Constructive Computer Architecture:

Data Hazards
in Pipelined Processors

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 11, 2013 http://csg.csail.mit.edu/6.5195 L12-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

Staff and students in 6.375 (Spring 2013),
6.5195 (Fall 2012), 6.S078 (Spring 2012)
= Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh
@ External
= Prof Amey Karkare & students at IIT Kanpur
= Prof Jihong Kim & students at Seoul Nation University
= Prof Derek Chiou, University of Texas at Austin
= Prof Yoav Etsion & students at Technion

October 11, 2013 http://csg.csail.mit.edu/6.5195 L12-2

A different 2-Stage pipeline:

2-Stage-DH pipeline

Fetch, Decode, RegisterFetch I Execute, Memory, WriteBack

=
g Register File
w |le
< AA i < A
g A
o | A A
For L
PC Decode L™ Execute
A\ > >d2e _1
A4 > A
FiIos
Inst] Data
Memo Use the same epoch solution for Memory
™Y1 control hazards as before
October 11, 2013 http://csg.csail.mit.edu/6.5195

L12-3

Type Decode2Execute

The Fetch stage, in addition to fetching the
instruction, also decodes the instruction and
fetches the operands from the register file. It
passes these operands to the Execute stage

typedef struct {

Addr pc; Addr ppc; Bool epoch;

DecodedInst dInst; Data rvVall; Data rVal2;
} Decodel2Execute deriving (Bits, H \

\

values instead of register names

October 11, 2013 http://csg.csail.mit.edu/6.5195

L12-4

2-Stage-DH pipeline

module mkProc (Proc) ;

Reg# (Addr) pc <- mkReqgU;
RFile rf <- mkRFile;
IMemory iMem <- mkIMemory;
DMemory dMem <- mkDMemory;

Fifo# (Decode2Execute) d2e <- mkFifo;

Reg# (Bool) fEpoch <- mkReg (False);
Reg# (Bool) eEpoch <- mkReg (False);
Fifo# (Addr) execRedirect <- mkFifo;

rule doFetch ..
rule doExecute

October 11, 2013 http://csg.csail.mit.edu/6.5195 L12-5

2-Stage-DH pipeline
doFetch rule first attempt

rule doFetch;
let instF = iMem.req(pc);
if (execRedirect.notEmpty) begin
fEpoch <= !fEpoch; pc <= execRedirect.first;

execRedirect.deqg; end

else

begin
let ppcF = nextAddrPredictor(pc); pc <= ppcF;
let dInst = decode (instF); moved
let rvall = rf.rdl (validRegValue (dInst.srcl)); from
let rval2 = rf.rd2(validRegValue (dInst.src2)); |Execute

d2e.enqg(Decode2Execute{pc: pc, ppc: ppck,
dIinst: dInst, epoch: fEpoch,
rVall: rvall, rvVal2: rvVal2});

end
endrule

October 11, 2013 http://csg.csail.mit.edu/6.5195 L12-6

2-Stage-DH pipeline
doExecute rule first attempt

rule doExecute; NOT qu”’e correct. Why)
ki O o Fetch is potentially
let dInstE = x.dInst; let pcE = x.pc; .
1 B B reading stale values
et ppcE = X.ppc; let epoch = x.epoch; f f
let rVallE = x.rVall; let rVal2E = x.rVal2; rom.r
if (epoch == eEpoch) begin
let elInst = exec(dInstE, rVallE, rVal2E, pcE, ppcE);
if (eInst.iType == Ld) elInst.data <-
dMem.req (MemReqg{op:Ld, addr:eInst.addr, data:?});
else if (elInst.iType == St) let d <-
no dMem.req (MemReqg{op:St, addr:eInst.addr, data:elInst.data});
if (isvValid(eInst.dst) &&
change]
validValue (eInst.dst) .regType == Normal)
rf.wr (validRegValue (eInst.dst), elInst.data);
if (eInst.mispredict) begin
execRedirect.eng(eInst.addr); eEpoch <= !eEpoch; end
end
d2e.deq;
endrule
October 11, 2013 http://csg.csail.mit.edu/6.5195 L12-7

Data Hazards
ooy Lee] [] [amem

d2e ‘

time t0 t1 [t2 |t3 t4 t5 t6 t7
FDstage FD,|FD,| FD5; FD, FDs4
EXstage EX;|EX, EX5 EX, EXg

I, Add(R1,R2,R3)
I, Add(R4,R1,R2)
I, must be stalled until I; updates the register file

time t0 t1 t2 t3 t4 t5 t6 t7
FDstage FD, FD, FD, FD5; FD4 FDs
EXstage EXy EX, EX5 EX4 EXj

October 11, 2013 http://csg.csail.mit.edu/6.5195 L12-8

Dealing with data hazards

#® Keep track of instructions in the pipeline and
determine if the register values to be fetched
are stale, i.e., will be modified by some older
instruction still in the pipeline. This condition
is referred to as a read-after-write (RAW)
hazard

Stall the Fetch from dispatching the instruction
as long as RAW hazard prevails
#® RAW hazard will disappear as the pipeline
drains
Scoreboard: A data structure to keep

track of the instructions in the pipeline
beyond the Fetch stage

October 11, 2013 http://csg.csail.mit.edu/6.5195

L12-9

Data Hazard

Data hazard depends upon the match between
the source registers of the fetched instruction
and the destination register of an instruction
already in the pipeline

Both the source and destination registers must
be Valid for a hazard to exist

function Bool isFound
(Maybe# (FullIndx) x, Maybe# (FullIndx) vy);
if (x matches Valid .xv &&& y matches Valid .yv
&&& YV == xXV)
return True;
else return False;
endfunction

October 11, 2013 http://csg.csail.mit.edu/6.5195

L12-10

Scoreboard: Keeping track of
instructions in execution

Scoreboard: a data structure to keep track of
the destination registers of the instructions
beyond the fetch stage

» method insert: inserts the destination (if any) of an
instruction in the scoreboard when the instruction is
decoded

s method search1(src): searches the scoreboard for a
data hazard

s method search2(src): same as searchl

s method remove: deletes the oldest entry when an
instruction commits

October 11, 2013 http://csg.csail.mit.edu/6.5195

L12-11

2-Stage-DH pipeline:
Scoreboard and Stall logic

i=
g Register File
U le
N AA < A
. g VY
@red i .
PC Decode L, Execute
A > > d2e —l
A4 >
YVY T
Inst Data
Memory scoreboard Memory

October 11, 2013 http://csg.csail.mit.edu/6.5195

L12-12

2-Stage-DH pipeline corrected

module mkProc (Proc) ;

Reg# (Addr) pc <- mkReqgU;

RFile rf <- mkRFile;
IMemory iMem <- mkIMemory;
DMemory dMem <- mkDMemory;
Fifo# (Decode2Execute) d2e <- mkFifo;
Reg# (Bool) fEpoch <- mkReg (False);
Reg# (Bool) eEpoch <- mkReg (False);

Fifo# (Addr) execRedirect <- mkFifo;

Scoreboard# (1) sb <- mkScoreboard;
// contains only one slot because Execute
// can contain at most one instruction

rule doFetch ..
rule doExecute

October 11, 2013 http://csg.csail.mit.edu/6.5195 L12-13

2-Stage-DH pipeline
doFetch rule second attempt

rule doFetch;
if (execRedirect.notEmpty) begin
fEpoch <= !fEpoch; pc <= execRedirect.first;

execRedirect.deqg; end
else
begin What should happen to pc when Fetch stalls?

let instF = iMem.req(pc);
let ppcF = nextAddrPredictor (pc)
let dInst = decode (instF);
let stall = sb.searchl (dInst.srcl) || sb.search2 (dInst.src2);
if(!stall) begin
let rvVall = rf.rdl(validRegValue (dInst.srcl));
let rval2 = rf.rd2(validRegValue (dInst.src?2));
d2e.enqg(Decode2Execute{pc: pc, ppc: ppcF,

dIinst: dInst, epoch: fEpoch,
rvall: rvall, rval2: rval2});
sb.insert (dInst.rDst); end

pc should change only
when the instruction

is enqueued in d2e
end

endrule -
October 11, 2013 http://csg.csail.mit.edu/6.5195 L12-14

2-Stage-DH pipeline
doFetch rule corrected

rule doFetch;
if (execRedirect.notEmpty) begin
fEpoch <= !fEpoch; pc <= execRedirect.first;

execRedirect.deq; end To avoid structural

1
alae hazards, scoreboard must
allow two search ports

begin
let instF = iMem.reqg(pc);
let ppcF = nextAddrPredictor (pc) ; pe—<=—ppecE;
let dInst = decode (instF);
let stall = sb.searchl (dInst.srcl) || sb.search2 (dInst.src2);
if(!stall) begin
let rvall = rf.rdl(validRegValue (dInst.srcl));
let rval2 = rf.rd2(validRegValue (dInst.src2));
d2e.enqg(Decode2Execute{pc: pc, ppc: ppckF,

dIinst: dInst, epoch: fEpoch,
rVall: rVall, rVal2: rVal2});
sb.insert (dInst.rDst); pc <= ppcF; end

end

endrule
October 11, 2013 http://csg.csail.mit.edu/6.5195 L12-15

2-Stage-DH pipeline
doExecute rule corrected

N rule doExecute;

let x = d2e.first;

let dInstE = x.dInst; let pcE = X.pc;

let ppcE = X.ppcC; let epoch = x.epoch;

let rVallE = x.rVall; let rVal2E = x.rVal2;

if (epoch == eEpoch) begin
let eInst = exec(dInstE, rVallE, rVal2E, pcE, ppcE);
if (eInst.iType == Ld) elnst.data <-

dMem. req (MemReqg{op:Ld, addr:eInst.addr, data:?});
else if (eInst.iType == St) let d <-
dMem.req (MemReqg{op:St, addr:eInst.addr, data:elInst.data});
if (isvValid(eInst.dst))
rf.wr (validRegValue (eInst.dst), eInst.data);
if (eInst.mispredict) begin
execRedirect.eng(elInst.addr); eEpoch <= !eEpoch; end
end
d2e.deqg; sb.remove;
endrule

October 11, 2013 http://csg.csail.mit.edu/6.5195 L12-16

A correctness issues
N | Register File |
rd1”-rd2 redirect

(1T

1111
search\\\jnsert d2e
| Scoreboard |

If the search by Decode does not see an
instruction in the scoreboard, then its effect must
have taken place. This means that any updates
to the register file by that instruction must be
visible to the subsequent register reads =
= remove and wr should happen atomically

= search and rd1, rd2 should happen atomically
Fetch and Execute can execute in any order

October 11, 2013 http://csg.csail.mit.edu/6.5195 L12-17

Concurrently executable
Fetch and Execute

h | Register File |
02 rediect which is
T better?

search\\\jnsert d2e
| Scoreboard |
Case 1: doExecute < dofetch =
n rf: wr < rd (bypass rf)
= sb: remove < {search, insert}

n d2e: {first, deq} {<, CF} enq (pipelined or CF Fifo)

= redirect: enq {<, CF} {deq, first} (bypass or CF Fifo)
Case 2: doFetch < doExecute =

n rf: rd < wr (normal rf)

= Sb: {search, insert} < remove

= d2e: enq {<, CF} {deq, first} (bypass or CF Fifo)

» redirect: {first, deq} {<, CF} enq (pipelined or CF Fifo)

L12-18

October 11, 2013 http://csg.csail.mit.edu/6.5195

Performance issues

| Register File |

redirect

search \insert
| Scoreboard |

To avoid a stall due to a RAW hazard between successive
instructions
= sb: remove < search
s rf: wr < rd (bypass rf)
To minimize stalls due to control hazards
= redirect: bypass fifo
What kind of fifo should be used for d2e ?
= Either a pipeline or CF fifo would do fine

October 11, 2013 http://csg.csail.mit.edu/6.5195

L12-19

2-Stage-DH pipeline

with proper specification of Fifos, rf, scoreboard

module mkProc (Proc) ;
Reg# (Addr) pc <- mkRegU;
RFile rf <- mkBypassRFile;
IMemory iMem <- mkIMemory;
DMemory dMem <- mkDMemory;
Fifo# (Decode2Execute) d2e <- mkPipelineFifo;
Reg# (Bool) fEpoch <- mkReg (False);
Reg# (Bool) eEpoch <- mkReg (False);

Fifo# (Addr) execRedirect <- mkBypassFifo;

Scoreboard# (1) sb <- mkPipelineScoreboard;
// contains only one slot because Execute
// can contain at most one instruction

Can a destination register name
appear more than once in the

scoreboard ?
October 11, 2013 http://csg.csail.mit.edu/6.5195

rule doFetch ..
rule doExecute ..

L12-20

10

WAW hazards

@ If multiple instructions in the scoreboard can
update the register which the current
instruction wants to read, then the current
instruction has to read the update for the
youngest of those instructions

This is not a problem in our design because
s instructions are committed in order

= the RAW hazard for the instruction at the decode
stage will remain as long as the any instruction with
the required destination is present in sb

October 11, 2013 http://csg.csail.mit.edu/6.5195

L12-21

An alternative design for sb

Instead of keeping track of the destination of
every instruction in the pipeline, we can
associated a bit with every register to indicate
if that register is the destination of some
instruction in the pipeline
= Appropriate register bit is set when an instruction

enters the execute stage and cleared when the
instruction is committed

The design will not work if multiple
instructions in the pipeline have the same

destination
= don't let an instruction with WAW hazard enter the
pipeline
October 11, 2013 http://csg.csail.mit.edu/6.5195

L12-22

11

Fetch rule to avoid WAW
hazard

rule doFetch;
if (execRedirect.notEmpty) begin
fEpoch <= !fEpoch; pc <= execRedirect.first;

execRedirect.deq; end
else
begin
let instF = iMem.reqg(pc);
let ppcF = nextAddrPredictor (pc); let dInst = decode (instF);

let stall = sb.searchl (dInst.srcl) || sb.search2 (dInst.src?2);
|| sb.search3(dInst.dst);
if(!stall) begin

let rvall = rf.rdl (validRegValue (dInst.srcl));
let rval2 = rf.rd2(validRegValue (dInst.src2));
d2e.enqg(Decode2Execute{pc: pc, ppc: ppcF,
dIinst: dInst, epoch: fEpoch,
rvVall: rvVall, rVal2: rvVal2});
sb.insert (dInst.rDst); pc <= ppcF; end
end

endrule
October 11, 2013 http://csg.csail.mit.edu/6.5195

L12-23

Summary

Instruction pipelining requires dealing with
control and data hazards

Speculation is necessary to deal with control
hazards

Data hazards are avoided by withholding
instructions in the decode stage until the hazard
disappears

Performance issues are subtle

= For instance, the value of having a bypass network
depends on how frequently it is exercised by programs

= Bypassing necessarily increases combinational paths
which can slow down the clock

next — module implementations and multistage pipelines

L12-24

October 11, 2013 http://csg.csail.mit.edu/6.5195

12

Time permitting ...

Normal Register File

module mkRFile (RFile) ;

method Action wr (RIndx rindx, Data data);
i-f(rindxt=0)--rfile[rindx}<=-data;

Vector# (32,Reg# (Data)) rfile <- replicateM (mkReg (0));

endmethod
method Data rdl (RIndx rindx) = rfile[rindx];
method Data rd2 (RIndx rindx) = rfile[rindx];
endmodule
| {rd1, rd2} < wr|
October 11, 2013 http://csg.csail.mit.edu/6.5195 L12-25
Bypass Register File using EHR
module mkBypassRFile (RFile) ;
Vector# (32,Ehr# (2, Data)) rfile <-
replicateM (mkEhr (0)) ;
method Action wr (RIndx rindx, Data data);
if(rindex!=0) (rfile[rindex]) [0] <= data;
endmethod
method Data rdl (RIndx rindx) = (rfile[rindx])[1];
method Data rd2 (RIndx rindx) = (rfile[rindx])[1];
endmodule
|wr < {rd1, rd2} |
October 11, 2013 http://csg.csail.mit.edu/6.5195 L12-26

13

Bypass Register File

. with external bypassing
module mkBypassRFile (BypassRFile) ;
RFile rf <- mkRFile;
Fifo# (1, Tuple2# (RIndx, Data))
bypass <- mkBypassSFifo;

rule move;
begin rf.wr (bypass.first); bypass.deq end;
endrule
method Action wr (RIndx rindx, Data data);
if (rindex!=0) bypass.enqg(tuple2 (rindx, data));
endmethod
method Data rdl (RIndx rindx) =
return (!bypass.searchl (rindx)) ? rf.rdl (rindx)
bypass.readl (rindx) ;
method Data rd2 (RIndx rindx) =
return (!bypass.search2(rindx)) ? rf.rd2(rindx)

bypass.read2 (rindx) ;
endmodule

‘WI’ < {rd1, rd2} ‘

October 11, 2013 http://csg.csail.mit.edu/6.5195

L12-27

Scoreboard implementation
using searchable Fifos

function Bool isFound
(Maybe# (RIndx) dst, Maybe# (RIndx) src);
return isvValid(dst) && isValid(src) &&
(validValue (dst)==validValue (src)) ;
endfunction

module mkCFScoreboard (Scoreboard# (size)) ;
SFifo# (size, Maybe# (RIndx), Maybe# (RIndx))
f <- mkCFSFifo (isFound) ;

method insert = f.eng;
method remove = f.deqg;
method searchl = f.searchl;
method search2 = f.search2;
endmodule
October 11, 2013 http://csg.csail.mit.edu/6.5195

L12-28

14

