Constructive Computer Architecture:

Concurrency Analysis and
Designing FIFOs

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

September 23, 2013 http://csg.csail.mit.edu/6.s195

L07-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

Staff and students in 6.375 (Spring 2013),
6.5195 (Fall 2012), 6.5078 (Spring 2012)
= Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh
External
= Prof Amey Karkare & students at IIT Kanpur
= Prof Jihong Kim & students at Seoul Nation University
= Prof Derek Chiou, University of Texas at Austin
= Prof Yoav Etsion & students at Technion

September 23, 2013 http://csg.csail.mit.edu/6.s195

LO7-2

Contents

Hardware Intuition

@ Compiler analysis

Limitations of Registers

EHRs - Ephemeral History Registers
FIFOs with concurrent eng and deq

September 23, 2013 http://csg.csail.mit.edu/6.s195

L07-3

some insight into
Concurrent rule firing

' rule

| steps

RUIES weel Aeeel A A4 0eee B g oeel 4 A oo | A M
Hw | R | |
Ri

| E/ocks

There are more intermediate states in the rule

semantics (a state after each rule step)

In the HW, states change only at clock edges

September 18, 2013 http://csg.csail.mit.edu/6.s195

LO6-4

Parallel execution
reorders reads and writes

Rules) | | rule
] | . >|—.> . ﬁ—»

T dj/w”te“eads\WiT T a%mf b
Ireads writeslreads writes

I I

HW I clocks

In the rule semantics, each rule sees (reads)
the effects (writes) of previous rules

In the HW, rules only see the effects from
previous clocks, and only affect subsequent

clocks
September 18, 2013 http://csg.csail.mit.edu/6.s195 L06-5
Correctness
Rules esel o ses] .|_.|R' .|RJ.|...|%.| A A Aeeel 4 oA oo | gﬁisq
Rk .
HW I oo | | clocks
Ri

Rules are allowed to fire in parallel only if the

net state change is equivalent to sequential
rule execution

Consequence: the HW can never reach a state
unexpected in the rule semantics

September 18, 2013 http://csg.csail.mit.edu/6.s195 L06-6

One-rule-at-a-time semantics

Rule execution (=)

Rulera e P <S,{}>|-a= U
P |- S — update(S,U)
Where update(S,U)[x] = if (x,v) € U the v else S[x]

Legal states: S is a legal state if and only if
given an initial state S, , there exists a
sequence of rules ryy,...., rj, such that S=

Fin(--(r51(So))---)

P|-S,-*S
S e LegalState(P,S,)
where —* is the transitive reflexive closure of —

September 18, 2013 http://csg.csail.mit.edu/6.s195 L06-7

Concurrent scheduling of
rules

rule r; a; and rule r, a, can be scheduled
concurrently, preserving one-rule-at-a-time
semantics, if and only if
= for all S. (a;]a5)(S) = either a,(a;(S)) or a;(ay(S))

rule r; a; to rule r, a, can be scheduled
concurrently, preserving one-rule-at-a-time
semantics, if and only if there exists a
permutation (py,...,p,) Of (1,...,n) such that
» forall S. (a;]...|a,)(S) = apn(---(ap1(S))

September 18, 2013 http://csg.csail.mit.edu/6.s195 L06-8

Compiler test for concurrent
scheduling

Let RS(r) be the set of registers rule r may read
Let WS(r) be the set of registers rule r may write

Rules ra and rb are conflict free (CF) if

(RS(ra)mWS(rb) = ¢) A (RS(rb)nWS(ra) = ¢) A
(WS(ra)mWS(rb) = ¢)

Rules ra and rb are sequentially composable (SC)
(ra<rb) if
(RS(rb)nWS(ra) = ¢) A (WS(ra)mnWS(rb) = ¢)

Rules ra and rb conflict if they are not CF or SC

| Theorem: If ra < rb then for all S. (a|b) (S) = b(a(S)) |

Non-conflicting rules can be executed concurrently

without violating the one-rule-at-a-time-semantics
James Hoe, Ph.D., 2000 nhtip://csq.csail.mit.edu/6.5195 L06-9

‘Example 1: Compiler Analysis

rule ra if (z>10); RS(ra) = {z, x}
x <= x+1; WS(ra) = {x}
endrule RS(rb) = {z, v}
_ WS(rb) = {y}
ru1e<r=b J';'f2'(z>20); RS(ra)mWS(rb) - ¢ ra and rb are
em'i’ruley , RS(rb)nWs(ra) = ¢ Conflict free
WS(ra)mWS(rb) = o

Rules ra and rb can be scheduled together without violating
the one-rule-at-a-time-semantics

(x0,y0,30} =,, {x0+1,y0,30} =, {x0+1,y0+2,30}
{x0,y0,30} =, {x0,y0+2,30} =, . {x0+1,y0+2,30}
{x0,y0,30} =,,,» {x0+1,y0+2,30}

#® (x0,y0,15} =, {x0+1,y0,15} =, {x0+1,y0,15}
{x0,y0,15} =, {x0,y0,15} =,. {x0+1,y0,15}
{x0,y0,15} =, {x0+1,y0,15}

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-10

‘Example 2: Compiler Analysis

Rules ra and rb cannot be scheduled together without
violating the one-rule-at-a-time-semantics

{x0,y0,30} =, {y0+1,y0,30} =, {yO+l,y0+1+2,30}
® {x0,y0,30} =, {x0,x042,30} =, {x0+2+1,x0+2,30}

{x0,y0,30} =,,,. {yO+l,6x0+2,30}

September 23, 2013 http://csg.csail.mit.edu/6.s195

rule ra if (z>10); RS(ra) = {z, vy}
x <= y+1; WS(ra) = {x}
endrule RS(rb) = {z, x}
| WS(rb) = {y}
rUIe<ibxif2_(z>20); RS(ra)nWS(rb) = y raandrb are
engrufe ’ RS(rb)nWS(ra) = x neither CF or
WS(ra)nWS(rb) = ¢ SC

L07-11

'Example 3: Compiler Analysis

Rules ra and rb can be scheduled together without violating
the one-rule-at-a-time-semantics

% {x0,y0,30} =.. {y0+1,y0,30} =, {yO0+1,y0+2,30}

{x0,y0,30} =, {y0+1l,y0+2,30}

September 23, 2013 http://csg.csail.mit.edu/6.s195

rule ra if (z>10); RS(ra) = {z, y}
x <= y+1; WS(ra) = {x}
endrule RS(rb) = {z, y}
Ny ’ WS(rb) = {y}
rule rb i z> ;
y <= y+2;(! RS(ra)nWsS(rb) =y ra and rb are
endrule RS(rb)nWs(ra) = ¢ SC (ra<rb)
WS(ra)mWS(rb) = o

{x0,y0,30} =, {x0,y0+2,30} =, {y0+2+1,y0+2,30}

L07-12

Analysis of method calls
for concurrent scheduling

Conflict analysis has to be performed in terms
of the properties of the ports of a module
rather than the module (e.g. register) it self

Register conflicts: reg.r reg.w
reg.r CF <
reg.w > C

Let mcalls(x) represent the (multi-)set of
methods called by x where x may be a method

definition or a rule

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-13

Conflict ordering

CF = {<,>}

{<} {>}
~_
C={}

This permits us to take intersections of conflict
information, e.qg.,
 (>in{<,>} =4{>}
 {(>in{<}={}

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-14

Deriving the Conflict
Matrix (CM) of a module

@ Let g1 and g2 be the two methods defined by a
module, such that

mcalls(gl)={gl11,g12...gln}
mcalls(g2)={g21,g22...g2m}

Derivation

= CM[g1,g2] = conflict(g11,g21) n conflict(g11,g22) ...

N conflict(g12,g21) n conflict(g12,g22) n...

n conflict(gln,g21) n conflict(g12,g22) ...

= Conflict(x,y) = if x and y are methods of the same
module then CM[x,y] else {<,>}

Compiler can derive the CM for a module by starting with
the innermost modules in the module instantiation tree

September 25 2013 http://csg.csail.mit.edu/6.s195

L08-15

Shorthand notation for
Conflict relation

@ hl<h2 < conflict(hl, h2) = {<}
@ hl1>h2 < conflict(hl, h2) = {>}
@ hl CF h2 < conflict(hl, h2) = {<,>}
hl Ch2 < conflict(hl, h2) = {}

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-16

module mkCFFifo (Fifo#

One-Element FIFO

Reg# (t) data <- mkRegU;
Reg# (Bool) full <- mkReg(False);
method Action eng(t x) if (!full);

1, ©))s
() Can enq and deq

execute
concurrently

full <= True; data <= x;
dmathiod eng and deq cannot
endmethod - _ even be enabled
method Action deqg if (full); Togefhaﬂmuchless
full-<=-False; (fire concurrently!
endmethod
method t first if (full); m”r»ﬂ
return (data); =
notfull <4y [
endmethod enab o Q
endmodule not empty Lg e 3
i &
|| E
September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-17

Two-Elemen

module mkCFFifo (Fifo# (2,

Reg# (t) da <- mkReg
Reg# (Bool) va <- mkReg
Reg# (t) db <- mkReg

Reg# (Bool) vb <- mkReg
method Action eng(t x)
if va then begin db <
else begin da <
endmethod
method Action deqg if (v
if vb then begin da <
else begin va <
endmethod
method t first if (va);

t FIFO

£)); db da

?F(;'lse) . | Assume, if there is only
U0 ; one element in the FIFO
(False) ; it resides in da

if (!vb);

Can enq and
deq be ready
concurrently?

= x; vb <= True; end
= x; va <= True; end

a);

= db; vb <= False; end

= False; end Do enq and deq
conflict?

yes

return da;
endmethod
endmodule

yes, both read/write the same | ¢
elements

September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-18

Limitations of registers

Limitations of a language with only the
register primitive
= No communication between rules or between

methods or between rules and methods in the same
atomic action i.e. clock cycle

= Can’t express a FIFO with concurrent enq and deq

September 23, 2013 http://csg.csail.mit.edu/6.s195

L07-19

EHR: Ephemeral History
Register

A new primitive element to design
modules with concurrent methods

September 23, 2013 http://csg.csail.mit.edu/6.s195

L07-20

10

EHR: Register with a
bypass Interface

September 23, 2013

| r[0] < w[0] | | w[0] < r[1] |
- 2 D qQ— —r[0]
w[O].data: ? J[normal
w[0].en -
A
bypass
4{ —~r[1]

r[1] returns:

- the current state if write is not enabled
- the value being written if write is enabled

http://csg.csail.mit.edu/6.s195

L07-21

Ephemeral History Register
(EHR) Dan Rosenband [MEMOCODE’'04]

| r[0] < w[0] || r[1] < w[1] |

| w[0] < w[1] <

September 23, 2013

w[0].data— |

w[0].en —

w[1l].data— |

w[l]l.en —

[k

—r[0]
normal

A bypass
—E»rm

w[i+1] takes precedence over wli]

http://csg.csail. mit.edu/6.5195

L07-22

11

Conflict Matrix of Primitive

Register

EHR

September 25 2013

reg.r0

reg.w0

modules: Registers and EHRs

reg.r0 reg.wO
CF <
> C

EHR.r0 EHR.wO EHR.rli EHR.wl
EHR.r0 CF L " "
EHR.wO 5 C < <
EHR.r1 b L CF e
EHR.w1 S - S C

http://csg.csail.mit.edu/6.s195

L08-23

Designing FIFOs using

EHRS

done simultaneously
#® Bypass FIFO: A deq from an empty FIFO is
permitted provided an enq into the FIFO is
done simultaneously

September 23, 2013

http://csg.csail. mit.edu/6.5195

Conflict-Free FIFO: Both eng and deq are
permitted concurrently as long as the FIFO is
not-full and not-empty
= The effect of enq is not visible to deq, and vise versa

@ Pipeline FIFO: An enq into a full FIFO is
permitted provided a deq from the FIFO is

L07-24

12

One-Element Pipelined FIFO

module mkPipelineFifo(Fifo# (1, t)) provisos(Bits# (t, tSz));
Regt# (t) data <- mkRegU;

Ehr# (2, Bool) full <- mkEhr (False):; Desired behavior
method Action eng(t x) if(!full[l]); deq < enqg
data <= x; first < deqg
full[l] <= True; first < eng
endmethod
method Action deqg if (full[0]); NO_ double
full[0] <= False; write error
endmethod
method t first if(full([0]); |In any given cycle:
return data; - If the FIFO is not empty
endmethod then simultaneous enq and
endmodule deq are permitted;
- Otherwise, only enq is
permitted
September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-25

Deriving CM for One-Element
Pipelined FIFO

module mkPipelineFifo (Fifo# (1, t)) provisos(Bits# (t, tSz));
Reg# (t) data <- mkRegU;
Ehr# (2, Bool) full <- mkEhr (False);

method Action eng(t x) if(!fullfl]);
data <= x;
full[l] <= True;

endmethod
method Action deg if (full[0]);
full[0] <= False; mcalls(enq) =
endmethod {full.r1, data.w, full.w1}
method t first if (Full[0]); mcalls(deq) =
return data; {fuII.rO, fU”WO}
endmethod mcalls(first) =
endmodule {full.r0, data.r}
September 25 2013 http://csg.csail.mit.edu/6.s195 L08-26

13

CM for One-Element
Pipelined FIFO

mcalls(enq) = {full.r1, data.w, full.wl}
mcalls(deq) = {full.r0, full.w0}
mcalls(first) = {full.rO, data.r}

CM[enq,deq] = conflict[full.r1,full.r0] n conflict[full.r1,full.w0]
n conflict[data.w,full.rO]~conflict[data.w,full.w0]
n conflict[full.w1,full.rO]nconflict[full.w1,full.w0]

= {>3}n{>}
Nn{<,>}n{<,>}
Nn{>}nA{>}
={>}
This is what we expected!
September 25 2013 http://csg.csail.mit.edu/6.s195 L08-27

One-Element Bypass FIFO

al
module mkBypassFifo (Fifo# (1, t)) provisos (Bits#(t, tSz));
Ehr# (2, t) data <- mkEhr(?);
Ehr# (2, Bool) full <- mkEhr (False); Desired behavior
method Action eng(t x) if(!full[0]); eng < deq
data[0] <= x; first < deg
full[0] <= True; enqg < first
endmethod
method Action deq if (full[l]); No_double
full[l] <= False; write error
endmethod
method t first if(full[1l]); |In any given cycle:
return data; - If the FIFO is not full then
endmethod simultaneous enqg and deq
endmodule are permitted;
- Otherwise, only deq is
permitted
September 23, 2013 http://csg.csail.mit.edu/6.s195 L07-28

14

Two-Element Conflict-free

FIFO

module mkCFFifo (Fifo# (2, t
(

val[l] <= True; vb[l] <= False; endrule

method Action eng(t x) if(!vb[0]);

db[0] <= x; vb[0] <= True;
method Action deqg if (val[0]);
val[0] <= False; endmethod
method t first if(val0]);
return da[0]; endmethod
endmodule

September 23, 2013

) provisos (Bits# (t, tSz));

)
ERr# (2, t). da <t mKEhD{?); Assume, if there is only
Ehr# (2, Bool) va <- mkEhr (False); A
Ehr# (2, t) db <- mKEhr(?); one e_Ieme_nt in the FIFO
Ehr# (2, Bool) vb <- mkEhr (False); LIt resides in da
rule canonicalize if (vb[1l] && !vall]l); Desired behavior
daf[l] <= db[1l]; enqg CF deq

—>DD—->

db da

first < deq
first CF eng

endmethod

In any given cycle:

- Simultaneous enqg and
deq are permitted only
if the FIFO is not full
and not empty

http://csg.csail.mit.edu/6.s195 L07-29

15

