
1

Constructive Computer Architecture:

Branch Prediction

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

Staff and students in 6.375 (Spring 2013),
6.S195 (Fall 2012), 6.S078 (Spring 2012)

 Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh

External

 Prof Amey Karkare & students at IIT Kanpur

 Prof Jihong Kim & students at Seoul Nation University

 Prof Derek Chiou, University of Texas at Austin

 Prof Yoav Etsion & students at Technion

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-2

2

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch
executed

Next fetch
started

Control Flow Penalty

Modern processors may have
> 10 pipeline stages between
next PC calculation and branch
resolution !

How much work is lost if
pipeline doesn’t follow correct
instruction flow?

 Loop length x pipeline width

What fraction of executed
instructions are branch
instructions?

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-3

superscalarity

How frequent are
branches?

October 21, 2013 L14-4 http://csg.csail.mit.edu/6.S195

Blem et al [HPCA 2013] Spec INT 2006 on ARM Cortex 7

ARM Cortex-A9; ARMv7 ISA

Benchmark
Total

Instructions branch % load % store % other %

astar 1.47E+10 16.0 55.6 13.0 15.4

bzip2 2.41E+10 8.7 34.6 14.4 42.2

gcc 5.61E+09 10.2 19.1 11.2 59.5

gobmk 5.75E+10 10.7 25.4 7.2 56.8

hmmer 1.56E+10 5.1 41.8 18.1 35.0

h264 1.06E+11 5.5 30.4 10.4 53.6

libquantum 3.97E+08 11.5 8.1 11.7 68.7

omnetpp 2.67E+09 11.7 19.3 8.9 60.1

perlbench 2.69E+09 10.7 24.6 9.3 55.5

sjeng 1.34E+10 11.5 39.3 13.7 35.5

Average 8.2 31.9 10.9 49.0

Every 12th instruction is a branch

3

How frequent are
branches?

October 21, 2013 L14-5 http://csg.csail.mit.edu/6.S195

Blem et al [HPCA 2013] Spec FP 2006 on ARM Cortex 7

ARM Cortex-A9; ARMv7 ISA

Benchmark
Total

Instructions branch % load % store % other %

bwaves 3.84E+11 13.5 1.4 0.5 84.7

cactusADM 1.02E+10 0.5 51.4 17.9 30.1

leslie3D 4.92E+10 6.2 2.0 3.7 88.1

milc 1.38E+10 6.5 38.2 13.3 42.0

tonto 1.30E+10 10.0 40.5 14.1 35.4

Average 12.15 4.68 1.95 81.22

Every 8th instruction is a branch

How frequent are
branches?

core i7; x86 ISA

Benchmark
Total

Instructions branch % load % store % other %

astar 5.71E+10 6.9 19.5 6.9 66.7

bzip2 4.25E+10 11.1 31.2 11.8 45.9

hmmer 2.57E+10 5.3 30.5 9.4 54.8

gcc 6.29E+09 15.1 22.1 14.1 48.7

gobmk 8.93E+10 12.1 21.7 13.4 52.7

h264 1.09E+11 7.1 46.8 18.5 27.6

libquantum 4.18E+08 13.2 39.3 6.8 40.7

omnetpp 2.55E+09 16.4 28.6 21.4 33.7

perlbench 2.91E+09 17.3 25.9 16.0 40.8

sjeng 2.11E+10 14.8 22.8 11.0 51.4

Average 9.4 31.0 13.4 46.2

October 21, 2013 L14-6 http://csg.csail.mit.edu/6.S195

Blem et al [HPCA 2013] Spec INT 2006 on X86

Every 10th or 11th instruction is a branch

4

How frequent are
branches?

October 21, 2013 L14-7 http://csg.csail.mit.edu/6.S195

Blem et al [HPCA 2013] Spec FP 2006 on X86

core i7; x86 ISA

Benchmark
Total

Instructions branch % load % store % other %

bwaves 3.41E+10 3.2 51.4 16.8 28.7

cactusADM 1.05E+10 0.4 55.3 18.6 25.8

leslie3D 6.25E+10 4.9 35.3 12.8 46.9

milc 3.29E+10 2.2 32.2 13.8 51.8

tonto 4.88E+09 7.1 27.2 12.4 53.3

Average 3.6 39.6 14.4 42.4

Every 27th instruction is a branch

Observations

No pipelined processor can work
without a next address prediction

Control transfer happens every 8th to
30th instruction

October 21, 2013 L14-8 http://csg.csail.mit.edu/6.S195

5

Simplest Next Address
Prediction (NAP)

What is it?

Is this a good idea?

Can we do better?

pc, pc+4, pc+8, …i.e., Jumps and Branch are predicted
not taken

Yes, by knowing something about the program or by
learning from the past behavior of the program, aka
dynamic branch prediction

yes, because most instructions are not control transfer
instructions (reported 70% accuracy)

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-9

Static Branch Prediction

ISA can attach preferred direction semantics to
branches, e.g., Motorola MC88110

 bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted
direction, e.g., HP PA-RISC, Intel IA-64

 reported as ~80% accurate

Overall probability a branch is taken is ~60-70% but:

JZ

JZ
backward

90%
forward

50%

... but our ISA is fixed!
October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-10

6

Dynamic Branch Prediction

pc

Truth/Feedback

Prediction
Predictor

Operations

• Predict

• Update

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-11

update

p
re

d
ic

t

Dynamic Branch Prediction
learning based on past behavior

Temporal correlation

 The way a branch resolves may be a good predictor
of the way it will resolve at the next execution

Spatial correlation

 Several branches may resolve in a highly correlated
manner (a preferred path of execution)

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-12

7

Observations
There is a plethora of branch prediction
schemes – their importance grows with the
depth of processor pipeline

Processors often use more than one prediction
scheme

It is usually easy to understand the data
structures required to implement a particular
scheme

It takes considerably more effort to

 Integrate a prediction scheme in the pipeline

 Understand the interactions between various schemes

 Understand the performance implications

we will start with the basics ...
October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-13

Instruction Direction known after Target known after

J

JR

BEQZ/BNEZ

MIPS Branches and Jumps
Each instruction fetch depends on some
information from the preceding instruction:

 1. Is the preceding instruction a taken branch?

 2. If so, what is the target address?

After Inst. Decode

After Inst. Decode After Inst. Decode

After Inst. Decode After Reg. Fetch

After Exec

A predictor can redirect the pc only after the relevant
information required by the predictor is available

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-14

8

Overview of control prediction

Need
next PC

immediately

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

Next Addr
Pred

tight
loop

P
C

Decode
Reg
Read

Execute
Write
Back

Given (pc, ppc), a misprediction can be corrected (used to redirect
the pc) as soon as it is detected. In fact, pc can be redirected as
soon as we have a “better” prediction. However, for forward progress
it is important that a correct pc should never be redirected.

mispred
insts

must be
filtered

correct
mispred

correct
mispred

correct
mispred

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-15

Next Address Predictor (NAP)
first attempt

Fetch: ppc = look up the target in BTB
Later check prediction, if wrong then kill the instruction
and update BTB

iMem

pc

Branch Target
Buffer (BTB)
(2k entries)

k

predicted

target

 target

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-16

pc is the only
information
NAP has

9

Address Collisions

What will be fetched after the instruction at 1028?
 NAP prediction =
 Correct target =

Assume a
128-entry
BTB target

236

1028 Add

132 Jump 100

Instruction
Memory

236
1032

kill PC=236 and fetch PC=1032

 Is this a common occurrence?
 Can we avoid these bubbles?

yes
yes

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-17

Use BTB for Control
Instructions only

BTB contains useful information for branch and
jump instructions only

 Do not update it for other instructions

For all other instructions the next PC is (PC)+4!

How to achieve this effect without decoding
the instruction?

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-18

10

Branch Target Buffer (BTB)

Keep the (pc, target pc) in the BTB

pc+4 is predicted if no pc match is found

BTB is updated only for branches and jumps

2k-entry direct-mapped BTB I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

 Permits ppc to be determined before instruction is decoded
October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-19

Consulting BTB Before
Decoding

1028 Add

132 Jump 100

target

236

entry PC

132

 If the match for pc fails, pc+4 is fetched
pc=132, match succeeds, instruction at 236 is fetched
pc=1028, match fails, instruction at 1028+4 is fetched

 eliminates false predictions after ALU instructions

 BTB contains entries only for control transfer instructions
 more room to store branch targets

Even very small BTBs are very effective

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-20

11

Next Addr Predictor interface

interface AddrPred;

 method Addr predPc(Addr pc);

 method Action update(Redirect rd);

endinterface

Two implementations:
a) Simple PC+4 predictor
b) Predictor using BTB

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-21

Simple PC+4 predictor

module mkPcPlus4(AddrPred);

 method Addr predPc(Addr pc);

 return pc + 4;

 endmethod

 method Action update(Redirect rd);

 endmethod

endmodule

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-22

12

BTB predictor
module mkBtb(AddrPred);

 RegFile#(BtbIndex, Addr) ppcArr <- mkRegFileFull;

 RegFile#(BtbIndex, BtbTag) entryPcArr <- mkRegFileFull;

 Vector#(BtbEntries, Reg#(Bool))

 validArr <- replicateM(mkReg(False));

 function BtbIndex getIndex(Addr pc)=truncate(pc>>2);

 function BtbTag getTag(Addr pc) = truncateLSB(pc);

 method Addr predPc(Addr pc);

 BtbIndex index = getIndex(pc);

 BtbTag tag = getTag(pc);

 if(validArr[index] && tag == entryPcArr.sub(index))

 return ppcArr.sub(index);

 else return (pc + 4);

 endmethod

 method Action update(Redirect redirect); ...

endmodule

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-23

BTB predictor update method

 method Action update(Redirect redirect);

 if(redirect.taken)

 begin

 let index = getIndex(redirect.pc);

 let tag = getTag(redirect.pc);

 validArr[index] <= True;

 entryPcArr.upd(index, tag);

 ppcArr.upd(index, redirect.nextPc);

 end

 endmethod

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-24

Input redirect contains pc, the correct next pc and
whether the branch was taken or not (to avoid making
entries for not-taken branches

13

Integrating BTB in the 2-Stage
pipeline
module mkProc(Proc);

 Reg#(Addr) pc <- mkRegU;

 RFile rf <- mkRFile;

 IMemory iMem <- mkIMemory;

 DMemory dMem <- mkDMemory;

 Fifo#(Decode2Execute) d2e <- mkFifo;

 Reg#(Bool) fEpoch <- mkReg(False);

 Reg#(Bool) eEpoch <- mkReg(False);

 Fifo#(Addr) redirect <- mkFifo;

 AddrPred btb <- mkBtb

 Scoreboard#(1) sb <- mkScoreboard;

 rule doFetch …

 rule doExecute …

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-25

2-Stage-DH pipeline

doFetch rule
rule doFetch;

 let inst = iMem.req(pc);

 if(redirect.notEmpty) begin

 fEpoch <= !fEpoch; pc <= redirect.first;

 redirect.deq; end

 else begin

 let ppc = nextAddrPredictor(pc); let dInst = decode(inst);

 let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2);

 if(!stall) begin

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 d2e.enq(Decode2Execute{pc: pc, nextPC: ppc,

 dIinst: dInst, epoch: fEpoch,

 rVal1: rVal1, rVal2: rVal2});

 sb.insert(dInst.rDst); pc <= ppc; end

 end

 endrule

update btb

btb.predPc(pc)

change pc only on a mispredict

 btb.update(redirect.first); redirect.deq; end

if(redirect.notEmpty && redirect.first.mispredict)

 begin pc <= redirect.first.ppc; fEpoch <= !fEpoch; end

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-26

14

2-Stage-DH pipeline
doExecute rule
rule doExecute;

 let x = d2e.first;

 let dInst = x.dInst; let pc = x.pc;

 let ppc = x.ppc; let epoch = x.epoch;

 let rVal1 = x.rVal1; let rVal2 = x.rVal2;

 if(epoch == eEpoch) begin

 let eInst = exec(dInst, rVal1, rVal2, pc, ppc);

 if(eInst.iType == Ld) eInst.data <-

 dMem.req(MemReq{op:Ld, addr:eInst.addr, data:?});

 else if (eInst.iType == St) let d <-

 dMem.req(MemReq{op:St, addr:eInst.addr, data:eInst.data});

 if (isValid(eInst.dst))

 rf.wr(validRegValue(eInst.dst), eInst.data);

 if(eInst.mispredict) begin

 redirect.enq(eInst.addr); eEpoch <= !eEpoch; end

 end

 d2e.deq; sb.remove;

endrule

send information about branch resolution

 if(eInst.iType == J || eInst.iType == Jr || eInst.iType == Br)

 redirect.enq(Redirect{pc: pc, nextPc: eInst.addr,

 taken: eInst.brTaken, mispredict: eInst.mispredict,

 brType: eInst.iType, });

 if(eInst.mispredict) eEpoch <= !eEpoch;

 d2e.deq; sb.remove;

endrule

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-27

Multiple Predictors: BTB +
Branch Direction Predictors

Suppose we maintain a table of how a particular Br has
resolved before. At the decode stage we can consult this
table to check if the incoming (pc, ppc) pair matches
our prediction. If not redirect the pc

Need
next PC

immediately

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

Next Addr
Pred

tight
loop

P
C

Decode
Reg
Read

Execute
Write
Back

mispred
insts

must be
filtered

Br Dir
Pred

correct
mispred

correct
mispred

October 21, 2013 http://csg.csail.mit.edu/6.S195 L14-28

stay tuned

