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Single-Cycle RISC Processor 
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Datapath and control are derived automatically 
from a high-level rule-based description  
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Single-Cycle Implementation  
code structure 

module mkProc(Proc); 

  Reg#(Addr)  pc <- mkRegU; 

  RFile       rf <- mkRFile; 

  IMemory     iMem <- mkIMemory; 

  DMemory     dMem <- mkDMemory; 

 

  rule doProc; 

    let inst = iMem.req(pc); 

    let dInst = decode(inst); 

    let rVal1 = rf.rd1(dInst.rSrc1); 

    let rVal2 = rf.rd2(dInst.rSrc2); 

    let eInst = exec(dInst, rVal1, rVal2, pc); 

update rf, pc and dMem 
produces values 
needed to 
update the 
processor state 

instantiate the state 
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Execute Function 
function ExecInst exec(DecodedInst dInst, Data rVal1,  

                 Data rVal2, Addr pc); 

  ExecInst eInst = ?; 

  eInst.iType    = 

 

  let aluVal2   =  

  let aluRes     =  

  eInst.data     =  

 

 

 

  let brTaken    = 

  eInst.brTaken  = 

  let brAddr     =  

   

   

  eInst.addr     =  

 

  eInst.dst      =  

  return eInst;  

endfunction 

 

fromMaybe(rVal2, dInst.imm); 
alu(rVal1, aluVal2, dInst.aluFunc); 

dInst.iType; 

dInst.iType==St? rVal2 : 
 (dInst.iType==J || dInst.iType==Jr)? 
   (pc+4) : aluRes; 

aluBr(rVal1, rVal2, dInst.brFunc); 

brAddrCalc(pc, rVal1, dInst.iType,  
   fromMaybe(?, dInst.imm), brTaken); 

brTaken; 

(dInst.iType==Ld || dInst.iType==St)?  
   aluRes : brAddr; 
dInst.dst; 
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Branch Address Calculation 
function Addr brAddrCalc(Addr pc, Data val, 

            IType iType, Data imm, Bool taken); 

  Addr pcPlus4 = pc + 4;  

  Addr targetAddr = case (iType) 

    J  : {pcPlus4[31:28], imm[27:0]}; 

    Jr : val; 

    Br : (taken? pcPlus4 + imm : pcPlus4); 

    Alu, Ld, St, Unsupported: pcPlus4; 

  endcase; 

  return targetAddr; 

endfunction 
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Single-Cycle SMIPS atomic state 

updates 

    if(eInst.iType == Ld) 

      eInst.data <- dMem.req(MemReq{op: Ld, 

                     addr: eInst.addr, data: ?}); 

    else if (eInst.iType == St) 

    let dummy <- dMem.req(MemReq{op: St,  

                     addr: eInst.addr, data: data}); 

 

    if(isValid(eInst.dst)) 

      rf.wr(validRegValue(eInst.dst), eInst.data); 

 

    pc <= eInst.brTaken ? eInst.addr : pc + 4; 

 

endrule  

endmodule 

state updates 

The whole processor is described using one rule; 
lots of big combinational functions 
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Processor interface 

interface Proc; 
   method Action hostToCpu(Addr startpc); 
   method ActionValue#(Tuple2#(RIndx, Data)) cpuToHost; 
endinterface 

Stream of register values 
from the CPU 
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Coprocessor Registers 
MIPS allows extra sets of 32-registers each to support 
system calls, floating point, debugging  etc. These 
registers are known as coprocessor registers 

 The registers in the nth set are written and read using 
instructions MTCn and MFCn, respectively 

 Set 0 is used to get the results of program execution 
(Pass/Fail), the number of instructions executed and the 
cycle counts 

 Type FullIndx is used to refer to the normal registers plus 

the coprocessor set 0 registers 

 function validRegValue(FullIndx r) returns index of r 

 

 
typedef Bit#(5)  RIndx; 

typedef enum {Normal, CopReg} RegType deriving (Bits, Eq); 

typedef struct {RegType regType; RIndx idx;} FullIndx; 

deriving (Bits, Eq); 
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Code with coprocessor 
calls 
let copVal = cop.rd(validRegValue(dInst.src1)); 

let eInst = exec(dInst, rVal1, rVal2, pc, copVal); 

 

 

 

 

 

cop.wr(eInst.dst, eInst.data);   

 

write coprocessor registers (MTC0) and indicate 
the completion of an instruction 

pass coprocessor register values to execute MFC0 

We did not show these lines in our processor to 
avoid cluttering the slides  
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Single-Cycle SMIPS:  
Clock Speed 

PC 

Inst 
Memory 

Decode 

Register File 

Execute 

Data 
Memory 

+4 

tClock >  tM + tDEC + tRF + tALU+ tM+ tWB 

We can improve the clock speed if we execute each 
instruction in two clock cycles 

tClock >  max {tM , (tDEC + tRF + tALU+ tM+ tWB
 )} 

However, this may not improve the performance because 
each instruction will now take two cycles to execute 
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Structural Hazards 
Sometimes multicycle implementations are 
necessary because of resource conflicts, aka,  
structural hazards  

 Princeton style architectures use the same memory 
for instruction and data and consequently, require at 
least two cycles to execute Load/Store instructions 

 If the register file supported less than 2 reads and 
one write concurrently then most instructions would 
take more than one cycle to execute 

Usually extra registers are required to hold 
values between cycles 
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Two-Cycle SMIPS 
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Introduce register “f2d” to hold a fetched 
instruction and register “state” to remember the 
state (fetch/execute) of the processor 
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Two-Cycle SMIPS 
module mkProc(Proc); 

  Reg#(Addr)  pc <- mkRegU; 

  RFile       rf <- mkRFile; 

  IMemory     iMem <- mkIMemory; 

  DMemory     dMem <- mkDMemory;  

  Reg#(Data)  f2d <- mkRegU; 

  Reg#(State) state <- mkReg(Fetch); 

 

  rule doFetch (state == Fetch); 

      let inst = iMem.req(pc); 

      f2d <= inst; 

      state <= Execute; 

  endrule 
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Two-Cycle SMIPS 
rule doExecute(stage==Execute); 

   let inst = f2d; 

 let dInst = decode(inst); 

 let rVal1 = rf.rd1(validRegValue(dInst.src1)); 

 let rVal2 = rf.rd2(validRegValue(dInst.src2)); 

 let eInst = exec(dInst, rVal1, rVal2, pc); 

 if(eInst.iType == Ld) 

    eInst.data <- dMem.req(MemReq{op: Ld, addr: 

   eInst.addr, data: ?}); 

 else if(eInst.iType == St) 

    let d <- dMem.req(MemReq{op: St, addr:  

   eInst.addr, data: eInst.data}); 

 if (isValid(eInst.dst)) 

    rf.wr(validRegValue(eInst.dst), eInst.data); 

 pc <= eInst.brTaken ? eInst.addr : pc + 4; 

   state <= Fetch; 

endrule endmodule 
no change from single-cycle 
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Two-Cycle SMIPS: Analysis  
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Pipeline execution of instructions to increase 
the throughput  
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Problems in Instruction 
pipelining 

Control hazard: Insti+1  is not known until Insti is at least 
decoded. So which instruction should be fetched? 

Structural hazard: Two instructions in the pipeline may 
require the same resource at the same time, e.g., 
contention for memory 

Data hazard: Insti may affect the state of the machine (pc, 
rf, dMem) – Insti+1must be fully cognizant of this change 
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+4 
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 none of these hazards were present in the FFT pipeline   
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Arithmetic versus 
Instruction pipelining 

The data items in an arithmetic pipeline, e.g., 
FFT, are independent of each other 

 

 

 

 

The entities in an instruction pipeline affect 
each other 

 This causes pipeline stalls or requires other fancy 
tricks to avoid stalls 

 Processor pipelines are significantly more 
complicated than arithmetic pipelines 

sReg1 sReg2 

x 

inQ 

f0 f1 f2 

outQ 
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The power of computers comes 
from the fact that the 
instructions in a program are 
not independent of each other 
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 must deal with hazard 

Control Hazards 

Insti+1  is not known until Insti is at least decoded. So 
which instruction should be fetched? 
General solution – speculate, i.e., predict the next 
instruction address 
 requires the next-instruction-address prediction machinery; can 

be as simple as pc+4  
 prediction machinery is usually elaborate because it dynamically 

learns from the past behavior of the program 

What if speculation goes wrong? 
 machinery to kill the wrong-path instructions, restore the correct 

processor state and restart the execution at the correct pc  
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Two-stage Pipelined SMIPS 
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the next instruction to  
fetch to have any pipelining  
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WriteBack stage 

In case of a misprediction the 
Execute stage must kill the 
mispredicted instruction in f2d 

kill 
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Pipelining Two-Cycle SMIPS –
singlerule 
rule doPipeline ; 

  let newInst = iMem.req(pc); 

  let newPpc = nextAddr(pc); let newPc = ppc; 

  let newIr=Valid(Fetch2Decode{pc:newPc,ppc:newPpc, 

                               inst:newIinst}); 

  if(isValid(ir)) begin 

   let x = validValue(ir); let irpc = x.pc;  

   let ppc = x.ppc; let inst = x.inst; 

   let dInst = decode(inst); 

   ... register fetch ...; 

   let eInst = exec(dInst, rVal1, rVal2, irpc, ppc); 

   ...memory operation ... 

   ...rf update ... 

   if (eInst.mispredict) begin newIr = Invalid;  

                               newPc = eInst.addr;  end 

                  end 

   pc <= newPc; ir <= newIr; 

endrule 

 

fetch 

execute 
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Inelastic versus Elastic 
pipeline 

The pipeline presented is inelastic, that is, it 
relies on executing Fetch and Execute together 
or atomically 

In a realistic machine, Fetch and Execute 
behave more asynchronously; for example 
memory latency or a functional unit may take 
variable number of cycles 

If we replace ir by a FIFO (f2d) then it is 
possible to make the machine more elastic, 
that is, Fetch keeps putting instructions into 
f2d and Execute keeps removing and 
executing instructions from f2d. 
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An elastic Two-Stage pipeline  
rule doFetch ; 

  let inst = iMem.req(pc); 

  let ppc = nextAddr(pc); pc <= ppc; 

  f2d.enq(Fetch2Decode{pc:pc,ppc:ppc,inst:inst}); 

endrule 

 

rule doExecute; 

   let x = f2d.first; let inpc = x.pc;  

   let ppc = x.ppc; let inst = x.inst; 

 let dInst = decode(inst); 

 ... register fetch ...; 

 let eInst = exec(dInst, rVal1, rVal2, inpc, ppc); 

 ...memory operation ... 

 ...rf update ... 

 if (eInst.mispredict)            begin 

       pc <= eInst.addr; f2d.clear; end 

  else f2d.deq; 

endrule 

 

Can these rules 
execute concurrently 
assuming the FIFO 
allows concurrent enq, 
deq and clear?  

no –  
double writes in pc 
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An elastic Two-Stage pipeline: 
for concurrency make pc into an EHR  

rule doFetch ; 

  let inst = iMem.req(pc[0]); 

  let ppc = nextAddr(pc[0]); pc[0] <= ppc; 

  f2d.enq(Fetch2Decode{pc:pc[0],ppc:ppc,inst:inst}); 

endrule 

 

rule doExecute; 

   let x = f2d.first; let inpc = x.pc;  

   let ppc = x.ppc; let inst = x.inst; 

 let dInst = decode(inst); 

 ... register fetch ...; 

 let eInst = exec(dInst, rVal1, rVal2, inpc, ppc); 

 ...memory operation ... 

 ...rf update ... 

 if (eInst.mispredict)            begin 

       pc[1] <= eInst.addr; f2d.clear; end 

  else f2d.deq; 

endrule 

 

These rules can 
execute concurrently 
assuming the FIFO has 
(enq CF deq) and 
(enq < clear) 
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module mkCFFifo(Fifo#(2, t)) provisos(Bits#(t, tSz)); 

  Ehr#(3, t) da <- mkEhr(?); 

  Ehr#(2, Bool) va <- mkEhr(False); 

  Ehr#(2, t) db <- mkEhr(?); 

  Ehr#(3, Bool) vb <- mkEhr(False); 

  rule canonicalize if(vb[2] && !va[2]); 

    da[2] <= db[2]; va[2] <= True; vb[2] <= False; endrule 

  method Action enq(t x) if(!vb[0]); 

    db[0] <= x; vb[0] <= True; endmethod 

  method Action deq if (va[0]); 

    va[0] <= False; endmethod 

  method t first if(va[0]); 

    return da[0]; endmethod 

  method Action clear; 

    va[1] <= False ; vb[1] <= False endmethod 

endmodule 

Conflict-free FIFO with a 
Clear method 

If there is only one 
element in the FIFO it 
resides in da 

db da 

first CF enq 

deq   CF enq 

first < deq 

enq < clear 

Canonicalize must be the last rule to fire! 

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-26 



14 

Why canonicalize must be 
last rule to fire 

first CF enq 

deq   CF enq 

first < deq 

enq < clear 

rule foo ; 

    f.deq; if (p) f.clear  

endrule 

Consider rule foo. If p is false then canonicalize 
must fire after deq for proper concurrency. 
 
If canonicalize uses EHR indices between deq and 
clear, then canonicalize won’t fire when p is false 
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Correctness issue 

<inst, pc, ppc> 

Once Execute redirects the PC,  
 no wrong path instruction should be executed 
 the next instruction executed must be the redirected 

one 

This is true for the code shown because 
 Execute changes the pc and clears the FIFO 

atomically  
 Fetch reads the pc and enqueues the FIFO atomically 

Fetch Execute 

PC 
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