: Reusing the stage
combinational circuit

in0 \ out0

1 —| Bfly4 - /

inl / 1< ® —s|outl
3

in2 / % § out2

in3 / Bfly4 — \outB

in4 out4|

Stage
Counter

=}
o)
[

September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-20

10

Input and Output FIFOs

If IFFT is implemented as a sequential circuit it
may take several cycles to process an input

Sometimes it is convenient to think of input
and output of a combinational function being
connected to FIFOs

7]

inQ outQ

FIFO operations:
= enqg - when the FIFO is not full
= deq, first - when the FIFO is not empty

= These operations can be performed only when the

guard condition is satisfied
September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-21

Folded implementation
rules

Each rule has some

, @ N additional implicit
guard conditions
X) associated with FIFO
inQ E!]stage outQ operations
sReg
&/l rule foldedEnews~yf (stage==0);
-f:’ sReg <= f inQ.first()); stage <= stage+l;
E inQ.deq ()7 notice stage is a dynamic
g | endrule parameter now!
o rule foldedCirculate if (stage!=0)&(stage<(n-1));
E sReg <= f(stage, sReg); stage <= staget+l;
= | endrule
E rule foldedExit if (stage==n-1); no
-% outQ.enqg(f (stage, sReg)); stage <= 0; for-
A | endrule loop
September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-22

11

September 16, 2013 http://csg.csail.mit.edu/6.5195

Folded implementation

expressed as a single rule

T

INQ stage outQ
sReg
rule folded-pipeline (True);
let sxIn = ?2;
if (stage==0)
begin sxIn= inQ.first(); inQ.deqg(); end
else sxIn= sReg;

let sxOut = f(stage,sxIn);

if (stage==n-1) outQ.eng(sxOut) ;

else sReg <= sxOut;

stage <= (stage==n-1)? 0 : stage+l;
endrule

L05-23

Shared Circuit

getTwiddleO

The rest of
stage_f, i.e.

Bfly-4s and

permutations

getTwiddlel

getTwiddle?2

SX

The Twiddle constants can be expressed in a
table or in a case or nested case expression

September 16, 2013 http://csg.csail.mit.edu/6.s195

L05-24

Pipelining Combinational

IFFT 3 different datasets

in the pipeline
= IFFTiyy] IFFT; 1 IFFT, .

N /OJtO
in1 7 Bfly4 = :::: Bfly4 = _é Bfly4 Z_Jolt1
. o N b - e
in2 / Bfly4 g o 5| Bfly4 % =B efiya %’ EOUQ
. c 1 c 1 c
in3 . =4 7 @ \out3
in4 L L I S out4

Bfly4 o B3] Bflv4 H B Bfiya

5
(o)}
W

but6
Lot of area and long combinational delay
Folded or multi-cycle version can save area
and reduce the combinational delay but
throughput per clock cycle gets worse

Pipelining: a method to increase the circuit Next
throughput by evaluating multiple IFFTs ~ 'ecTure

September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-25

Design comparison

Combinational
C f1 f2 f3
inQ outQ
Folded
F —HEH|
inQ outQ
Pipeline
P — f1 f2 f3
inQ outQ
Clock: C<P=~F Area: F<C<P Throughput: F< C <P
September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-26

13

Area estimates
Tool: Synopsys Design Compiler

4 Comb. FFT Are the results
« Combinational area: 16536 surprising?
= Noncombinational area: 9279

Folded FFT Why is folded
= Combinational area: 29330 implementation
= Noncombinational area: 11603 not smaller?

4 Pipelined FFT
= Combinational area: 20610
= Noncombinational area: 18558

Explanation: Because of constant propagation
optimization, each bfly4 gets reduced by 60% when
twiddle factors are specified. Folded design disallows this
optimization because of the sharing of bfly4’s

September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-27

Syntax: Vector of Registers

@ Register
= suppose x and y are both of type Reg. Then
x <= y means x. write(y. read())

@ Vector of 1nt
m x[i] means sel (x,1)
= x[1] = y[J] means x = update(x, i, sel(y,]j))

@ Vector of Registers
= x[i] <= y[j] does not work. The parser thinks it means
(sel(x,1i). read). write(sel(y,j). read), which will
not type check
m (x[i]) <= y[Jj] parses as
sel(x,1). write(sel(y,J). read), and works correctly

Don’t ask me why

September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-28

14

Optional: Superfolded FFT

September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-29

Superfolded IFFT: Just one
BﬂY'4 nOdel Optional

in0 M out0
—
nl 3 — outl

3
in2 7' % § out2
in3 / \outB
in4 — out4
—
N ———————
- od —— L
— [N
g Index: Z5
in63 0 < 0to 15 c
©g 33 e e ——
< 0w < 3

Index == 15?

f will be invoked for 48 dynamic values of stage; each
invocation will modify 4 numbers in sReg

after 16 invocations a permutation would be done on
the whole sReg

September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-30

15

Superfolded IFFT:

Bit# (2+4) (stage, i

stage function f

functiop : omplex) stage_f
Vector# (64, Complex) stage in);

Vecto 6 = ¥ (n)) stage temp, stage out;
for—(Integer—+—="0;—% o1t =1+
begin Bit# (2) stage

Integer idx = 1 * 4;

let twid = getTwiddle (stage, fromInteger(i));
let vy = bfly4 (twid, stage in[idx:1idx+3]);

stage temp[idx] = y[0]; stage temp[idx+1l] = y[1];
stage temp[idx+2] = y[2]; stage temp[idx+3] = y[3];
end

(Integer i = 0; 1 < 64; 1 =1 + 1)

stage out[i] = stage temp[permute[i]];
rn(stage out);
endfunction
should be done only when i=15
September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-31

Code for the Superfolded
stage function

Function Vector# (64, Complex) £
(Bit# (6) stagei, Vector# (64, Complex) stage in);
let i = stagei "mod’ 16;
let twid = getTwiddle (stagei “div" 16, 1i);
let y = bfly4(twid, stage in[i:i+43]);

let stage temp = stage in;
stage temp[i] = yI[0];
stage_temp[i+l] = y[1]; One Bfly-4 case
stage temp[i+2] = :

stage temp[i+3] =

let stage out = stage temp;
if (i == 15)
for (Integer i = 0; 1 < 64; 1 =1 + 1)

stage out[i] = stage temp[permute[i]];
return (stage out);
endfunction
September 16, 2013 http://csg.csail.mit.edu/6.s195 L05-32

16

