
1 

Constructive Computer Architecture 
 

Virtual Memory:  
From Address Translation to 
Demand Paging 

 
 

Arvind 
Computer Science & Artificial Intelligence Lab. 
Massachusetts Institute of Technology 
 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-1 

Contributors to the course 
material 

Arvind, Rishiyur S. Nikhil, Joel Emer, 
Muralidaran Vijayaraghavan 

Staff and students in 6.375 (Spring 2013), 
6.S195 (Fall 2012), 6.S078 (Spring 2012) 

 Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav 
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh  

External 

 Prof Amey Karkare & students at IIT Kanpur 

 Prof Jihong Kim & students at Seoul Nation University 

 Prof Derek Chiou, University of Texas at Austin  

 Prof Yoav Etsion & students at Technion 

 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-2 



2 

Modern Virtual Memory Systems 
Illusion of a large, private, uniform store 

November 13, 2013 L20-3 http://csg.csail.mit.edu/6.S195 

Protection & Privacy 
 Each user has one private and one 

or more shared address spaces 

  page table  name space 

 

Demand Paging 
 Provides the ability to run 

programs larger than the primary 
memory 

 Hides differences in machine 
configurations 

The price of VM is address translation 
on each memory reference 

OS 

useri 

VA PA mapping 

TLB 

Swapping Store 

Primary 
Memory 

Names for Memory Locations 

Machine language address 

 as specified in machine code 

Virtual address 

 ISA specifies translation of machine code address 
into virtual address of program variable (sometime 
called effective address) 

Physical address 

 operating system specifies mapping of virtual 
address into name for a physical memory location 

physical 
address 

virtual 
address 

machine 
language 
address 

Address 
Mapping 

ISA 
Physical 
Memory 
(DRAM) 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-4 



3 

Processor generated address can be 
interpreted as a pair <page number, offset> 

 

A page table contains the physical address 
of the base of each page 

 

Paged Memory Systems 

Page tables make it possible to store the pages of a 
program non-contiguously 

0 

1 

2 

3 

Address Space 
of User-1 

Page Table  
of User-1 

0 

1 

2 

3 

1 

0 

2 

3 

page number      offset 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-5 

Private Address Space per 
User 

• Each user has a page table  
• Page table contains an entry for each user page 

VA1 User 1 

Page Table  

VA1 User 2 

Page Table  

VA1 User 3 

Page Table  

P
h
y
s
ic

a
l 

M
e
m

o
ry

 

free 

OS 
pages 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-6 



4 

Page Tables in Physical 
Memory 

VA1 

User 1 

PT User 1  

PT User 2  

VA1 

User 2 

Idea: cache the 
address translation of 
frequently used pages 
– Translation Look-
aside Buffer (TLB) 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-7 

Two memory references 
are required to access a 
virtual address.  
100% overhead! 

Linear Page Table 

VPN Offset 

Virtual address 

PT Base Register 

VPN 

Data word 

Data Pages 

Offset 

PPN 
PPN 

DPN 
PPN 

PPN 
PPN 

Page Table 

DPN 

PPN 

DPN 
DPN 

DPN 
PPN 

Page Table Entry (PTE) 
contains: 
 A bit to indicate if a page 

exists 

 PPN (physical page 
number) for a memory-
resident page 

 DPN (disk page number) 
for a page on the disk 

 Status bits for protection 
and usage 

OS sets the Page Table 
Base Register whenever 
active user process 
changes 

 
November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-8 



5 

Size of Linear Page Table 
With 32-bit addresses, 4-KB pages & 4-byte PTEs 

 220 PTEs, i.e, 4 MB page table per user 

 4 GB of swap space needed to back up the full virtual 
address space 

Larger Pages can reduce the overhead but cause 

 Internal fragmentation (Not all memory in a page is 
used) 

 Larger page-fault penalty (more time to read from disk) 

What about 64-bit virtual address space? 

 Even 1MB pages would require 244  8-byte PTEs (35 TB!) 

Any “saving grace” ?  

Page tables are sparsely populated and 
hence hierarchical organization can help 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-9 

Hierarchical Page Table 

Level 1  
Page Table 

Level 2 

Page Tables  

Data Pages 

page in primary memory  
page in secondary memory 

Root of the 
Page Table 

p1 

offset 

p2 

Virtual Address 

(Processor 
Register) 

PTE of a nonexistent page 

p1          p2          offset 

0 11 12 21 22 31 

10-bit 
L1 index 

10-bit  
L2 index 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-10 



6 

Address Translation & 
Protection 

A good VM design needs to be fast and space efficient 

Physical Address 

Virtual Address 

Address 
Translation 

Virtual Page No. (VPN) offset 

Physical Page No. (PPN) offset 

  Protection 
Check 

Exception? 

Kernel/User Mode 

Read/Write 

Every instruction access and data access needs address 
translation and protection checks 

Address translation is very expensive! 

 In a one-level page table, each reference becomes two or 
more memory accesses 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-11 

Translation Lookaside 
Buffers (TLB) 
 

Cache address translations in TLB 
  TLB hit   Single Cycle Translation 
       TLB miss   Page Table Walk to refill  

VPN          offset 

V R W D    tag        PPN 

physical address PPN      offset 

virtual address 

hit? 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-12 



7 

TLB Designs 

Typically 32-128 entries, usually fully associative 

 Each entry maps a large page, hence less spatial 
locality across pages  more likely that two entries 

conflict 

 Sometimes larger TLBs (256-512 entries) are 4-8 way 
set-associative 

Random or FIFO replacement policy 

Process ID information in TLB? 

TLB Reach: Size of largest virtual address space 
that can be simultaneously mapped by TLB 

Example: 64 TLB entries, 4KB pages, one page per entry 

 

TLB Reach = 64 entries * 4 KB = 256 KB 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-13 

Handling a TLB Miss 
Software (MIPS, Alpha) 

 TLB miss causes an exception and the operating 
system walks the page tables and reloads TLB 

 A privileged “untranslated”  addressing mode is used 
for PT walk 

Hardware (SPARC v8, x86, PowerPC) 

 A memory management unit (MMU) walks the page 
tables and reloads the TLB 

 If a missing (data or PT) page is encountered during 
the TLB reloading, MMU gives up and signals a Page-
Fault exception for the original instruction  

 

November 13, 2013 L20-14 http://csg.csail.mit.edu/6.S195 



8 

Translation for Page Tables 
Can references to page tables 
cause TLB misses? 

User Page Table 
(in virtual space) 

User PTE Base 

• User VA translation causes a TLB miss 

• Page table walk: User PTE Base and appropriate bits from 
VA are used to obtain virtual address (VP) for the page table 
entry 

• Suppose we get a TLB miss when we try to translate VP?  

Must know the physical address of the page table 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-15 

Translation for Page Tables 
continued  

On a TLB miss during a VP translation, OS adds System 
PTE Base to bits from VP to find physical address of page 
table entry for the VP 

A program that traverses the page table needs a “no 
translation” addressing mode 

 

User Page Table 
(in virtual space) 

User PTE Base 

System Page Table (in physical space) 
System PTE Base 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-16 



9 

Handling a Page Fault 
When the referenced page is not in DRAM: 

 The missing page is located (or created) 

 It is brought in from disk, and page table is 
updated 

   Another job may be run on the CPU while the 
first job waits for the requested page to be read 
from disk 

 If no free pages are left, a page is swapped out 

   approximate LRU replacement policy  

Since it takes a long time (msecs) to transfer 
a page, page faults are handled completely 
in software (OS) 

 Untranslated addressing mode is essential to allow 
kernel to access page tables 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-17 

A PTE in primary memory contains  
 primary or secondary memory addresses 
 
 
A PTE in secondary memory contains  
 only secondary memory addresses 
 
  a page of a PT can be swapped out only 

      if none its PTE’s point to pages in the  
      primary memory 
 
Why? 

Swapping a Page of a Page 
Table 

Don’t want to cause a page fault 
during translation when the data is 
in memory 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-18 



10 

Address Translation: 
putting it all together 

Virtual Address 

TLB 
Lookup 

Page Table 
Walk 

Update TLB Page Fault 
(OS loads page) 

Protection 
Check 

Physical 
Address 
(to cache) 

miss hit 

       the  page is  
 memory           memory denied permitted 

Protection 
Fault 

hardware 
hardware or software 
software 

SEGFAULT Where? 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-19 

Caching vs. Demand Paging 

CPU cache 
primary 
memory 

secondary 
memory 

Caching          Demand paging 
cache entry   page frame 
cache block (~32 bytes)  page (~4K bytes) 
cache miss rate (1% to 20%) page miss rate (<0.001%) 
cache hit (~1 cycle)  page hit (~100 cycles) 
cache miss (~100 cycles) page miss (~5M cycles) 
a miss is handled            a miss is handled  
     in hardware                 mostly in software 

primary 
memory 

CPU 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-20 



11 

Address Translation in CPU 
Pipeline 

Software handlers need a restartable exception on 
page fault or protection violation 

Handling a TLB miss needs a hardware or software 
mechanism to refill TLB  

Need mechanisms to cope with the additional latency 
of a TLB: 
   slow down the clock 

   pipeline the TLB and cache access 

   virtual address caches 

   parallel TLB/cache access 

 

PC 
Inst 
TLB 

Inst. 
Cache D Decode E M 

Data 
TLB 

Data 
Cache W + 

TLB miss? Page Fault? 
Protection violation? 

TLB miss? Page Fault? 
Protection violation? 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-21 

 

Physical or Virtual Address 
Caches? 

one-step process in case of a hit (+) 

cache needs to be flushed on a context switch unless 
address space identifiers (ASIDs) included in tags (-) 

aliasing problems due to the sharing of pages (-) 

 

CPU 
Physical 
Cache 

TLB 
Primary 
Memory 

VA 
PA 

Alternative: place the cache before the TLB 

CPU 

VA 

(StrongARM) Virtual 
Cache 

PA 
TLB 

Primary 
Memory 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-22 



12 

Aliasing in Virtual-Address 
Caches  

VA1 

VA2 

Page Table 

Data Pages 

PA 

VA1 

VA2 

1st Copy of Data at PA 

2nd Copy of Data at PA 

Tag Data 

Two virtual pages share 
one physical page 

Virtual cache can have two 
copies of same physical data. 
Writes to one copy not visible 

to reads of other! 

General Solution:  Disallow aliases to coexist in cache 

Software (i.e., OS) solution for direct-mapped cache 

VAs of shared pages must agree in cache index bits; this 
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs) 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-23 

Concurrent Access to TLB 
& Cache 

Index L is available without consulting the TLB 
 cache and TLB accesses can begin simultaneously 

Tag comparison is made after both accesses are completed 
Cases: L + b = k L + b < k 
 L + b > k  what happens here? 

               VPN                          L         b 

TLB Direct-map Cache  
2L

 blocks 
2b-byte block 

                PPN                  Page     Offset 

= 
hit? 

Data Physical Tag 

Tag 

VA 

PA 

Virtual 
Index 

k 

Partially VA cache! 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-24 



13 

Virtual-Index Physical-Tag 
Caches: Associative Organization 

                VPN                   L = k-b       b 

TLB 
Direct-map 
2L

 blocks 

                 PPN                   Page Offset 

= 

hit? 

Data 

Phy. 
Tag 

Tag 

VA 

PA 

Virtual 
Index 

k 
Direct-map 
2L

 blocks 

= 

After the PPN is known, W physical tags are compared 
 
Allows cache size to be greater than 2L+b bytes 

W ways 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-25 

We change the cache interface 
minimally and assume that the 
Address translation is done as part 
of the memory system 

A memory request will return a 2-tuple 
<mem-reponse, mException> 

November 13, 2013 http://csg.csail.mit.edu/6.S195 L20-26 

Coding is straightforward but we do not have adequate 
testing infrastructure: requires implementing at least 
rudimentary TLB-miss and page-fault handlers  


