
1

Constructive Computer Architecture:

Branch Prediction:
Direction Predictors

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

Staff and students in 6.375 (Spring 2013),
6.S195 (Fall 2012), 6.S078 (Spring 2012)

 Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh

External

 Prof Amey Karkare & students at IIT Kanpur

 Prof Jihong Kim & students at Seoul Nation University

 Prof Derek Chiou, University of Texas at Austin

 Prof Yoav Etsion & students at Technion

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-2

2

Multiple Predictors: BTB +
Branch Direction Predictors

Suppose we maintain a table of how a particular Br has
resolved before. At the decode stage we can consult this
table to check if the incoming (pc, ppc) pair matches
our prediction. If not redirect the pc

Need
next PC

immediately

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

Next Addr
Pred

tight
loop

P
C

Decode
Reg
Read

Execute
Write
Back

mispred
insts

must be
filtered

Br Dir
Pred

correct
mispred

correct
mispred

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-3

Branch Prediction Bits
Remember how the branch was resolved previously

• Assume 2 BP bits per instruction
• Use saturating counter

O
n
 ¬

ta
k
e
n




 O

n
 ta

k
e
n

1 1 Strongly taken

1 0 Weakly taken

0 1 Weakly ¬taken

0 0 Strongly ¬taken

Direction prediction changes only after two successive
bad predictions

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-4

3

Two-bit versus one-bit
Branch prediction

Consider the branch instruction needed to
implement a loop

 with one bit, the prediction will always be set
incorrectly on loop exit

 with two bits the prediction will not change on loop
exit

A little bit of hysteresis is good in changing predictions

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-5

Branch History Table (BHT)

4K-entry BHT, 2 bits/entry, ~80-90% correct
direction predictions

0 0

Fetch PC

Branch?

Opcode offset

Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

Target PC

+

from
Fetch

After decoding the instruction if it turns out
to be a branch, then we can consult BHT
using the pc; if this prediction is different
from the incoming ppc we can redirect
Fetch

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-6

4

Where does BHT fit in the
processor pipeline?

BHT can only be used after instruction decode

We still need the next instruction address
predictor (e.g., BTB) at the fetch stage

Need a mechanism to update the BHT

 where does the update information come from?

Execute

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-7

A step-by-step explanation
of how pipelines with
multiple predictors work

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-8

5

re
c
ir
e
c
t

N-Stage pipeline – BTB only

Execute d2e Decode f2d Fetch PC

miss
pred?

fEpoch

At Execute:
 if (epoch!=eEpoch) then mark instruction as poisoned, send it to the

latter stages so that scoreboard entry can be removed
 if no poisoning & mispred then change eEpoch; send <pc, newPc, ...>

to Fetch

At Fetch:
 msg from execute: train BTB with <pc, newPc, taken, mispredict>
 if msg from execute indicates misprediction then set pc, change

fEpoch

attached to
every fetched
instruction

{pc, ppc, epoch}

eEpoch
{pc, newPc, taken
mispredict, ...}

BTB

...

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-9

Nomenclature
Drop an instruction: What we really mean is poison the
instruction so that the subsequent stages know not to
update any architectural state. The poisoned instruction
has to be passed down for book keeping reasons, i.e.,
to remove it from the scoreboard.

Detecting a misprediction versus training/updating a
predictor. On a pc misprediction, information about
redirecting the pc has to be passed to the fetch stage.
However for training the BTB and other predictors
information has to be passed even when there is no
misprediction.
 we will first focus on pc redirection and then on predictor training

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-10

6

N-Stage pipeline:
Two predictors

Suppose both Decode and Execute can redirect the PC;
Execute redirect should have priority, i.e., Execute
redirect should never be overruled

We will use separate epochs for each redirecting stage
 feEpoch and deEpoch are estimates of eEpoch at Fetch and

Decode, respectively

 fdEpoch is Fetch’s estimates of dEpoch

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

redirect PC

redirect PC
deEpoch

eEpoch feEpoch e
R
e
c
ir
e
c
t

fdEpoch dEpoch

d
R
e
c
ir
e
c
t

...

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-11

N-Stage pipeline: Two predictors
Redirection logic

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

deEpoch

eEpoch feEpoch e
R
e
c
ir
e
c
t

fdEpoch dEpoch

d
R
e
c
ir
e
c
t

...

At execute:
 if (ieEp!=eEp) then drop the instruction
 if no-drop & mispred then change eEp; send <correct next pc, new eEp, …> to fetch

At fetch:
 msg from execute: if (mispredict) set pc, change feEp
 msg from decode: if (ideEp=feEp)then set pc, change fdEp

At decode:
 if (ieEp!=deEp) then deEp <= ieEp and dEp = idEp
 else if (idEp!=dEp) then drop the instruction
 for non dropped instructions
 if (ppc != Dpred(pc)) then change dEp, send <Dpred(pc), new dEp, deEp> to Fetch

{..., ieEp} {pc, ppc, ieEp, idEp}

{pc, newPc, taken
mispredict, ...}

{pc, newPc,
idEp, ideEp...}

make sure that the msg
from Decode is not from
a wrong path instruction

if incoming eEp does not
match deEp then Execute
has redirected the pc

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-12

7

now some coding ...

4-stage pipeline (F, D&R, E&M, W)

No predictor training, so messages are sent
only for redirection

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-13

You will explore the effect of
predictor training in the lab

4-Stage pipeline with Branch
Prediction
module mkProc(Proc);

 Reg#(Addr) pc <- mkRegU;

 RFile rf <- mkBypassRFile;

 IMemory iMem <- mkIMemory;

 DMemory dMem <- mkDMemory;

 Fifo#(1, Decode2Execute) d2e <- mkPipelineFifo;

 Fifo#(1, Exec2Commit) e2c <- mkPipelineFifo;

 Scoreboard#(2) sb <- mkPipelineScoreboard;

 Reg#(Bool) feEp <- mkReg(False);

 Reg#(Bool) fdEp <- mkReg(False);

 Reg#(Bool) dEp <- mkReg(False);

 Reg#(Bool) deEp <- mkReg(False);

 Reg#(Bool) eEp <- mkReg(False);

 Fifo#(ExecRedirect) redirect <- mkBypassFifo;

 Fifo#(DecRedirect) decRedirect <- mkBypassFifo;

 AddrPred#(16) addrPred <- mkBTB;

 DirPred#(1024) dirPred <- mkBHT;

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-14

8

4-Stage-BP pipeline
Fetch rule
rule doFetch;

 let inst = iMem.req(pc);

 if(redirect.notEmpty) begin

 feEp <= !feEp; pc <= redirect.first.newPc;

 redirect.deq; end

 else if(decRedirect.notEmpty)

 begin

 if(decRedirect.first.eEp == feEp) begin

 fdEp <= !fdEp; pc <= decRedirect.first.newPc; end

 decRedirect.deq;

 end;

 else begin

 let ppc = addrPred.predPc(pc);

 f2d.enq(Fetch2Decoode{pc: pc, ppc: ppc, inst: inst,

 eEp: feEp, dEp: fdEp});

 end

endrule

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-15

4-Stage-BP pipeline
Decode&RegRead Action
function Action decAndRegFetch(DInst dInst, Addr pc, Addr ppc,

Bool eEp);

action

 let stall = sb.search1(dInst.src1)|| sb.search2(dInst.src2)

 || sb.search3(dInst.dst);;

 if(!stall)

 begin

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 d2e.enq(Decode2Execute{pc: pc, ppc: ppc,

 dInst: dInst, epoch: eEp,

 rVal1: rVal1, rVal2: rVal2});

 sb.insert(dInst.rDst);

 end

endaction

endfunction

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-16

9

4-Stage-BP pipeline
Decode&RegRead rule
rule doDecode;

 let x = f2d.first; let inst = x.inst; let pc = x.pc;

 let ppc = x.ppc; let idEp = x.dEp; let ieEp = x.eEp;

 let dInst = decode(inst);

 let newPc = dirPrec.predAddr(pc, dInst);

 if(ieEp != deEp) begin // change Decode’s epochs and

 // continue normal instruction execution

 deEp <= ieEp; let newdEp = idEp;

 decAndRegRead(inst, pc, newPc, ieEp);

 if(ppc != newPc) begin

 newDEp = !newdEp; decRedirect.enq(DecRedirect{pc: pc,

 newPc: newPc, eEp: ieEp}); end

 dEp <= newdEp end

 else if(idEp == dEp) begin

 decAndRegRead(inst, pc, newPc, ieEp);

 if(ppc != newPc) begin

 dEp <= !dEp; decRedirect.enq(DecRedirect{pc: pc,

 newPc: newPc, eEp: ieEp}); end

 end

 f2d.deq;

endrule

 October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-17

4-Stage-BP pipeline
Execute rule
rule doExecute;

 let x = d2e.first;

 let dInst = x.dInst; let pc = x.pc;

 let ppc = x.ppc; let epoch = x.epoch;

 let rVal1 = x.rVal1; let rVal2 = x.rVal2;

 if(epoch == eEpoch) begin

 let eInst = exec(dInst, rVal1, rVal2, pc, ppc);

 if(eInst.iType == Ld) eInst.data <-

 dMem.req(MemReq{op:Ld, addr:eInst.addr, data:?});

 else if (eInst.iType == St) let d <-

 dMem.req(MemReq{op:St, addr:eInst.addr, data:eInst.data});

 e2c.enq(Exec2Commit{dst:eInst.dst, data:eInst.data});

 if(eInst.mispredict) begin

 redirect.enq(eInst.addr); eEpoch <= !eEpoch; end

 end

 else e2c.enq(Exec2Commit{dst:Invalid, data:?});

 d2e.deq;

endrule

no change

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-18

10

4-Stage-BP pipeline
Commit rule
 rule doCommit;

 let dst = eInst.first.dst;

 let data = eInst.first.data;

 if(isValid(dst))

 rf.wr(tuple2(validValue(dst), data);

 e2c.deq;

 sb.remove;

 endrule

no change

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-19

Exploiting Spatial Correlation
Yeh and Patt, 1992

October 24, 2011 L12-20 http://www.csg.csail.mit.edu/6.823

History register, H, records the direction of the last N
branches executed by the processor and the predictor
uses this information to predict the resolution of the next
branch

if (x[i] < 7) then
 y += 1;
if (x[i] < 5) then
 c -= 4;

If first condition is false then so is second condition

11

Two-Level Branch Predictor

October 24, 2011 L12-21 http://www.csg.csail.mit.edu/6.823

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0 0

k Fetch PC

Taken/¬Taken?

Shift in Taken/¬Taken
results of each branch

2-bit global branch
history shift register

Four
2k, 2-bit
Entry
BHT

Uses of Jump Register (JR)
Switch statements (jump to address of
matching case)

Dynamic function call (jump to run-time
function address)

Subroutine returns (jump to return address)

October 24, 2011 L12-22 http://www.csg.csail.mit.edu/6.823

How well does BTB work for each of these cases?

BTB works well if the same case is used repeatedly

BTB works well if the same function is usually called, (e.g., in
C++ programming, when objects have same type in virtual
function call)

BTB works well if usually return to the same place

However, often one function is called from many
distinct call sites!

12

Subroutine Return Stack
A small structure to accelerate JR
for subroutine returns is typically
much more accurate than BTBs

October 24, 2011 L12-23 http://www.csg.csail.mit.edu/6.823

&fb()

&fc()

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fd() k entries
(typically k=8-16)

Pop return address
when subroutine
return decoded

Push call address
when function call
executed

Multiple Predictors: BTB +
BHT + Ret Predictors

One of the PowerPCs has all the three predictors
Performance analysis is quite difficult – depends upon the
sizes of various tables and program behavior
Correctness: The system must work even if every prediction
is wrong

Need
next PC

immediately

Instr type,
PC relative

targets
available

Simple
conditions,

register targets
available

Complex
conditions
available

Next Addr
Pred

tight
loop

P
C

Decode
Reg
Read

Execute
Write
Back

mispred
insts

must be
filtered

Br Dir
Pred

Ret Addr
stack JR

correct
mispred

October 23, 2013 http://csg.csail.mit.edu/6.S195 L15-24

