Constructive Computer Architecture

Cache Coherence

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-1

Contributors to the course
material

@ Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

@ Staff and students in 6.375 (Spring 2013),
6.5195 (Fall 2012), 6.S078 (Spring 2012)
= Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh
@ External
= Prof Amey Karkare & students at IIT Kanpur
= Prof Jihong Kim & students at Seoul Nation University
= Prof Derek Chiou, University of Texas at Austin
= Prof Yoav Etsion & students at Technion

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-2

Memory Consistency in SMPs

CPU-1 CPU-2
l 1

Z
A 100 200 | cache-1 A 100 cache-2
7

CPU-Memory bus

|
A 196’/200 memory
7

@ Suppose CPU-1 updates A to 200.
= write-back: memory and cache-2 have stale values
= write-through: cache-2 has a stale value

Do these stale values matter?
What is the view of shared memory for programming?

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-3

Maintaining Store Atomicity

@ Store atomicity requires all processors to see
writes occur in the same order

= multiple copies of a location in various caches can
cause this to be violated

@ To meet the ordering requirement it is
sufficient for hardware to ensure:

= Only one processor at a time has write permission
for a location

= No processor can load a stale copy of the data after
a write to the location

= cache coherence protocols

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-4

A System with Multiple

Caches
e — PP HP]|
F

—
i

[P |
I

|

#® Modern systems often have hierarchical caches

@ Each cache has exactly one parent but can have zero
or more children

@ Logically only a parent and its children can
communicate directly

@ Inclusion property is maintained between a parent

[P |
I

and its children, i.e.,

Because usually

ael; = aeljy, Lisp >3-k
November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-5
@ Write request:
» the address is invalidated in all other caches before the write is
performed, or
= the address is updated in all other caches after the write is
performed
@ Read request:
= if a dirty copy is found in some cache, that is the value that must
be used, e.g., by doing a write-back and reading the memory or
forwarding that dirty value directly to the reader.
We will focus on Invalidation protocols
as opposed to Update protocols
November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-6

State needed to maintain
Cache Coherence

o e Sl
@ Use MSI encoding in caches where
I means this cache does not contain the location

S means this cache has the location but so may other
caches; hence it can only be read

M means only this cache has the location; hence it can
be read and written

@ The states M, S, I can be thought of as an
orderM > S > 1
= A transition from a lower state to a higher state is
called an Upgrade

= A transition from a higher state to a lower state is
called a Downgrade

November 18, 2013 http://www.csg.csail.mit.edu/6.s195

L21-7

Sibling invariant and
compatibility

@ Sibling invariant:
= Cache isin state M = its siblings are in state I
= That is, the sibling states are “compatible”

@ The states X, y of two siblings are compatible
iff IsCompatible(x, y) is True where

IsCompatible(M, M) = False
IsCompatible(M, S) = False
IsCompatible(S, M) = False
All other cases = True

November 18, 2013 http://www.csg.csail.mit.edu/6.s195

L21-8

Cache State Transitions

invalidate

write-back

This state diagram is helpful as long as one remembers
that each transition involves cooperation of other caches
and the main memory

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-9

Cache Actions

@ On a read miss (i.e., Cache state is I):

= In case some other cache has the location in state M
then write back the dirty data to Memory

= Read the value from Memory and set the stateto S

@ On a write miss (i.e., Cache state is I or S):
= Invalidate the location in all other caches and in case
some cache has the location in state M then write
back the dirty data
= Read the value from Memory if necessary and set
the state to M

Misses cause Cache upgrade actions which in turn may
cause further downgrades or upgrades on other caches

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-10

MSI protocol: some issues

@It is possible to have multiple requests for the
same location from different processors. Hence
there is a need to arbitrate requests

= In bus-based systems bus controller performs this
function

= In directory-based systems upgrade requests are
passed to the parent who acts as an arbitrator
#0n a cache miss there is a need to find out the
state of other caches

= In a bus-based system a system-wide broadcast of
the request determines the state of other caches by
“snooping”

= In directory-based systems a directory keeps track of
the state of each child cache

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-11

Directory State Encoding

Two-level (L1, M) system

All addresses in
the home memory
are in state M

(PP H PR P
S Lal
Interconnect

<S,II,I>

@ For each location in a cache, the directory keeps
two types of info

= c.state[a] (sibling info): do c's siblings have a copy of
location a; M (means no), S (means maybe)

» c.child[c][a] (children info): the state of c’s child ¢, for
location a; At most one child can be in state M
@ Since L1 has no children, only sibling information
is kept and since main (home) memory has no
siblings only children cache information is kept

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-12

Directory state encoding cont

#® New states needed to deal with waiting for
responses:
= c.waitp[a] : Denotes if cache c is waiting for a response
from its parent
+ Nothing means not waiting

+ Valid (M|S|I) means waiting for a response to transition to
M or S or I state, respectively

= c.waitc[c,][a] : Denotes if cache c is waiting for a
response from its child ¢,

+ Nothing | Valid (M|S|I)
#® Cache state in L1:
<(M|S|I), (Nothing | Valid(M|S|I))>
@ Directory state in home memorM Children’s state
<[(M|S|I), (Nothing | Valid(M|S|1))]>

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-13

A Directory-based Protocol

an abstract view

P P

p2m m2p
c2m
L1

[D m2c

m2p p2m

L1
m2c [ﬂ

interconnect

in =] out
o] -

® Each cache has 2 pairs of queues
= (€c2m, m2c) to communicate with the memory
= (p2m, m2p) to communicate with the processor
@ Message format: <cmd, src—dst, a, s,\data>
Reqg/Resp address state

@® FIFO message passing between each (src—dst) pair

except a Resp cannot block a Req
November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-14

Processor Hit Rules

%

%

November 18, 2013

|Load-hit rule

p2m.msg=(Load a) &
(c.state[a]>I)
p2m.deq;

m2p.enq(c.datala]); p2m mZF’c2m
; L1 —
Store-hit rule 1

m2c

p2m.msg=(Store a v) &
c.state[a]=M

p2m.deq;

m2p.enq(Ack); The miss rules are taken

c.datala]:=v; care of by the general
cache rules to be
presented

http://www.csg.csail.mit.edu/6.s195

L21-15

Processing a Load or a

Store miss

Child to Parent: Upgrade-to-y request
Parent to Child: process Upgrade-to-y request
Parent to other child caches: Downgrade-to-x request
Child to Parent: Downgrade-to-x response

Parent waits for all DTwngrade-to-x responses

Parent to Child: Upgrade-to-y response

Child receives upgrade-to-y response

November 18, 2013

http://www.csg.csail.mit.edu/6.s195

L21-16

Processing a Load miss

@ L1 to Parent: Upgrade-to-S request
(c.state[a]=I) & (c.waitp[a]=Nothing)
— c.waitp[a]:=Valid S;
c2m.enq(<Req, c—m, a, S, - >);
@ Parent to L1: Upgrade-to-S response
(vj, m.waitc[j][a]=Nothing) & c2m.msg=<Req,c—»>m,a,S,->
& (Vi#c, IsCompatible(m.child[i][a],S))
— m2c.enq(<Resp, m—c¢, a, S, m.data[a]>);
m.child[c][a]:=S; c2m.deq
@ L1 receiving upgrade-to-S response
m2c.msg=<Resp, m—c¢, a, S, data>
— m2c.deq; c.data[a]:=data; c.state[a]:=S;
c.waitp[a]:=Nothing;

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-17

Processing Load miss cont.

What if (Vi#c, IsCompatible(m.child[i][a],y)) is false?
Downgrade other child caches

@ Parent to L1: Upgrade-to-S response
(Vj, m.waitc[j][a]=Nothing) & c2m.msg=<Req,c—»>m,a,S,->
& (Vi#c, IsCompatible(m.child[i][a],S))
— m2c.enq(<Resp, m—c, a, S, m.data[a]>);

m.child[c][a]:=S; c2m.deq

Parent to Child: Downgrade to S request
c2m.msg=<Req,c—»>m,a,S,-> &
(m.child[i][a]>S) & (m.waitc[i][a]=Nothing)
— m.waitc[i][a]:=Valid S; m2c.enq(<Req, m—i, a, S, - >);

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-18

Complete set of cache
actions

e
Cache
req ={1,4,7}
resp = {2,3,5,6,8} 158 l ‘ 3,7
A protocol specifies cache
actions corresponding to
each of these 8 different 4,2 6
messages
November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-19
Child Requests
1. Child to Parent: Upgrade-to-y Request
(c.state[al<y) & (c.waitp[a]=Nothing)
— c.waitp[a]:=Valid y;
c2m.enq(<Req, c—m, a, y, - >);
November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-20

10

Parent Responds

2. Parent to Child: Upgrade-to-y response
(vj, m.waitc[jl[a]=Nothing) & c2Zm.msg=<Req,c—m,a,y,->
& (m.child[c][a]l<y) & (Vi#c, IsCompatible(m.child[i][a],y))

— m2c.enq(<Resp, m—c, a, vy,
(if (m.child[c][a]=I) then m.data[a] else -)>);

m.child[c][a]:=y; c2m.deq;

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-21

Child receives Response

3. Child receiving upgrade-to-y response
m2c.msg=<Resp, m—c¢, a, y, data>
— m2c.deq;
if(c.state[a]=I) c.data[a]:=data;

c.state[a]:=y;
if(c.waitp[a]=(Valid x) & x<y) c.waitp[a]:=Nothing;

L21-22

November 18, 2013 http://www.csg.csail.mit.edu/6.s195

11

Parent Requests

4. Parent to Child: Downgrade-to-y Request
(m.child[i][a]>Y) & (m.waitc[i][a]=Nothing)
— m.waitc[i][a]:=Valid y;
m2c.enq(<Req, m—c, a, vy, - >);

November 18, 2013 http://www.csg.csail.mit.edu/6.s195

L21-23

Child Responds

5. Child to Parent: Downgrade-to-y response
(m2c.msg=<Req,m—c,a,y,->) & (c.state[a]>Yy)
— c2m.enq(<Resp, c->m, a, v,

c.state[a]:=y; m2c.deq

November 18, 2013 http://www.csg.csail.mit.edu/6.s195

(if (c.state[a]=M) then c.data[a] else -)>);

L21-24

12

Parent receives Response

‘6. Parent receiving downgrade-to-y response
c2m.msg=<Resp, c—»>m, a, y, data>
— c2m.deq;
if(m.child[c][a]=M) m.data[a]:=data;
c.state[a]:=y;
if(m.waitc[c][a]=(Valid x) & x=y)
m.waitc[c][a]:=Nothing;

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-25

Child receives served Request

7. Child receiving downgrade-to-y request
(m2c.msg=<Req, m—c, a, y, - >) & (c.state[a]<y)
— m2c.deq;

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-26

13

Child Voluntarily downgrades

8. Child to Parent: Downgrade-to-y response (vol)
(c.waitp[a]=Nothing) & (c.state[a]>Yy)
— c2m.enq(<Resp, c->m, a, vy,
(if (c.state[a]=M) then c.data[a] else -)>);
c.state[a]:=y;

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-27

Some properties

@ Rules 1 to 8 are complete - cover all possibilities and
cannot deadlock or violate cache invariants
@ Our protocol maintains two important invariants:
= Directory state is always a conservative estimate of a
child’s state
= Every request eventually gets a corresponding response
(assuming responses cannot be blocked by requests and a
request cannot overtake a response for the same address)
@ Starvation, that is a Load or store request is ignored
indefinitely has to be prevented; Fair arbitration at the
memory between requests from various caches will
ensure starvation freedom.

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-28

14

FIFO property of queues

@ If FIFO property is not enforced, then the protocol

can either deadlock or update with wrong data

@ A deadlock scenario:

1. Child 1 requests upgrade (from I) to M (msg1)

2. Parent responds to Child 1 with upgrade from I to M
(msg2)

. Child 2 requests upgrade (from I) to M (msg2)

4. Parent requests Child 1 for downgrade (from M) to I
(msg3)

(OV)

5. msg3 overtakes msg?2
6. Child 1 sees request to downgrade to I and drops it
7. Parent never gets a response from Child 1 for downgrade
tol
November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-29
@ At the memory, unprocessed request messages cannot
block reply messages. Hence all messages are
classified as H or L priority.
= all messages carrying replies are classified as high
priority
@ Accomplished by having separate paths for H and L
priority
= In Theory: separate networks
= In Practice: H —{>
+ Separate Queues L
+ Shared physical wires for both networks
November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-30

15

