
1

Constructive Computer Architecture

Interrupts/Exceptions/Faults

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

Staff and students in 6.375 (Spring 2013),
6.S195 (Fall 2012), 6.S078 (Spring 2012)

 Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh

External

 Prof Amey Karkare & students at IIT Kanpur

 Prof Jihong Kim & students at Seoul Nation University

 Prof Derek Chiou, University of Texas at Austin

 Prof Yoav Etsion & students at Technion

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-2

2

Interrupts
altering the normal flow of control

An external or internal event that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.

program

HI1

HI2

HIn

interrupt
handler

Ii-1

Ii

Ii+1

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-3

Causes of Interrupts
events that request the attention of the processor

Asynchronous: an external event

 input/output device service-request/response

 timer expiration

 power disruptions, hardware failure

Synchronous: an internal event (a.k.a
exceptions, faults and traps)

 undefined opcode, privileged instruction

 arithmetic overflow, FPU exception

 misaligned memory access

 virtual memory exceptions: page faults,
 TLB misses, protection violations

 traps: system calls, e.g., jumps into kernel

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-4

3

Asynchronous Interrupts:
invoking the interrupt handler

An I/O device requests attention by asserting one
of the prioritized interrupt request lines

After the processor decides to process the
interrupt

 It stops the current program at instruction Ii, completing
all the instructions up to Ii-1 (Precise interrupt)

 It saves the PC of instruction Ii in a special register (EPC)

 It disables interrupts and transfers control to a
designated interrupt handler running in the kernel mode
 Privileged/user mode to prevent user programs from causing harm

to other users or OS

Usually speed is not the paramount concern in
handling interrupts

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-5

Interrupt Handler
Saves EPC before enabling interrupts to allow
nested interrupts 

 need an instruction to move EPC into GPRs

 need a way to mask further interrupts at least until
EPC can be saved

Needs to read a status register that indicates
the cause of the interrupt

Uses a special indirect jump instruction ERET
(return-from-exception) which

 enables interrupts

 restores the processor to the user mode

 restores hardware status and control state

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-6

4

Synchronous Interrupts
A synchronous interrupt is caused by a particular
instruction and causes a control hazard

 requires undoing the effect of one or more partially
executed instructions. Comes in two varieties:

Exception: The instruction cannot be completed
and needs to be restarted after the exception
has been handled

 information about the exception has to be recorded and
conveyed to the exception handler

Faults (aka Trap): Like a system call and the
instruction is considered to have been completed

 requires a special jump instruction involving a change
to privileged kernel mode

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-7

Synchronous Interrupt
Handling

Overflow

Illegal Opcode

PC address Exception

Data address Exceptions

...

PC
Inst.
Mem

Decode
Data
Mem +

Illegal
Opcode

Overflow
Data address
Exceptions

PC address
Exception

WB

When an instruction
causes multiple
exceptions the first
one has to be
processed

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-8

5

Additional Features for
Exceptions/Faults

register: epc

 holds pc+4 of instruction that causes exception/fault

instruction: eret

 returns from an exception/fault handler sub-routine
using epc

As an example consider a complex instruction
which may be implemented in SW

 mult ra, rb

 causes a fault, sets epc to pc+4

 jumps to the exception handler for mult

 the mult instruction is considered to have been

completed

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-9

Software Considerations
00001004 <handler>:

 1004: 00000000 li $t1, 1010

 // all exceptions jump to 1004

 1008: 00000000 addiu $t1, causeR

 // causeR contains 0 for mul, 4 for div, etc

 100c: 00000000 jr $t1

 1010: 08000408 j 1020 // <mult_excep>

 1014: 08000408 j 1060 // <div_excep>

 ...

00001020 <mult_excep>:

 1020: 24890000 addiu $t1,$a0,0

 1024: 24aa0000 addiu $t2,$a1,0

 ...

 104c: 42000018 eret

...

00001124 <main>:

 ...

 11a0: 00850018 mult $a0,$a1

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-10

6

We need to change the interfaces
to handle exceptions wherever
necessary

For example,

- a memory request will return a

2-tuple <mem-reponse, mException>;

- decoder will have to recognize new
instructions mult, eret, ...

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-11

Decoded Instruction
typedef struct {

 IType iType;

 AluFunc aluFunc;

 BrFunc brFunc;

 Maybe#(FullIndx) dst;

 Maybe#(FullIndx) src1;

 Maybe#(FullIndx) src2;

 Maybe#(Data) imm;

} DecodedInst deriving(Bits, Eq);

typedef enum {Unsupported, Alu, Ld, St, J, Jr, Br,

Mult, ERet} IType deriving(Bits, Eq);

typedef enum {Add, Sub, And, Or, Xor, Nor, Slt, Sltu,

LShift, RShift, Sra} AluFunc deriving(Bits, Eq);

typedef enum {Eq, Neq, Le, Lt, Ge, Gt, AT, NT} BrFunc

deriving(Bits, Eq);

Bit#(6) fcMULT = 6'b011000;

Bit#(5) rsERET = 5'b10000;

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-12

7

Decode
function DecodedInst decode(Data Inst);

 DecodedInst dInst = ?; ...

 opFUNC: begin

 case (funct) ...

 fcMULT:

 dInst.iType = Mult;

 dInst.brFunc = AT;

 dInst.rDst = Invalid;

 dInst.rSrc1 = validReg(rs);

 dInst.rSrc2 = validReg(rt); end

 opRS: begin

 if(rs==rsERET)

 dInst.iType = ERet;

 dInst.brFunc = AT;

 dInst.rDst = Invalid;

 dInst.rSrc1 = Invalid;

 dInst.rSrc2 = Invalid; end

 return dInst;

endfunction

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-13

Branch Address Calculation
function Addr brAddrCalc(Addr pc, Data val,

 IType iType, Data imm, Bool taken, Addr epc);

 Addr pcPlus4 = pc + 4;

 Addr targetAddr = case (iType)

 J : {pcPlus4[31:28], imm[27:0]};

 Jr : val;

 Br : (taken? pcPlus4 + imm : pcPlus4);

 Mult: h’1004; // Interrupt handler

 ERet: epc;

 Alu, Ld, St, Unsupported: pcPlus4;

 endcase;

 return targetAddr;

endfunction

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-14

8

Execute Function
function ExecInst exec(DecodedInst dInst, Data rVal1,

 Data rVal2, Addr pc, Addr epc);

 ...
 let brAddr = brAddrCalc(pc, rVal1, dInst.iType,
 validValue(dInst.imm), brTaken, epc);
 ...
 eInst.brAddr = ... brAddr ...;
 ...
 return eInst;
endfunction

With these changes the single-cycle machine
will handle exceptions

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-15

One-Cycle SMIPS
rule doExecute;

 let inst = iMem.req(pc); let dInst = decode(inst);

 let rVal1 = rf.rd1(validRegValue(dInst.src1));

 let rVal2 = rf.rd2(validRegValue(dInst.src2));

 let eInst = exec(dInst, rVal1, rVal2, pc, epc);

 if(eInst.iType == Ld)

 eInst.data <- dMem.req(MemReq{op: Ld, addr:

 eInst.addr, data: ?});

 else if(eInst.iType == St)

 let d <- dMem.req(MemReq{op: St, addr:

 eInst.addr, data: eInst.data});

 if (isValid(eInst.dst))

 rf.wr(validRegValue(eInst.dst), eInst.data);

 pc <= eInst.brTaken ? eInst.addr : pc + 4;

 if(eInst.iType == Mult) begin

 epc <= eInst.addr; causeR <= 0; end

endrule endmodule
November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-16

9

Exception handling in
pipeline machines

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-17

Exception Handling

PC
Inst.
Mem D Decode E M

Data
Mem W +

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Ex
D

PC
D

Ex
E

PC
E

Ex
M

PC
M

C
a
u
s
e

E
P
C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

1. An instruction may cause multiple exceptions; which
one should we process?

2. When multiple instructions are causing exceptions;
which one should we process first?

from the earliest stage

from the oldest instruction
November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-18

10

Exception Handling
When instruction x in stagei raises an
exception, its cause is recorded and passed
down the pipeline

For a given instruction, exceptions from the
later stages of the pipeline do not override
cause of exception from the earlier stages

At commit point external interrupts, if present,
override other internal interrupts

If an exception is present at commit: Cause
and EPC registers are set, and pc is redirected
to the handler PC

 Epoch mechanism takes care of redirecting the pc

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-19

Multiple stage pipeline

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

f2d

Epoch

m2c d2e

Next

Addr

Pred

scoreboard

f12f2

e2m

November 6, 2013 http://csg.csail.mit.edu/6.S195 L19-20

wrong path insts
are dropped

wrong path insts
are poisoned

This affects whether an instruction is removed from sb in
case of an interrupt

e
x
te

rn
a
l
in

te
rr

u
p
ts

 c
o
n
s
id

e
re

d
 a

t
C
o
m

m
it

11

Interrupt processing
Internal interrupts can happen at any stage but
cause a redirection only at Commit

External interrupts are considered only at Commit

Some instructions, like Store, cannot be undone
once launched. So an instruction is considered to
have completed before an external interrupt is
taken

If an instruction causes an interrupt then the
external interrupt, if present, is given a priority
and the instruction is executed again

November 6, 2013 L19-21 http://csg.csail.mit.edu/6.S195

Interrupt processing at
Execute-1

November 4, 2013 L18-22 http://csg.csail.mit.edu/6.S195

Incoming Interrupt cause

-if (mem type) issue Ld/St
-if (mispred) redirect
-pass eInst to M stage

-pass eInst to M
stage unmodified

none ! none

eInst will contain
information about any
newly detected
interrupts at Execute

12

Interrupt processing at
Execute-2 or Mem stage

November 4, 2013 L18-23 http://csg.csail.mit.edu/6.S195

Incoming Interrupt cause

-pass eInst
with modified
data to Commit

-pass eInst to Commit
unmodified

none ! none

Memory Interrupt?

no yes

-pass new Cause
to Commit

Interrupt processing at
Commit

November 4, 2013 L18-24 http://csg.csail.mit.edu/6.S195

External Interrupt?

EPC<= if (Exception) pc : pc+4;
causeR <= inCause;
if (inCause after Reg Fetch) sb.rm;
mode <= Privlage;
Redirect

no yes

Incoming cause

none ! none none ! none

-commit
-sb.rm

Incoming cause

commit;
sb.rm;
EPC<= ppc;
causeR <= Ext;
mode <= Privlage;
Redirect

EPC<= pc;
causeR <= Ext;
if (inCause after Reg Fetch) sb.rm;
mode <= Privlage;
Redirect

