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The use of magic memories (combinational reads)
makes such design unrealistic
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Magic Memory Model

WriteEnable
Cllock l

Address ———
MAGIC |, ReadData

WriteData —— RAM

4 Reads and writes are always completed in
one cycle
= a Read can be done any time (i.e. combinational)

» If enabled, a Write is performed at the rising clock
edge

(the write address and data must be stable at the clock edge)

In a real DRAM the data will be available several
cycles after the address is supplied
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Memory Hierarchy

U Small, Big. S| M
Fast Memory l—-- 1y ST Wil
RegFile <::> SRAM v DRAM

holds frequently used data

size: RegFile << SRAM << DRAM
latency: RegFile << SRAM << DRAM
bandwidth: on-chip >> off-chip

why?

On a data access:
hit (data e fast memory) = low latency access
miss (data ¢ fast memory) = long latency access (DRAM)
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Inside a Cache
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How many bits are needed for the tag?
Enough to uniquely identify the block
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Cache Read

Search cache tags to find match for
the processor generated address

Found in cache Not in cache

a.k.a. hit a.k.a. miss
Return copy of Read block of data from
data from cache Main Memory - may require

writing back a cache line

Which line do

Wait ... we replace?

Return data to processor and
update cache
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Write behavior

4 On a write hit

= Write-through: write to both cache and the next level
memory

= write-back: write only to cache and update the next
level memory when line is evacuated
@ On a write miss

= Allocate - because of multi-word lines we first fetch the
line, and then update a word in it

= Not allocate - word modified in memory
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Cache Line Size

# A cache line usually holds more than one word

= Reduces the number of tags and the tag size needed
to identify memory locations

= Spatial locality: Experience shows that if address x is
referenced then addresses x+1, x+2 etc. are very
likely to be referenced in a short time window

+ consider instruction streams, array and record accesses

s Communication systems (e.g., bus) are often more

efficient in transporting larger data sets
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Types of misses

4 Compulsory misses (cold start)
= First time data is referenced
= Run billions of instructions, become insignificant

# Capacity misses
= Working set is larger than cache size
= Solution: increase cache size

# Conflict misses

= Usually multiple memory locations are mapped to the
same cache location to simplify implementations

= Thus it is possible that the designated cache location is
full while there are empty locations in the cache.

= Solution: Set-Associative Caches
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Internal Cache Organization

# Cache designs restrict where in cache a

particular address can reside

» Direct mapped: An address can reside in exactly one
location in the cache. The cache location is typically
determined by the lowest order address bits

= n-way Set associative: An address can reside in any
of the a set of n locations in the cache. The set is
typically determine by the lowest order address bits
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Direct-Mapped Cache

~—— Block number Block offset
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What is a bad reference pattern? Strided = size of cache
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Direct Map Address Selection

higher-order vs. lower-order address bits

| Index * | - Tag |Off5et|
i | -
V) Tag Data Block

HIT Data Word or Byte

Why higher-order bits as tag may be undesirable?
Spatially local blocks conflict
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Reduce Conflict Misses

Memory time =
Hit time + Prob(miss) * Miss penalty

# Associativity: Reduce conflict misses by
allowing blocks to go to several sets in cache

= 2-way set associative: each block can be mapped to
one of 2 cache sets

s Fully associative: each block can be mapped to any
cache frame
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2-Way Set-Associative Cache
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Replacement Policy

# In order to bring in a new cache line, usually
another cache line has to be thrown out.
Which one?
= No choice in replacement if the cache is direct

mapped

# Replacement policy for set-associative caches

= One that is not dirty, i.e., has not been modified
+ In I-cache all lines are clean

+ In D-cache if a dirty line has to be thrown out then it must be
written back first

» Least recently used? How much is performance
= Most recently used? affected by the choice?
= Random? Difficult to know without

benchmarks and

quantitative measurements
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Blocking vs. Non-Blocking

cache

# Blocking cache:
= At most one outstanding miss
» Cache must wait for memory to respond
= Cache does not accept requests in the
meantime
# Non-blocking cache:
= Multiple outstanding misses

» Cache can continue to process requests while
waiting for memory to respond to misses

We will first design a write-back, No write-miss allocate,
blocking cache
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Blocking Cache Interface

req j status il )
memReq
Processor \M~ DRAM or

next level
cache ] cache
resp hitQ \ ] mRespQ

memResp
——

interface Cache;
method Action reqg(MemReq r);
method ActionValuei (Data) resp;

method ActionValuei (MemReq) memReq;
method Action memResp (Line r);

endinterface
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Interface dynamics

# The cache either gets a hit and responds
immediately, or it gets a miss, in which case it
takes several steps to process the miss

# Reading the response dequeues it

# Requests and responses follow the FIFO order

# Methods are guarded, e.g., the cache may not
be ready to accept a request because it is
processing a miss

# A status register keeps track of the state of the

cache while it is processing a miss
typedef enum {Ready, StartMiss, SendFillReq,
WaitFillResp} CacheStatus deriving (Bits, Eq);
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Blocking Cache
code structure

module mkCache (Cache) ;
RegFile# (CacheIndex, Line) dataArray <-
mkRegFileFull; ..
rule startMiss .. endrule;
method Action reqg(MemReq r) .. endmethod;
method ActionValuei (Data) resp .. endmethod;

method ActionValuei (MemReqg) memReq .. endmethod;
method Action memResp (Line r) .. endmethod;
endmodule

# Internal communications is in line sizes but the processor
interface, e.g., the response from the hitQ is word size
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Blocking cache
state elements

RegFile# (CacheIndex, Maybe# (CacheTag)

RegFile# (CacheIndex, Bool) dirtyA

Regi# (MemReq) missReq <- mkRegU;

Fifo# (2, MemReqg) memReqgQ <- mkCFFifo6;

Fifo#(2, Line) memRespQ <- mkCFFifo;

function CachelIndex getIdx (Addr addr)
function CacheTag getTag (Addr addr)
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AiRegFile#(CacheIndex, Line) dataArray <- mkRegFileFull;

tagArray <- mkRegFileFull;

Fifo# (1, Data) hitQ <- mkBypassFifo; are kepf Togefher

Reg# (CacheStatus) status <- mkReg(Ready) :

)

<- mkRegFileFull;
Tag and valid bits

as a Maybe type

CF Fifos are preferable
because they provide better
decoupling. An extra cycle
here may not affect the
performance by much

= truncate (addr>>2);
= truncatelLSB (addr) ;
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Req method o

hit processing

the cache interface to include
a cacheline flush command

is straightforward to extend

method Action reqg(MemReqg r) if(status
let idx = getIdx(r.addr); let tag =
let currTag = tagArray.sub (idx);
let hit = isValid(currTag)?

if(r.op == Ld) begin

== Ready) ;
getTag (r.addr) ;

fromMaybe (?, currTag)==tag : False;

if(hit) hitQ.eng(dataArray.sub(idx));

else begin missReq <= r; status <= StartMiss; end

end
else begin // It is a store request
if (hit) begin dataArray.upd(idx,
dirtyArray.upd (idx,

r.data);

True); end
else memReqQ.enqg(r); // write-miss no allocate

end In case of multiword cache line, we only'
overwrite the appropriate word of the line

endmethod
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Rest of the methods

method ActionValue# (Data) resp;
hitQ.deqg;
return hitQ.first;

endmethod

-

method ActionValue# (MemReq) memReq;

memRegQ.deq;
return memReqgQ.first;
endmethod

method Action memResp (Line r);
memRespQ.enqg(r) ;
endmethod ]
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Memory side
methods

L17-23

Start miss rule

Ready -> StartMiss -> SendFillReqg -> WaitFillResp -> Ready

rule startMiss (status == StartMiss);
let idx = getIdx(missReqg.addr);
let tag = tagArray.sub (idx);
let dirty = dirtyArray.sub (idx);

let addr = {fromMaybe (?,tag), idx,
let data = dataArray.sub (idx);

if(isvValid(tag) && dirty) begin // write-back

2'b0};

memRedqQ.eng (MemReg{op: St, addr: addr, data: data});

end
status <= SendFillReq;

endrule
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Send-fill and Wait-fill rules

Ready -> StartMiss -> SendFillReqg -> WaitFillResp -> Ready

rule sendFillReq (status == SendFillReq);
memRegQ.eng (missReq) ; status <= WaitFillResp;
endrule

Ready -> StartMiss -> SendFillReqg -> WaitFillResp -> Ready ‘

rule waitFillResp (status == WaitFillResp) ;

let idx = getldx (missReqg.addr) ;
let tag = getTag(missReqg.addr) ;
let data = memRespQ.first;
dataArray.upd(idx, data);
tagArray.upd(idx, Valid (tag));
dirtyArray.upd(idx, False);
hitQ.eng(data); memRespQ.deq;
status <= Ready;

endrule
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Hit and miss performance

® Hit
= Combinational read/write, i.e. 0-cycle response
= Requires req and resp methods to be concurrently
schedulable, which in turn requires
hitQ.enqg < {hitQ.deqg, hitQ.first}
i.e., hitQ should be a bypass Fifo

# Miss
= No evacuation: memory load latency plus
combinational read/write
= Evacuation: memory store followed by memory load
latency plus combinational read/write

Adding an extra cycle here and there in the miss case
should not have a big negative performance impact
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Four-Stage Pipeline

- Register File
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insert bypass FIFO’s to deal with
(0,n) cycle memory response
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now some coding ...

4 Integrating caches in to the 4-stage pipeline
(F, D&R, E&M, W) from the last lecture
+ Direction predictor training is incompletely
specified
4 In L13 we discussed splitting a pipeline stag
into two stages by inserting a bypass FIFO.

e

We show it again here
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4-Stage pipeline with BTB+BHT
without caches

module mkProc (Proc) ;

Reg# (Addr) pc <- mkRegU;

RFile rf <- mkBypassRFile;
IMemor Merm mikIMemory;
PMemory dMem—<—mkbMemory;

Fifo# (1, Decode2Execute) d2e <- mkPipelineFifo;

Fifo# (1, Exec2Commit) e2c <- mkPipelineFifo;
Scoreboard# (2) sb <- mkPipelineScoreboard;

Reg# (Bool) feEp <- mkReg (False) ;

Reg# (Bool) fdEp <- mkReg (False) ;

Reg# (Bool) dEp <- mkReg (False);

Reg# (Bool) deEp <- mkReg(False) ;

Reg# (Bool) eEp <- mkReg (False);

Fifo# (ExecRedirect) redirect <- mkBypassFifo;
Fifo# (DecRedirect) decRedirect <- mkBypassFifo;
NextAddrPred# (16) nap <- mkBTB;

DirPred# (1024) dirPred <- mkBHT;
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4-Stage pipeline with BTB+BHT
with caches

module mkProc (Proc) ;
Reg# (Addr) pc <- mkRegU; Rfile rf <- mkBypassRFile;
Cache# (ICacheSize) iCache <- mkCache;
Cache# (DCacheSize) dCache <- mkCache;
Fifo# (1, Fetch2Decode) f12f2 <- mkBypassFifo;
Fifo# (1, Maybe#{Einst}) e2m <- mkBypassFifo;
Fifo# (1, Decode2Execute) d2e <- mkPipelineFifo;
Fifo# (1, Exec2Commit) m2w <- mkPipelineFifo;
Scoreboard# (2) sb <- mkPipelineScoreboard;
Regi# (Bool) feEp <- mkReg(False) ;
Regi# (Bool) fdEp <- mkReg (False) ;
Regi# (Bool) dEp <- mkReg (False);
Regi# (Bool) deEp <- mkReg(False) ;
Reg# (Bool) eEp <- mkReg (False);
Fifo# (ExecRedirect) execRedirect <- mkBypassFifo;
Fifo# (DecRedirect) decRedirect <- mkBypassFifo;
AddrPred# (16) addrPred <- mkBTB;
DirPred# (1024) dirPred <- mkBHT;
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4-Stage pipeline with BTB+BHT
without caches

rule doFetch;
let Gast—3M

€ IMemE

make a iMem request

T and enqueue into f12f2
SRvSASyas
if (redirect.notEmpty)

begin redirect.deqg;

nap.update (redirect.first); end
if (redirect.notEmpty && redirect.first.mispredict)
begin pc <= redirect.first.nextPc;

feEp <= !feEp; end

else if (decRedirect.notEmpty) begin
if (decRedirect.first.eEp
fdEp <=

== feEp)

fdEp; pc <= decRedirect.first.nextPc;
decRedirect.deq; end;

else begin

let

begin
end

.predPc (pc) ;
f2d.enqg(Fetch2Decoode{pc:

pc, ppc: ppc,
eEp: feEp, dEp:
end

endrule

inst: inst,
fdEp}) ;

where?
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4-Stage pipeline with
BTB+BHT with caches

rule doFetchl;

if (redirect.notEmpty)
begin redirect.deg;

nap.update (redirect.first); end
if (redirect.notEmpty && redirect.first.mispredict)

begin pc <= redirect.first.nextPc;

feEp <= !feEp; end
else if (decRedirect.notEmpty) begin
if (decRedirect.first.eEp == feEp) begin
fdEp <= !fdEp; pc <= decRedirect.first.nextPc; end
decRedirect.deq; end;
else begin
let ppc

nap.predPc (pc) ;
iCache.reqg(MemReg{op: Ld, addr: pc, data:?});
f12f2.enqg(Fetch2Decoode{pc: pc, ppc: ppc,

inst: ?
eEp: feEp, dEp:

-7
fdEp});
end

endrule
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4-Stage pipeline
Fetch2 rule

rule doFetch2;
let inst <- iCache.resp;
let f2dval = f12f2.first;
f2dval.inst = inst;
£f12£2.deq;
f2d.enqg(f2dval) ;

endrule

Execute rule can be split in two rules in a similar
manner to deal with dCache

next store buffers and non-blocking caches
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4-Stage pipeline
Execute rule

rule doExecute;
let x = d2e.first;

let dInst = x.dInst; let pc = x.pc;

let ppc = X.ppc; let epoch = x.epoch;

let rvVall = x.rVall; let rval2 = x.rvVal2;

if (epoch == eEpoch) begin
let eInst = exec(dInst, rvall, rVal2, pc, ppc);
if (eInst.iType == Ld) elInst.data <-

Mem.req (MemReg{op:Ld, addr:eInst.addr, data:?});
else i SeInsSt _1Type == St) let d <=
dMem.reqg (MemReq{op:St, addr:elnst.addr, data:eIﬁ;ETagigzjx
%§Z§Ténq(ExecZCommit{dst:eInst.dst, data:eInst.data});
if (eInst.mispredict) eEpoch <= TeEpoch
if (eInst.iType == || eInst.iType == Jr || elInst.iType == Br)
redirect.eng(Redirect{pc: pc, nextPc: elnst.addr,
taken: elInst.brTaken, mispredict: eInst.mispredict,
brType: eInst.iType}); end
else e2c.enqg(Exec2Commit{dst:Invalid, data:?});
d2e.deq;
endrule
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4-Stage pipeline
Execute rule with caches

™ rule doExecutel;

let x = d2e.first;

let dInst = x.dInst; let pc = x.pc;

let ppc = X.ppcC; let epoch = x.epoch;

let rvall = x.rvVall; let rvVal2 = x.rVal2;

if (epoch == eEpoch) begin
let elInst = exec(dInst, rvVall, rval2, pc, ppc):;
if (eInst.iType == Ld) elInst.data <-

dCache.reqg(MemReg{op:Ld, addr:elInst.addr, data:?});

else if (elInst.iType == St) let d <-

dCache.reg(MemReg{op:St, addr:elInst.addr, data:elnst.data}):;
e2m.eng(Valid (eInst));
if (eInst.mispredict) eEpoch <= !eEpoch
if (eInst.iType == J || elInst.iType == Jr || eInst.iType == Br)
redirect.enqg(Redirect{pc: pc, nextPc: elnst.addr,
taken: elInst.brTaken, mispredict: eInst.mispredict,
brType: eInst.iType}); end
else e?2m.enqg(Invalid);
dze.deq;
endrule
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4-Stage pipeline
Execute?2 rule

rule doExecute?2;

let eInst = e2m.first;

if (isvalid(eInst)) begin
let x = validvalue (eInst);
if (x.iType == Ld)
x.data <- dCache.resp;
m2w.eng (Exec2Commit {dst:x.dst, data:x.data}):;

end
else
m2w.eng (Exec2Commit{dst:Invalid, data:?});

ezm.deq;
endrule
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