
1

Constructive Computer Architecture:

Hardware Compilation of
Bluespec

Arvind

Computer Science & Artificial Intelligence Lab.

Massachusetts Institute of Technology

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

Staff and students in 6.375 (Spring 2013),
6.S195 (Fall 2012), 6.S078 (Spring 2012)

 Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh

External

 Prof Amey Karkare & students at IIT Kanpur

 Prof Jihong Kim & students at Seoul Nation University

 Prof Derek Chiou, University of Texas at Austin

 Prof Yoav Etsion & students at Technion

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-2

2

Contents
KBS syntax and well-formed programs

Hardware representation

 modules and method calls

Generating Hardware

 Linking

The Scheduler

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-3

Bluespec: Two-Level
Compilation

Object code
(Verilog/C)

Guarded Atomic Actions
(Rules, Modules)

• Method & Rule conflict analysis
• Rule scheduling

James Hoe & Arvind
@MIT 1997-2000

Bluespec
(Objects, Types,

Higher-order functions)

Level 1 compilation
• Type checking
• Massive partial evaluation
 and static elaboration

Level 2 synthesis

Lennart Augustsson
@Sandburst 2000-2002

Initially called

Term Rewriting

Systems (TRS)

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-4

3

Static Elaboration

.exe

compile

design2 design3 design1

elaborate

w/params

run1 run1 run2.1
…

run1 run1 run3.1
…

run1 run1 run1.1
…

run w/

params
run w/

params

run1 run1
…

run

At compile time
 Inline function calls and unroll loops
 Instantiate modules with specific parameters
 Resolve polymorphism/overloading, perform most

data structure operations

source

Software
Toolflow: source

Hardware
Toolflow:

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-5

Phase II compilation:
From KBS1 to Circuits

We will assume that the type checking
and static elaboration have been
performed and all modules have been
instantiated by the Phase I compiler

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-6

4

KBS0: A simple language for
describing Sequential ckts

<Program> ::= [rule <name> <a>]

 [x <- mkReg] register instantiations

<a> ::= x.w(<e>) register assignment

 | <a> | <a> parallel actions

 | if (<e>) <a> conditional action

 | let t = <e> in <a> binding

<e> ::= c constants

 | t value of a binding

 | x.r register read

 | op(<e>,<e>) operators like And, Or, Not, +, ...

 | let t = <e> in <e> binding

The names in the bindings (t …) can be defined only once

<a> is an action and <e> is an expression

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-7

KBS1: KBS0+Modules
<Program> ::= [<Module>]

<Module> := Module <name> names; M, mkReg, mkFoo,…

 [x <- mkReg] register instantiations; x,y..

 [m <- <mkM>] module M instantiations; m,…

 [rule <name> <a>] rules to describe behavior

 [valueMethod <name> (<id>*) = <e>] interface

 [actionMethod <name> (<id>*) = <a>] methods

<a> ::= KBS0 action

 | m.g(<e>) call to action method m.g

<e> ::= KBS0 expression

 | m.f(<e>) call to value method m.f

* Means zero or one occurrence

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-8

5

KBS1EHR: KBS1+EHRs
<Program> ::= [<Module>]

<Module> := Module <name> names; M, mkReg, mkFoo,…

 [x <- mkReg] register instantiations; x,y..

 [x <- mkEHR] EHR instantiations; x,y..

 [m <- <mkM>] module M instantiations; m,…

 [rule <name> <a>] rules to describe behavior

 [valueMethod <name> (<id>*) = <e>] interface

 [actionMethod <name> (<id>*) = <a>] methods

<a> ::= KBS1 action

 | x.w0(<e>) | x.w1 (<e>) … write actions into EHRs

<e> ::= KBS1 expression

 | x.r0 | x.r1 reading EHRs

* Means zero or one occurrence

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-9

Well-formed rules
A program with double-write error:

 x.w(5) | x.w(7)

Either such errors have to be detected during
the execution or such programs have to be
rejected at compile time

To avoid run-time errors the compiler accepts
only those programs which follow two types of
restrictions:

1. A method (except for a zero-parameter value-
method) can be called at most once by a rule

2. Methods called by a rule must form a “partial order”

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-10

6

Single-call restriction and zero-
parameter value methods

Example

 y.w(x.r + x.r)

 This is a violation because x.r is called twice;
however it can be transformed by the compiler into
the following code

 let t = x.r in y.w(t+t)

We do not consider multiple calls to such
methods as a violation

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-11

Single-call restriction and
conditional method calls

Example

 if (p) x.w(y.r + 1) ; if (q) x.w(z.r) ;

 This is a violation because x.w is called twice;
however if the compiler can prove that p and q are
mutually exclusive (e.g. q => !p) then only one of
the calls will occur and there will be no violation

Compiler associates a predicate with each
method call and accepts multiple calls to a
method if it can prove that the predicates are
mutually exclusive

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-12

7

Syntax mandated Orderings
if (e) a

 mcalls(e) must precede the method calls in mcalls(a)

m.g(e)

 mcalls(e) must precede the method call m.g

let t = e in a

 mcalls(e) must precede the method calls in mcalls(a)
if t is used in a

The compiler derives all the syntactic
orderings and rejects a program if
these orderings are violated by
orderings imposed by the module
definition

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-13

Examples of violations

if (x.r1) x.w0(e)

 Syntax mandated:

 EHR mandated:

x.w0(y.r1) | y.w0(x.r1)

 Syntax mandated:

 EHR mandated:

contradiction!

x.r1 < x.w0
x.w0 < x.r1

y.r1 < x.w0, x.r1 < y.w0
x.w0 < x.r1, y.w0 < y.r1

contradiction!

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-14

8

Hardware representation
registers and EHRs

A set of bindings can be thought of as a set of
boxes which are connected by wires. A box
represents an expression or the port of a module
and wires are the variable names

w r

en

arg res

w1 r1

en

arg res

w0 r0

en

arg res

x_w_en

x_w_arg

Reg
EHR

x_r_res

x_w0_en

x_w0_arg

x_w1_en

x_w1_arg

x_r0_res

x_r1_res

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-15

Hardware representation
module

h

M1

 h1 Scheduler

Rule r Method h

en

ar
g

re
s

en

ar
g

re
s

h1.res

h1.en

h1.arg

r.
en

h1.res h1.arg

h1.en

h.en

M

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-16

9

Method calls
A method call h(e) involves three sets of wires

 h_arg representing input argument (output of e)

 h_en, when true means that the method is to be used

 h_res representing the output of the method

The compiler collects all the input arguments for
each method call as a sum of predicated
expressions:

 h_arg = p1.e1+p2.e2+...

 h_en = p1 || p2 ||...

For each method h that can be called, the
bindings are initialized with (h_arg, F.Bot) and
(h_en, F)

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-17

Hardware Compilation:

Expressions

+
x_r_res

y_r1_res

t

=
0

t

Outputs of register x read, EHR y read

Expressions are structural and directly represent
combinational circuits; some of their inputs are
connected to x_r_res, m_g_res, …

let t = (x.r + y.r1) in t==0

10

Hardware Compilation:

Actions

x_w_en …

y_w_arg …

x_w_arg …

.

.
y_w_en …

Combine all the wires
for each method call

m_g_arg = p1.e1 + p2.e2 +

m_g_en = p1 || p2 ||

p

e1

e2

inputs
are
results
of
method
calls

Actions use the circuits generated by compilation
of expressions; their output wires are connected
to x_w_en, x_w_arg, m_h_en, m_h_arg, …

if (p) (x.w(e1) | y.w(e2))

Hardware Compilation:

Rules and Methods

September 25 2013
L08-20

http://csg.csail.mit.edu/6.s195

x_w_arg …
 r1 .

x_w_en …

results
of r1 method
calls

r2 .

…

r2_en

…

g .

…

g_en
g_arg

results
of g’s method
calls

to x_w_en

to x_w_arg

…

g_res

11

Scheduler

A module may contain many rules but the
Bluespec semantics dictates that all legal
behaviors be derivable by executing only one
rule at a time

Based on the conflict information about each
of the called methods, a scheduler is
constructed by the compiler to decide which
rule(s) can be execute concurrently and the
schedule indicates it choice by setting r_en,
the enable signal, of the chosen rule.

The only dynamic input the scheduler needs is
g_en for all of its defined methods g

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-21

Hardware Compilation:

Scheduler

September 25 2013
L08-22

http://csg.csail.mit.edu/6.s195

x_w_arg …
 r1 .

x_w_en …

results
of r1 method
calls

r1_en

r2 .

…

r2_en

scheduler

…

g .

…

g_en
g_arg

results
of g’s method
calls

to x_w_en

to x_w_arg

…

g_res

r1_en
r2_en

g_en

12

The scheduler circuit
Each specific scheduling strategy will result in a
different scheduler circuit

For functional correctness, it is important that
the scheduling circuit enforces the following
invariant

 SC Invariant: Suppose r1, … rn are the rules of M
being chosen to be scheduled in the current state, h1,
… hk are the methods of M being called externally,
then M preserves SC Invariant iff

 ∀i.∀(j > i).∀x ∈ mcalls(ri), ∀y ∈ mcalls(rj).

 ({<} ⊆ Conflict(x, y))

Theorem: If every module obeys the SC
Invariant, then the system will obey one-rule-
at-a-time semantics

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-23

Detailed Hardware
Compilation Procedure
(optional)

September 25 2013 L08-24 http://csg.csail.mit.edu/6.s195

13

Compiling hardware
Expressions in KBS are structural and directly
represent combinational circuits; some of their
inputs are connected to x_r_res, m_g_res, …

Actions use the circuits generated by compilation
of expressions; their output wires are connected
to x_w_en, x_w_arg, m_h_en, m_h_arg, …

The compiler represents all connections as a set
of bindings (next slide)

The compiler collects the bindings by threading
the bindings through all rules and methods

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-25

Syntax of bindings
B ::= []

b ::= <t> = <ei>

 | <h>_arg = <pe>

 | <h>_en = <ei>

ei ::= <c> | <t>

 | <op>(<ei>, <ei>)

 | <h>_res

pe ::= Bot

 | <be>.<ei> // be is a boolean ei

 | <be>.<pe>

 | <pe> + <pe>

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-26

14

Compiling Expressions

CE (bs,p,[[c]]) = (bs,c) ;

CE (bs,p,[[t]]) = (bs,t) ;

CE (bs,p,[[let t=e1 in e2]]) =

 { (bs1,e10) = CE(bs,p,[[e1]]);

 (bs2,e20) = CE((bs1[t]:=p.e10),p,[[e2]]) return (bs2,e20)};

CE (bs,p,[[op(e1,e2)]]) =

 { (bs1,e10) = CE(bs,p,[[e1]]);

 (bs2,e20) = CE(bs1,p,[[e2]]) return (bs2,op(e10,e20))};

CE (bs,p,[[h(e)]]) =

 { (bs1, e0) = CE(bs,p,[[e]]);

 bs2 = (bs1[h_arg]:=bs1[h_arg]+p.e0);

 bs3 = (bs2[h_en]:=bs2[h_en]+p.T) return (bs3,h_res)};

CE (bs,p,[[h()]]) = ((bs[h_en]:=bs[h_en]||p), h_res);

CE :: (Bindings, Predicate, Exp) -> (Bindings, Exp)

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-27

Compiling Actions

CA (bs,p,[[let t=e in a]]) =

 { (bs1,e0) = CE(bs,p,[[e]]);

 return CA((bs1[t]:=p.e0),p,[[a]])};

CA (bs,p,[[h(e)]]) =

 { (bs1,e0) = CE(bs,p,[[e]]);

 bs2 = (bs1[h_arg]:=bs1[h_arg]+p.e0);

 return (bs2[h_en]:=bs2[h_en]+p.T)};

CA (bs,p,[if (e) a]]) =

 { (bs1,e0) = CE(bs,p,[[e]])

 return CA((bs1[t]:=p.e0),t,[[a]])}; where t is fresh

CA (bs,p,[[a1 | a2]]) =

 { bs1 = CA(bs,p,[[a1]]) return CA(bs1,p,[[a2]])}

CA :: (Bindings, Predicate, Action) -> Bindings

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-28

15

Compiling Rules and Methods
CR : (Bindings, Rule) -> Bindings

CR (bs,[[rule r a]]) = CA(bs,r_en,[a]])

CVM : (Bindings, Value-method) -> Bindings

CVM (bs, [[valueMethod h(x)=e]]) =

 { bs0 = (bs[x]:= h_arg);

 (bs1,e0) = CE(bs0,h_en,([[e]]);

 bs2 = (bs1[h_res]:= e0); return bs2};

CAM : (Bindings, Action-method) -> Bindings

CAM (bs,[[actionMethod h(x)=a]]) =

 CA((bs[x]:=h_arg),h_e,[[a]]);

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-29

Compiling Modules and
linking method calls

The compiler produces a set of bindings for each
module by starting with an empty set of bindings and
then threading the bindings produced by each rule and
method defined inside the module

Modules are compiled inside out, that is, a module is
compiled only after all the modules whose methods it
calls have been compiled

For each method call h(e) the compiler links (connects)
the bindings of the caller module with the bindings of
the modules whose methods are called by connecting
the wires representing the formal parameter h_x and
actual parameter h_arg of method h

September 25 2013 http://csg.csail.mit.edu/6.s195 L08-30

16

One-rule-at-a-time semantics

September 18, 2013 http://csg.csail.mit.edu/6.s195 L06-31

Rule execution ()

Legal states: S is a legal state if and only if
given an initial state S0 , there exists a
sequence of rules rj1,…., rjn such that S=
rjn(…(rj1(S0))…)

Rule r a P <S,{}> |- a U
P |- S update(S,U)

Where update(S,U)[x] = if (x,v) U the v else S[x]

P |- S0 * S
 S LegalState(P,S0)

where * is the transitive reflexive closure of

