Constructive Computer Architecture

Realistic Memories and
Caches

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-1

Contributors to the course
material

# Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

# Staff and students in 6.375 (Spring 2013),
6.5195 (Fall 2012), 6.S078 (Spring 2012)
= Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh
@ External
= Prof Amey Karkare & students at IIT Kanpur
= Prof Jihong Kim & students at Seoul Nation University
= Prof Derek Chiou, University of Texas at Austin
= Prof Yoav Etsion & students at Technion

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-2




Multistage Pipeline
1 1

c
8 Register File
—{ U ¢
N AX —:— <
2 /i\
' E | Al
@ »le2c
PC Decode _,A Execute >
P> ] >
A > >d2e
v N\ > -f A4
Inst r2as Data
Memory scoreboard Memory

The use of magic memories (combinational reads)
makes such design unrealistic
October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-3

Magic Memory Model

WriteEnable
Cllock l

Address ———
MAGIC |, ReadData

WriteData —— RAM

4 Reads and writes are always completed in
one cycle
= a Read can be done any time (i.e. combinational)

» If enabled, a Write is performed at the rising clock
edge

(the write address and data must be stable at the clock edge)

In a real DRAM the data will be available several
cycles after the address is supplied

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-4




Memory Hierarchy

U Small, Big. S| M
Fast Memory l—-- 1y ST Wil
RegFile <::> SRAM v DRAM

holds frequently used data

size: RegFile << SRAM << DRAM
latency: RegFile << SRAM << DRAM
bandwidth: on-chip >> off-chip

why?

On a data access:
hit (data e fast memory) = low latency access
miss (data ¢ fast memory) = long latency access (DRAM)

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-5

Inside a Cache
Vol ] a— Address

Address
Processor Cache Main
: Memory
Data - " Data

_~copy of main ment-.._
" locations 100, 101, ..o

—

Data| Data Line =

100 |Byte|Byte] | | -
304 |od | | | <Add tag, Data blk>
_6848
Address 416 Data Block
Tag

How many bits are needed for the tag?
Enough to uniquely identify the block

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-6




Cache Read

Search cache tags to find match for
the processor generated address

Found in cache Not in cache

a.k.a. hit a.k.a. miss
Return copy of Read block of data from
data from cache Main Memory - may require

writing back a cache line

Which line do

Wait ... we replace?

Return data to processor and
update cache

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-7

Write behavior

4 On a write hit

= Write-through: write to both cache and the next level
memory

= write-back: write only to cache and update the next
level memory when line is evacuated
@ On a write miss

= Allocate - because of multi-word lines we first fetch the
line, and then update a word in it

= Not allocate - word modified in memory

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-8




Cache Line Size

# A cache line usually holds more than one word

= Reduces the number of tags and the tag size needed
to identify memory locations

= Spatial locality: Experience shows that if address x is
referenced then addresses x+1, x+2 etc. are very
likely to be referenced in a short time window

+ consider instruction streams, array and record accesses

s Communication systems (e.g., bus) are often more

efficient in transporting larger data sets

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-9

Types of misses

4 Compulsory misses (cold start)
= First time data is referenced
= Run billions of instructions, become insignificant

# Capacity misses
= Working set is larger than cache size
= Solution: increase cache size

# Conflict misses

= Usually multiple memory locations are mapped to the
same cache location to simplify implementations

= Thus it is possible that the designated cache location is
full while there are empty locations in the cache.

= Solution: Set-Associative Caches

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-10




Internal Cache Organization

# Cache designs restrict where in cache a

particular address can reside

» Direct mapped: An address can reside in exactly one
location in the cache. The cache location is typically
determined by the lowest order address bits

= n-way Set associative: An address can reside in any
of the a set of n locations in the cache. The set is
typically determine by the lowest order address bits

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-11

Direct-Mapped Cache

~—— Block number Block offset
A
[ | l_\
Tag | Index [ offset| req address
) 2] [ .
t 'k 7
V| Tag Data Block
! [, AT k
lines
HIT Data Word or Byte

What is a bad reference pattern? Strided = size of cache

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-12




Direct Map Address Selection

higher-order vs. lower-order address bits

| Index * | - Tag |Off5et|
i | -
V) Tag Data Block

HIT Data Word or Byte

Why higher-order bits as tag may be undesirable?
Spatially local blocks conflict

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-13

Reduce Conflict Misses

Memory time =
Hit time + Prob(miss) * Miss penalty

# Associativity: Reduce conflict misses by
allowing blocks to go to several sets in cache

= 2-way set associative: each block can be mapped to
one of 2 cache sets

s Fully associative: each block can be mapped to any
cache frame

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-14




2-Way Set-Associative Cache

Tag Index Block

Offset b
R |

k
Data Block V,Tag ,Data Block

. ' Data

Word

—T{ or Byte
'ﬂ >— hit
October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-15

Replacement Policy

# In order to bring in a new cache line, usually
another cache line has to be thrown out.
Which one?
= No choice in replacement if the cache is direct

mapped

# Replacement policy for set-associative caches

= One that is not dirty, i.e., has not been modified
+ In I-cache all lines are clean

+ In D-cache if a dirty line has to be thrown out then it must be
written back first

» Least recently used? How much is performance
= Most recently used? affected by the choice?
= Random? Difficult to know without

benchmarks and

quantitative measurements
October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-16




Blocking vs. Non-Blocking

cache

# Blocking cache:
= At most one outstanding miss
» Cache must wait for memory to respond
= Cache does not accept requests in the
meantime
# Non-blocking cache:
= Multiple outstanding misses

» Cache can continue to process requests while
waiting for memory to respond to misses

We will first design a write-back, No write-miss allocate,
blocking cache

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-17

Blocking Cache Interface

req j status il )
memReq
Processor \M~ DRAM or

next level
cache ] cache
resp hitQ \ ] mRespQ

memResp
——

interface Cache;
method Action reqg(MemReq r);
method ActionValuei (Data) resp;

method ActionValuei (MemReq) memReq;
method Action memResp (Line r);

endinterface

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-18




Interface dynamics

# The cache either gets a hit and responds
immediately, or it gets a miss, in which case it
takes several steps to process the miss

# Reading the response dequeues it

# Requests and responses follow the FIFO order

# Methods are guarded, e.g., the cache may not
be ready to accept a request because it is
processing a miss

# A status register keeps track of the state of the

cache while it is processing a miss
typedef enum {Ready, StartMiss, SendFillReq,
WaitFillResp} CacheStatus deriving (Bits, Eq);

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-19

Blocking Cache
code structure

module mkCache (Cache) ;
RegFile# (CacheIndex, Line) dataArray <-
mkRegFileFull; ..
rule startMiss .. endrule;
method Action reqg(MemReq r) .. endmethod;
method ActionValuei (Data) resp .. endmethod;

method ActionValuei (MemReqg) memReq .. endmethod;
method Action memResp (Line r) .. endmethod;
endmodule

# Internal communications is in line sizes but the processor
interface, e.g., the response from the hitQ is word size

October 30, 2013 http://csg.csail.mit.edu/6.5195

L17-20

10



Blocking cache
state elements

RegFile# (CacheIndex, Maybe# (CacheTag)

RegFile# (CacheIndex, Bool) dirtyA

Regi# (MemReq) missReq <- mkRegU;

Fifo# (2, MemReqg) memReqgQ <- mkCFFifo6;

Fifo#(2, Line) memRespQ <- mkCFFifo;

function CachelIndex getIdx (Addr addr)
function CacheTag getTag (Addr addr)

October 30, 2013 http://csg.csail.mit.edu/6.5195

AiRegFile#(CacheIndex, Line) dataArray <- mkRegFileFull;

tagArray <- mkRegFileFull;

Fifo# (1, Data) hitQ <- mkBypassFifo; are kepf Togefher

Reg# (CacheStatus) status <- mkReg(Ready) :

)

<- mkRegFileFull;
Tag and valid bits

as a Maybe type

CF Fifos are preferable
because they provide better
decoupling. An extra cycle
here may not affect the
performance by much

= truncate (addr>>2);
= truncatelLSB (addr) ;

L17-21

Req method o

hit processing

the cache interface to include
a cacheline flush command

is straightforward to extend

method Action reqg(MemReqg r) if(status
let idx = getIdx(r.addr); let tag =
let currTag = tagArray.sub (idx);
let hit = isValid(currTag)?

if(r.op == Ld) begin

== Ready) ;
getTag (r.addr) ;

fromMaybe (?, currTag)==tag : False;

if(hit) hitQ.eng(dataArray.sub(idx));

else begin missReq <= r; status <= StartMiss; end

end
else begin // It is a store request
if (hit) begin dataArray.upd(idx,
dirtyArray.upd (idx,

r.data);

True); end
else memReqQ.enqg(r); // write-miss no allocate

end In case of multiword cache line, we only'
overwrite the appropriate word of the line

endmethod

October 30, 2013 http://csg.csail.mit.edu/6.5195

L17-22

11



Rest of the methods

method ActionValue# (Data) resp;
hitQ.deqg;
return hitQ.first;

endmethod

-

method ActionValue# (MemReq) memReq;

memRegQ.deq;
return memReqgQ.first;
endmethod

method Action memResp (Line r);
memRespQ.enqg(r) ;
endmethod ]

October 30, 2013 http://csg.csail.mit.edu/6.5195

Memory side
methods

L17-23

Start miss rule

Ready -> StartMiss -> SendFillReqg -> WaitFillResp -> Ready

rule startMiss (status == StartMiss);
let idx = getIdx(missReqg.addr);
let tag = tagArray.sub (idx);
let dirty = dirtyArray.sub (idx);

let addr = {fromMaybe (?,tag), idx,
let data = dataArray.sub (idx);

if(isvValid(tag) && dirty) begin // write-back

2'b0};

memRedqQ.eng (MemReg{op: St, addr: addr, data: data});

end
status <= SendFillReq;

endrule

October 30, 2013 http://csg.csail.mit.edu/6.5195

L17-24




Send-fill and Wait-fill rules

Ready -> StartMiss -> SendFillReqg -> WaitFillResp -> Ready

rule sendFillReq (status == SendFillReq);
memRegQ.eng (missReq) ; status <= WaitFillResp;
endrule

Ready -> StartMiss -> SendFillReqg -> WaitFillResp -> Ready ‘

rule waitFillResp (status == WaitFillResp) ;

let idx = getldx (missReqg.addr) ;
let tag = getTag(missReqg.addr) ;
let data = memRespQ.first;
dataArray.upd(idx, data);
tagArray.upd(idx, Valid (tag));
dirtyArray.upd(idx, False);
hitQ.eng(data); memRespQ.deq;
status <= Ready;

endrule

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-25

Hit and miss performance

® Hit
= Combinational read/write, i.e. 0-cycle response
= Requires req and resp methods to be concurrently
schedulable, which in turn requires
hitQ.enqg < {hitQ.deqg, hitQ.first}
i.e., hitQ should be a bypass Fifo

# Miss
= No evacuation: memory load latency plus
combinational read/write
= Evacuation: memory store followed by memory load
latency plus combinational read/write

Adding an extra cycle here and there in the miss case
should not have a big negative performance impact

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-26

13



Four-Stage Pipeline

- Register File

A < AL T_
e ncor m3 e L J

PC |pL?re f2d - Decode »|d2e|»| Execute e2m m2w

n n

A 122 LA ry -

! A\ 4
o L AAZ y Data

Memory scoreboard Memory

insert bypass FIFO’s to deal with
(0,n) cycle memory response
October 30, 2013 http://csg.csail.mit.edu/6.5195

L17-27

now some coding ...

4 Integrating caches in to the 4-stage pipeline
(F, D&R, E&M, W) from the last lecture
+ Direction predictor training is incompletely
specified
4 In L13 we discussed splitting a pipeline stag
into two stages by inserting a bypass FIFO.

e

We show it again here

October 30, 2013 http://csg.csail.mit.edu/6.5195

L17-28

14



4-Stage pipeline with BTB+BHT
without caches

module mkProc (Proc) ;

Reg# (Addr) pc <- mkRegU;

RFile rf <- mkBypassRFile;
IMemor Merm mikIMemory;
PMemory dMem—<—mkbMemory;

Fifo# (1, Decode2Execute) d2e <- mkPipelineFifo;

Fifo# (1, Exec2Commit) e2c <- mkPipelineFifo;
Scoreboard# (2) sb <- mkPipelineScoreboard;

Reg# (Bool) feEp <- mkReg (False) ;

Reg# (Bool) fdEp <- mkReg (False) ;

Reg# (Bool) dEp <- mkReg (False);

Reg# (Bool) deEp <- mkReg(False) ;

Reg# (Bool) eEp <- mkReg (False);

Fifo# (ExecRedirect) redirect <- mkBypassFifo;
Fifo# (DecRedirect) decRedirect <- mkBypassFifo;
NextAddrPred# (16) nap <- mkBTB;

DirPred# (1024) dirPred <- mkBHT;

October 30, 2013 http://csg.csail.mit.edu/6.5195

L17-29

4-Stage pipeline with BTB+BHT
with caches

module mkProc (Proc) ;
Reg# (Addr) pc <- mkRegU; Rfile rf <- mkBypassRFile;
Cache# (ICacheSize) iCache <- mkCache;
Cache# (DCacheSize) dCache <- mkCache;
Fifo# (1, Fetch2Decode) f12f2 <- mkBypassFifo;
Fifo# (1, Maybe#{Einst}) e2m <- mkBypassFifo;
Fifo# (1, Decode2Execute) d2e <- mkPipelineFifo;
Fifo# (1, Exec2Commit) m2w <- mkPipelineFifo;
Scoreboard# (2) sb <- mkPipelineScoreboard;
Regi# (Bool) feEp <- mkReg(False) ;
Regi# (Bool) fdEp <- mkReg (False) ;
Regi# (Bool) dEp <- mkReg (False);
Regi# (Bool) deEp <- mkReg(False) ;
Reg# (Bool) eEp <- mkReg (False);
Fifo# (ExecRedirect) execRedirect <- mkBypassFifo;
Fifo# (DecRedirect) decRedirect <- mkBypassFifo;
AddrPred# (16) addrPred <- mkBTB;
DirPred# (1024) dirPred <- mkBHT;

October 30, 2013 http://csg.csail.mit.edu/6.5195

L17-30

15



4-Stage pipeline with BTB+BHT
without caches

rule doFetch;
let Gast—3M

€ IMemE

make a iMem request

T and enqueue into f12f2
SRvSASyas
if (redirect.notEmpty)

begin redirect.deqg;

nap.update (redirect.first); end
if (redirect.notEmpty && redirect.first.mispredict)
begin pc <= redirect.first.nextPc;

feEp <= !feEp; end

else if (decRedirect.notEmpty) begin
if (decRedirect.first.eEp
fdEp <=

== feEp)

fdEp; pc <= decRedirect.first.nextPc;
decRedirect.deq; end;

else begin

let

begin
end

.predPc (pc) ;
f2d.enqg(Fetch2Decoode{pc:

pc, ppc: ppc,
eEp: feEp, dEp:
end

endrule

inst: inst,
fdEp}) ;

where?

October 30, 2013 http://csg.csail.mit.edu/6.5195

L17-31

4-Stage pipeline with
BTB+BHT with caches

rule doFetchl;

if (redirect.notEmpty)
begin redirect.deg;

nap.update (redirect.first); end
if (redirect.notEmpty && redirect.first.mispredict)

begin pc <= redirect.first.nextPc;

feEp <= !feEp; end
else if (decRedirect.notEmpty) begin
if (decRedirect.first.eEp == feEp) begin
fdEp <= !fdEp; pc <= decRedirect.first.nextPc; end
decRedirect.deq; end;
else begin
let ppc

nap.predPc (pc) ;
iCache.reqg(MemReg{op: Ld, addr: pc, data:?});
f12f2.enqg(Fetch2Decoode{pc: pc, ppc: ppc,

inst: ?
eEp: feEp, dEp:

-7
fdEp});
end

endrule

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-32




4-Stage pipeline
Fetch2 rule

rule doFetch2;
let inst <- iCache.resp;
let f2dval = f12f2.first;
f2dval.inst = inst;
£f12£2.deq;
f2d.enqg(f2dval) ;

endrule

Execute rule can be split in two rules in a similar
manner to deal with dCache

next store buffers and non-blocking caches

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-33

4-Stage pipeline
Execute rule

rule doExecute;
let x = d2e.first;

let dInst = x.dInst; let pc = x.pc;

let ppc = X.ppc; let epoch = x.epoch;

let rvVall = x.rVall; let rval2 = x.rvVal2;

if (epoch == eEpoch) begin
let eInst = exec(dInst, rvall, rVal2, pc, ppc);
if (eInst.iType == Ld) elInst.data <-

Mem.req (MemReg{op:Ld, addr:eInst.addr, data:?});
else i SeInsSt _1Type == St) let d <=
dMem.reqg (MemReq{op:St, addr:elnst.addr, data:eIﬁ;ETagigzjx
%§Z§Ténq(ExecZCommit{dst:eInst.dst, data:eInst.data});
if (eInst.mispredict) eEpoch <= TeEpoch
if (eInst.iType == || eInst.iType == Jr || elInst.iType == Br)
redirect.eng(Redirect{pc: pc, nextPc: elnst.addr,
taken: elInst.brTaken, mispredict: eInst.mispredict,
brType: eInst.iType}); end
else e2c.enqg(Exec2Commit{dst:Invalid, data:?});
d2e.deq;
endrule

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-34

17



4-Stage pipeline
Execute rule with caches

™ rule doExecutel;

let x = d2e.first;

let dInst = x.dInst; let pc = x.pc;

let ppc = X.ppcC; let epoch = x.epoch;

let rvall = x.rvVall; let rvVal2 = x.rVal2;

if (epoch == eEpoch) begin
let elInst = exec(dInst, rvVall, rval2, pc, ppc):;
if (eInst.iType == Ld) elInst.data <-

dCache.reqg(MemReg{op:Ld, addr:elInst.addr, data:?});

else if (elInst.iType == St) let d <-

dCache.reg(MemReg{op:St, addr:elInst.addr, data:elnst.data}):;
e2m.eng(Valid (eInst));
if (eInst.mispredict) eEpoch <= !eEpoch
if (eInst.iType == J || elInst.iType == Jr || eInst.iType == Br)
redirect.enqg(Redirect{pc: pc, nextPc: elnst.addr,
taken: elInst.brTaken, mispredict: eInst.mispredict,
brType: eInst.iType}); end
else e?2m.enqg(Invalid);
dze.deq;
endrule

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-35

4-Stage pipeline
Execute?2 rule

rule doExecute?2;

let eInst = e2m.first;

if (isvalid(eInst)) begin
let x = validvalue (eInst);
if (x.iType == Ld)
x.data <- dCache.resp;
m2w.eng (Exec2Commit {dst:x.dst, data:x.data}):;

end
else
m2w.eng (Exec2Commit{dst:Invalid, data:?});

ezm.deq;
endrule

October 30, 2013 http://csg.csail.mit.edu/6.5195 L17-36




