
1

Constructive Computer Architecture:

Concurrency Analysis and
Designing FIFOs

Arvind

Computer Science & Artificial Intelligence Lab.

Massachusetts Institute of Technology

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

Staff and students in 6.375 (Spring 2013),
6.S195 (Fall 2012), 6.S078 (Spring 2012)

 Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh

External

 Prof Amey Karkare & students at IIT Kanpur

 Prof Jihong Kim & students at Seoul Nation University

 Prof Derek Chiou, University of Texas at Austin

 Prof Yoav Etsion & students at Technion

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-2

2

Contents
Hardware Intuition

Compiler analysis

Limitations of Registers

EHRs – Ephemeral History Registers

FIFOs with concurrent enq and deq

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-3

some insight into

Concurrent rule firing

There are more intermediate states in the rule
semantics (a state after each rule step)

 In the HW, states change only at clock edges

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

September 18, 2013 http://csg.csail.mit.edu/6.s195 L06-4

3

Parallel execution
reorders reads and writes

In the rule semantics, each rule sees (reads)
the effects (writes) of previous rules

In the HW, rules only see the effects from
previous clocks, and only affect subsequent
clocks

Rules

HW
clocks

rule

steps
reads writes reads writes reads writes reads writes reads writes

reads writes reads writes

September 18, 2013 http://csg.csail.mit.edu/6.s195 L06-5

Correctness

Rules are allowed to fire in parallel only if the
net state change is equivalent to sequential
rule execution

Consequence: the HW can never reach a state
unexpected in the rule semantics

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

September 18, 2013 http://csg.csail.mit.edu/6.s195 L06-6

4

One-rule-at-a-time semantics

September 18, 2013 http://csg.csail.mit.edu/6.s195 L06-7

Rule execution ()

Legal states: S is a legal state if and only if
given an initial state S0 , there exists a
sequence of rules rj1,…., rjn such that S=
rjn(…(rj1(S0))…)

Rule r a  P <S,{}> |- a  U
P |- S  update(S,U)

Where update(S,U)[x] = if (x,v)  U the v else S[x]

P |- S0 * S
 S  LegalState(P,S0)

where * is the transitive reflexive closure of 

Concurrent scheduling of
rules

rule r1 a1 and rule r2 a2 can be scheduled
concurrently, preserving one-rule-at-a-time
semantics, if and only if

 for all S. (a1|a2)(S) = either a2(a1(S)) or a1(a2(S))

rule r1 a1 to rule rn an can be scheduled
concurrently, preserving one-rule-at-a-time
semantics, if and only if there exists a
permutation (p1,…,pn) of (1,…,n) such that

 for all S. (a1|…|an)(S) = apn(…(ap1(S))

September 18, 2013 http://csg.csail.mit.edu/6.s195 L06-8

5

Compiler test for concurrent
scheduling

Rules ra and rb are conflict free (CF) if

(RS(ra)WS(rb) = )  (RS(rb)WS(ra) = ) 
(WS(ra)WS(rb) = )

Rules ra and rb are sequentially composable (SC)
(ra<rb) if

 (RS(rb)WS(ra) = )  (WS(ra)WS(rb) = )

Rules ra and rb conflict if they are not CF or SC

Let RS(r) be the set of registers rule r may read
Let WS(r) be the set of registers rule r may write

September 18, 2013 http://csg.csail.mit.edu/6.s195 L06-9

Non-conflicting rules can be executed concurrently
without violating the one-rule-at-a-time-semantics

James Hoe, Ph.D., 2000

Theorem: If ra < rb then for all S. (a|b) (S) = b(a(S))

Example 1: Compiler Analysis
rule ra if (z>10);

 x <= x+1;

endrule

rule rb if (z>20);

 y <= y+2;

endrule

RS(ra) =
WS(ra) =
RS(rb) =
WS(rb) =

RS(ra)WS(rb) =
RS(rb)WS(ra) =
WS(ra)WS(rb) =

{z, x}
{x}
{z, y}
{y}





ra and rb are
Conflict free

Rules ra and rb can be scheduled together without violating
the one-rule-at-a-time-semantics

{x0,y0,30} ra {x0+1,y0,30} rb {x0+1,y0+2,30}

 {x0,y0,30} rb {x0,y0+2,30} ra {x0+1,y0+2,30}

 {x0,y0,30} rb|ra {x0+1,y0+2,30}

{x0,y0,15} ra {x0+1,y0,15} rb {x0+1,y0,15}

 {x0,y0,15} rb {x0,y0,15} ra {x0+1,y0,15}

 {x0,y0,15} rb|ra {x0+1,y0,15}

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-10

6

Example 2: Compiler Analysis
RS(ra) =
WS(ra) =
RS(rb) =
WS(rb) =

RS(ra)WS(rb) =
RS(rb)WS(ra) =
WS(ra)WS(rb) =

{z, y}
{x}
{z, x}
{y}

y
x


ra and rb are
neither CF or
SC

Rules ra and rb cannot be scheduled together without
violating the one-rule-at-a-time-semantics

rule ra if (z>10);

 x <= y+1;

endrule

rule rb if (z>20);

 y <= x+2;

endrule

{x0,y0,30} ra {y0+1,y0,30} rb {y0+1,y0+1+2,30}

{x0,y0,30} rb {x0,x0+2,30} ra {x0+2+1,x0+2,30}

{x0,y0,30} rb|ra {y0+1,x0+2,30}

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-11

Example 3: Compiler Analysis
RS(ra) =
WS(ra) =
RS(rb) =
WS(rb) =

RS(ra)WS(rb) =
RS(rb)WS(ra) =
WS(ra)WS(rb) =

{z, y}
{x}
{z, y}
{y}

y



ra and rb are
SC (ra<rb)

Rules ra and rb can be scheduled together without violating
the one-rule-at-a-time-semantics

rule ra if (z>10);

 x <= y+1;

endrule

rule rb if (z>20);

 y <= y+2;

endrule

{x0,y0,30} ra {y0+1,y0,30} rb {y0+1,y0+2,30}

{x0,y0,30} rb {x0,y0+2,30} ra {y0+2+1,y0+2,30}

{x0,y0,30} ra|rb {y0+1,y0+2,30}

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-12

7

Analysis of method calls
for concurrent scheduling

Conflict analysis has to be performed in terms
of the properties of the ports of a module
rather than the module (e.g. register) it self

Register conflicts:

Let mcalls(x) represent the (multi-)set of
methods called by x where x may be a method
definition or a rule

September 23, 2013 L07-13 http://csg.csail.mit.edu/6.s195

reg.r reg.w

reg.r CF <

reg.w > C

Conflict ordering

This permits us to take intersections of conflict
information, e.g.,

 {>}{<,>} = {>}

 {>}{<} = {}

CF = {<,>}

{<} {>}

C = {}

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-14

8

Deriving the Conflict
Matrix (CM) of a module

Let g1 and g2 be the two methods defined by a
module, such that

 mcalls(g1)={g11,g12...g1n}

 mcalls(g2)={g21,g22...g2m}

Derivation

 CM[g1,g2] = conflict(g11,g21)  conflict(g11,g22) ...

  conflict(g12,g21)  conflict(g12,g22) ...

 …

  conflict(g1n,g21)  conflict(g12,g22) ...

 Conflict(x,y) = if x and y are methods of the same

 module then CM[x,y] else {<,>}

Conflict relation is not transitive

 m1.g1 < m2.g2, m2.g2 < m3.g3 does not imply m1.g1
< m3.g3

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-15

Compiler can derive the CM for a module by starting with
the innermost modules in the module instantiation tree

Shorthand notation for
Conflict relation

h1<h2  conflict(h1, h2) = {<}

h1>h2  conflict(h1, h2) = {>}

h1 CF h2  conflict(h1, h2) = {<,>}

h1 C h2  conflict(h1, h2) = {}

September 23, 2013 L07-16 http://csg.csail.mit.edu/6.s195

9

module mkCFFifo (Fifo#(1, t));

 Reg#(t) data <- mkRegU;

 Reg#(Bool) full <- mkReg(False);

 method Action enq(t x) if (!full);

 full <= True; data <= x;

 endmethod

 method Action deq if (full);

 full <= False;

 endmethod

 method t first if (full);

 return (data);

 endmethod

endmodule

One-Element FIFO

enq and deq cannot
even be enabled
together much less
fire concurrently!

n

not empty

not full
rdy

enab

rdy
enab

e
n
q

d
e
q

F
if
o

m
o
d
u
le

Can enq and deq
execute
concurrently

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-17

module mkCFFifo (Fifo#(2, t));

 Reg#(t) da <- mkRegU();

 Reg#(Bool) va <- mkReg(False);

 Reg#(t) db <- mkRegU();

 Reg#(Bool) vb <- mkReg(False);

 method Action enq(t x) if (!vb);

 if va then begin db <= x; vb <= True; end

 else begin da <= x; va <= True; end

 endmethod

 method Action deq if (va);

 if vb then begin da <= db; vb <= False; end

 else begin va <= False; end

 endmethod

 method t first if (va);

 return da;

 endmethod

endmodule

Two-Element FIFO

Assume, if there is only
one element in the FIFO
it resides in da

db da

Can enq and
deq be ready
concurrently?

Do enq and deq
conflict?

yes, both read/write the same
elements

yes

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-18

10

Limitations of registers
Limitations of a language with only the
register primitive

 No communication between rules or between
methods or between rules and methods in the same
atomic action i.e. clock cycle

 Can’t express a FIFO with concurrent enq and deq

September 23, 2013 L07-19 http://csg.csail.mit.edu/6.s195

EHR: Ephemeral History
Register

A new primitive element to design
modules with concurrent methods

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-20

11

EHR: Register with a
bypass Interface

r[0] < w[0] w[0] < r[1]

r[1] returns:
 – the current state if write is not enabled
 – the value being written if write is enabled

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-21

D Q
0

1 w[0].data

w[0].en

r[0]
normal

bypass
r[1]

Ephemeral History Register
(EHR) Dan Rosenband [MEMOCODE’04]

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-22

D Q
0

1 w[0].data

w[0].en

r[0]
normal

bypass
r[1]

0

1 w[1].data

w[1].en

r[0] < w[0]

w[i+1] takes precedence over w[i]

w[0] < w[1] < …. r[1] < w[1]

12

Conflict Matrix of Primitive
modules: Registers and EHRs

EHR.r0 EHR.w0 EHR.r1 EHR.w1

EHR.r0 CF < < <

EHR.w0 > C < <

EHR.r1 > > CF <

EHR.w1 > > > C

reg.r0 reg.w0

reg.r0 CF <

reg.w0 > C

Register

EHR

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-23

Designing FIFOs using
EHRs

Conflict-Free FIFO: Both enq and deq are
permitted concurrently as long as the FIFO is
not-full and not-empty

 The effect of enq is not visible to deq, and vise versa

Pipeline FIFO: An enq into a full FIFO is
permitted provided a deq from the FIFO is
done simultaneously

Bypass FIFO: A deq from an empty FIFO is
permitted provided an enq into the FIFO is
done simultaneously

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-24

13

One-Element Pipelined FIFO
module mkPipelineFifo(Fifo#(1, t)) provisos(Bits#(t, tSz));

 Reg#(t) data <- mkRegU;

 Ehr#(2, Bool) full <- mkEhr(False);

 method Action enq(t x) if(!full[1]);

 data <= x;

 full[1] <= True;

 endmethod

 method Action deq if(full[0]);

 full[0] <= False;

 endmethod

 method t first if(full[0]);

 return data;

 endmethod

endmodule

Desired behavior
 deq < enq

first < deq

first < enq

No double
write error

In any given cycle:
- If the FIFO is not empty

then simultaneous enq and
deq are permitted;

- Otherwise, only enq is
permitted

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-25

Deriving CM for One-Element
Pipelined FIFO
module mkPipelineFifo(Fifo#(1, t)) provisos(Bits#(t, tSz));

 Reg#(t) data <- mkRegU;

 Ehr#(2, Bool) full <- mkEhr(False);

 method Action enq(t x) if(!full[1]);

 data <= x;

 full[1] <= True;

 endmethod

 method Action deq if(full[0]);

 full[0] <= False;

 endmethod

 method t first if(full[0]);

 return data;

 endmethod

endmodule

mcalls(enq) =

mcalls(deq) =

mcalls(first) =

{full.r1, data.w, full.w1}

{full.r0, full.w0}

{full.r0, data.r}

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-26

14

CM for One-Element
Pipelined FIFO
mcalls(enq) = {full.r1, data.w, full.w1}
mcalls(deq) = {full.r0, full.w0}
mcalls(first) = {full.r0, data.r}

CM[enq,deq] =

= {>}  {>}
  {<,>}  {<,>}
  {>}  {>}

= {>}

 conflict[full.r1,full.r0]  conflict[full.r1,full.w0]
 conflict[data.w,full.r0]conflict[data.w,full.w0]
 conflict[full.w1,full.r0]conflict[full.w1,full.w0]

This is what we expected!

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-27

One-Element Bypass FIFO
module mkBypassFifo(Fifo#(1, t)) provisos(Bits#(t, tSz));

 Ehr#(2, t) data <- mkEhr(?);

 Ehr#(2, Bool) full <- mkEhr(False);

 method Action enq(t x) if(!full[0]);

 data[0] <= x;

 full[0] <= True;

 endmethod

 method Action deq if(full[1]);

 full[1] <= False;

 endmethod

 method t first if(full[1]);

 return data;

 endmethod

endmodule

Desired behavior
 enq < deq

first < deq

 enq < first

No double
write error

In any given cycle:
- If the FIFO is not full then

simultaneous enq and deq
are permitted;

- Otherwise, only deq is
permitted

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-28

15

module mkCFFifo(Fifo#(2, t)) provisos(Bits#(t, tSz));

 Ehr#(2, t) da <- mkEhr(?);

 Ehr#(2, Bool) va <- mkEhr(False);

 Ehr#(2, t) db <- mkEhr(?);

 Ehr#(2, Bool) vb <- mkEhr(False);

 rule canonicalize if(vb[1] && !va[1]);

 da[1] <= db[1];

 va[1] <= True; vb[1] <= False; endrule

 method Action enq(t x) if(!vb[0]);

 db[0] <= x; vb[0] <= True; endmethod

 method Action deq if (va[0]);

 va[0] <= False; endmethod

 method t first if(va[0]);

 return da[0]; endmethod

endmodule

Two-Element Conflict-free
FIFO

Assume, if there is only
one element in the FIFO
it resides in da

db da

Desired behavior
 enq CF deq

 first < deq

 first CF enq

In any given cycle:
- Simultaneous enq and

deq are permitted only
if the FIFO is not full
and not empty

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-29

