
1

Constructive Computer Architecture:

Non-Pipelined and Pipelined
Processors

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

Staff and students in 6.375 (Spring 2013),
6.S195 (Fall 2012), 6.S078 (Spring 2012)

 Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh

External

 Prof Amey Karkare & students at IIT Kanpur

 Prof Jihong Kim & students at Seoul Nation University

 Prof Derek Chiou, University of Texas at Austin

 Prof Yoav Etsion & students at Technion

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-2

2

Single-Cycle RISC Processor

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

+4

Datapath and control are derived automatically
from a high-level rule-based description

2 read &
1 write
ports

separate
Instruction &

Data memories

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-3

Single-Cycle Implementation
code structure

module mkProc(Proc);

 Reg#(Addr) pc <- mkRegU;

 RFile rf <- mkRFile;

 IMemory iMem <- mkIMemory;

 DMemory dMem <- mkDMemory;

 rule doProc;

 let inst = iMem.req(pc);

 let dInst = decode(inst);

 let rVal1 = rf.rd1(dInst.rSrc1);

 let rVal2 = rf.rd2(dInst.rSrc2);

 let eInst = exec(dInst, rVal1, rVal2, pc);

update rf, pc and dMem
produces values
needed to
update the
processor state

instantiate the state

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-4

3

Execute Function
function ExecInst exec(DecodedInst dInst, Data rVal1,

 Data rVal2, Addr pc);

 ExecInst eInst = ?;

 eInst.iType =

 let aluVal2 =

 let aluRes =

 eInst.data =

 let brTaken =

 eInst.brTaken =

 let brAddr =

 eInst.addr =

 eInst.dst =

 return eInst;

endfunction

fromMaybe(rVal2, dInst.imm);
alu(rVal1, aluVal2, dInst.aluFunc);

dInst.iType;

dInst.iType==St? rVal2 :
 (dInst.iType==J || dInst.iType==Jr)?
 (pc+4) : aluRes;

aluBr(rVal1, rVal2, dInst.brFunc);

brAddrCalc(pc, rVal1, dInst.iType,
 fromMaybe(?, dInst.imm), brTaken);

brTaken;

(dInst.iType==Ld || dInst.iType==St)?
 aluRes : brAddr;
dInst.dst;

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-5

Branch Address Calculation
function Addr brAddrCalc(Addr pc, Data val,

 IType iType, Data imm, Bool taken);

 Addr pcPlus4 = pc + 4;

 Addr targetAddr = case (iType)

 J : {pcPlus4[31:28], imm[27:0]};

 Jr : val;

 Br : (taken? pcPlus4 + imm : pcPlus4);

 Alu, Ld, St, Unsupported: pcPlus4;

 endcase;

 return targetAddr;

endfunction

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-6

4

Single-Cycle SMIPS atomic state

updates

 if(eInst.iType == Ld)

 eInst.data <- dMem.req(MemReq{op: Ld,

 addr: eInst.addr, data: ?});

 else if (eInst.iType == St)

 let dummy <- dMem.req(MemReq{op: St,

 addr: eInst.addr, data: data});

 if(isValid(eInst.dst))

 rf.wr(validRegValue(eInst.dst), eInst.data);

 pc <= eInst.brTaken ? eInst.addr : pc + 4;

endrule

endmodule

state updates

The whole processor is described using one rule;
lots of big combinational functions

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-7

Processor interface

interface Proc;
 method Action hostToCpu(Addr startpc);
 method ActionValue#(Tuple2#(RIndx, Data)) cpuToHost;
endinterface

Stream of register values
from the CPU

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-8

5

Coprocessor Registers
MIPS allows extra sets of 32-registers each to support
system calls, floating point, debugging etc. These
registers are known as coprocessor registers

 The registers in the nth set are written and read using
instructions MTCn and MFCn, respectively

 Set 0 is used to get the results of program execution
(Pass/Fail), the number of instructions executed and the
cycle counts

 Type FullIndx is used to refer to the normal registers plus

the coprocessor set 0 registers

 function validRegValue(FullIndx r) returns index of r

typedef Bit#(5) RIndx;

typedef enum {Normal, CopReg} RegType deriving (Bits, Eq);

typedef struct {RegType regType; RIndx idx;} FullIndx;

deriving (Bits, Eq);

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-9

Code with coprocessor
calls
let copVal = cop.rd(validRegValue(dInst.src1));

let eInst = exec(dInst, rVal1, rVal2, pc, copVal);

cop.wr(eInst.dst, eInst.data);

write coprocessor registers (MTC0) and indicate
the completion of an instruction

pass coprocessor register values to execute MFC0

We did not show these lines in our processor to
avoid cluttering the slides

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-10

6

Single-Cycle SMIPS:
Clock Speed

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

+4

tClock > tM + tDEC + tRF + tALU+ tM+ tWB

We can improve the clock speed if we execute each
instruction in two clock cycles

tClock > max {tM , (tDEC + tRF + tALU+ tM+ tWB
)}

However, this may not improve the performance because
each instruction will now take two cycles to execute

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-11

Structural Hazards
Sometimes multicycle implementations are
necessary because of resource conflicts, aka,
structural hazards

 Princeton style architectures use the same memory
for instruction and data and consequently, require at
least two cycles to execute Load/Store instructions

 If the register file supported less than 2 reads and
one write concurrently then most instructions would
take more than one cycle to execute

Usually extra registers are required to hold
values between cycles

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-12

7

Two-Cycle SMIPS

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

+4
f2d

state

Introduce register “f2d” to hold a fetched
instruction and register “state” to remember the
state (fetch/execute) of the processor

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-13

Two-Cycle SMIPS
module mkProc(Proc);

 Reg#(Addr) pc <- mkRegU;

 RFile rf <- mkRFile;

 IMemory iMem <- mkIMemory;

 DMemory dMem <- mkDMemory;

 Reg#(Data) f2d <- mkRegU;

 Reg#(State) state <- mkReg(Fetch);

 rule doFetch (state == Fetch);

 let inst = iMem.req(pc);

 f2d <= inst;

 state <= Execute;

 endrule

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-14

8

Two-Cycle SMIPS
rule doExecute(stage==Execute);

 let inst = f2d;

 let dInst = decode(inst);

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 let eInst = exec(dInst, rVal1, rVal2, pc);

 if(eInst.iType == Ld)

 eInst.data <- dMem.req(MemReq{op: Ld, addr:

 eInst.addr, data: ?});

 else if(eInst.iType == St)

 let d <- dMem.req(MemReq{op: St, addr:

 eInst.addr, data: eInst.data});

 if (isValid(eInst.dst))

 rf.wr(validRegValue(eInst.dst), eInst.data);

 pc <= eInst.brTaken ? eInst.addr : pc + 4;

 state <= Fetch;

endrule endmodule
no change from single-cycle

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-15

Two-Cycle SMIPS: Analysis

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

+4
fr

stage

In any given clock
cycle, lot of unused

hardware !

Execute Fetch

Pipeline execution of instructions to increase
the throughput

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-16

9

Problems in Instruction
pipelining

Control hazard: Insti+1 is not known until Insti is at least
decoded. So which instruction should be fetched?

Structural hazard: Two instructions in the pipeline may
require the same resource at the same time, e.g.,
contention for memory

Data hazard: Insti may affect the state of the machine (pc,
rf, dMem) – Insti+1must be fully cognizant of this change

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

+4
f2d

Insti Insti+1

 none of these hazards were present in the FFT pipeline
October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-17

Arithmetic versus
Instruction pipelining

The data items in an arithmetic pipeline, e.g.,
FFT, are independent of each other

The entities in an instruction pipeline affect
each other

 This causes pipeline stalls or requires other fancy
tricks to avoid stalls

 Processor pipelines are significantly more
complicated than arithmetic pipelines

sReg1 sReg2

x

inQ

f0 f1 f2

outQ

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-18

10

The power of computers comes
from the fact that the
instructions in a program are
not independent of each other

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-19

 must deal with hazard

Control Hazards

Insti+1 is not known until Insti is at least decoded. So
which instruction should be fetched?
General solution – speculate, i.e., predict the next
instruction address
 requires the next-instruction-address prediction machinery; can

be as simple as pc+4
 prediction machinery is usually elaborate because it dynamically

learns from the past behavior of the program

What if speculation goes wrong?
 machinery to kill the wrong-path instructions, restore the correct

processor state and restart the execution at the correct pc

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

+4
f2d

Insti Insti+1

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-20

11

Two-stage Pipelined SMIPS

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

pred
f2d

Fetch stage must predict
the next instruction to
fetch to have any pipelining

Fetch stage Decode-RegisterFetch-Execute-Memory-
WriteBack stage

In case of a misprediction the
Execute stage must kill the
mispredicted instruction in f2d

kill
misprediction

correct pc

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-21

Pipelining Two-Cycle SMIPS –
singlerule
rule doPipeline ;

 let newInst = iMem.req(pc);

 let newPpc = nextAddr(pc); let newPc = ppc;

 let newIr=Valid(Fetch2Decode{pc:newPc,ppc:newPpc,

 inst:newIinst});

 if(isValid(ir)) begin

 let x = validValue(ir); let irpc = x.pc;

 let ppc = x.ppc; let inst = x.inst;

 let dInst = decode(inst);

 ... register fetch ...;

 let eInst = exec(dInst, rVal1, rVal2, irpc, ppc);

 ...memory operation ...

 ...rf update ...

 if (eInst.mispredict) begin newIr = Invalid;

 newPc = eInst.addr; end

 end

 pc <= newPc; ir <= newIr;

endrule

fetch

execute

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-22

12

Inelastic versus Elastic
pipeline

The pipeline presented is inelastic, that is, it
relies on executing Fetch and Execute together
or atomically

In a realistic machine, Fetch and Execute
behave more asynchronously; for example
memory latency or a functional unit may take
variable number of cycles

If we replace ir by a FIFO (f2d) then it is
possible to make the machine more elastic,
that is, Fetch keeps putting instructions into
f2d and Execute keeps removing and
executing instructions from f2d.

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-23

An elastic Two-Stage pipeline
rule doFetch ;

 let inst = iMem.req(pc);

 let ppc = nextAddr(pc); pc <= ppc;

 f2d.enq(Fetch2Decode{pc:pc,ppc:ppc,inst:inst});

endrule

rule doExecute;

 let x = f2d.first; let inpc = x.pc;

 let ppc = x.ppc; let inst = x.inst;

 let dInst = decode(inst);

 ... register fetch ...;

 let eInst = exec(dInst, rVal1, rVal2, inpc, ppc);

 ...memory operation ...

 ...rf update ...

 if (eInst.mispredict) begin

 pc <= eInst.addr; f2d.clear; end

 else f2d.deq;

endrule

Can these rules
execute concurrently
assuming the FIFO
allows concurrent enq,
deq and clear?

no –
double writes in pc

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-24

13

An elastic Two-Stage pipeline:
for concurrency make pc into an EHR

rule doFetch ;

 let inst = iMem.req(pc[0]);

 let ppc = nextAddr(pc[0]); pc[0] <= ppc;

 f2d.enq(Fetch2Decode{pc:pc[0],ppc:ppc,inst:inst});

endrule

rule doExecute;

 let x = f2d.first; let inpc = x.pc;

 let ppc = x.ppc; let inst = x.inst;

 let dInst = decode(inst);

 ... register fetch ...;

 let eInst = exec(dInst, rVal1, rVal2, inpc, ppc);

 ...memory operation ...

 ...rf update ...

 if (eInst.mispredict) begin

 pc[1] <= eInst.addr; f2d.clear; end

 else f2d.deq;

endrule

These rules can
execute concurrently
assuming the FIFO has
(enq CF deq) and
(enq < clear)

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-25

module mkCFFifo(Fifo#(2, t)) provisos(Bits#(t, tSz));

 Ehr#(3, t) da <- mkEhr(?);

 Ehr#(2, Bool) va <- mkEhr(False);

 Ehr#(2, t) db <- mkEhr(?);

 Ehr#(3, Bool) vb <- mkEhr(False);

 rule canonicalize if(vb[2] && !va[2]);

 da[2] <= db[2]; va[2] <= True; vb[2] <= False; endrule

 method Action enq(t x) if(!vb[0]);

 db[0] <= x; vb[0] <= True; endmethod

 method Action deq if (va[0]);

 va[0] <= False; endmethod

 method t first if(va[0]);

 return da[0]; endmethod

 method Action clear;

 va[1] <= False ; vb[1] <= False endmethod

endmodule

Conflict-free FIFO with a
Clear method

If there is only one
element in the FIFO it
resides in da

db da

first CF enq

deq CF enq

first < deq

enq < clear

Canonicalize must be the last rule to fire!

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-26

14

Why canonicalize must be
last rule to fire

first CF enq

deq CF enq

first < deq

enq < clear

rule foo ;

 f.deq; if (p) f.clear

endrule

Consider rule foo. If p is false then canonicalize
must fire after deq for proper concurrency.

If canonicalize uses EHR indices between deq and
clear, then canonicalize won’t fire when p is false

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-27

Correctness issue

<inst, pc, ppc>

Once Execute redirects the PC,
 no wrong path instruction should be executed
 the next instruction executed must be the redirected

one

This is true for the code shown because
 Execute changes the pc and clears the FIFO

atomically
 Fetch reads the pc and enqueues the FIFO atomically

Fetch Execute

PC

October 2, 2013 http://csg.csail.mit.edu/6.S195 L10-28

