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Memory Consistency in SMPs

Suppose CPU-1 updates A to 200.  
 write-back:  memory and cache-2 have stale values
 write-through:  cache-2 has a stale value

cache-1A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2A 100

memoryA 100

200

200

Do these stale values matter?
What is the view of shared memory for programming?
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Maintaining Store Atomicity
Store atomicity requires all processors to see 
writes occur in the same order
 multiple copies of a location in various caches can 

cause this to be violated

To meet the ordering requirement it is 
sufficient for hardware to ensure:
 Only one processor at a time has write permission 

for a location
 No processor can load a stale copy of the data after 

a write to the location
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A System with Multiple 
Caches
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Interconnect

Modern systems often have hierarchical caches
Each cache has exactly one parent but can have zero 
or more children
Logically only a parent and its children can 
communicate directly
Inclusion property is maintained between a parent 
and its children, i.e.,

a  Li  a  Li+1

Because usually
Li+1 >> Li
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Cache Coherence Protocols
Write request:  
 the address is invalidated in all other caches before the write is 

performed, or
 the address is updated in all other caches after the write is 

performed

Read request:  
 if a dirty copy is found in some cache, that is the value that must 

be used, e.g., by doing a write-back and reading the memory or 
forwarding that dirty value directly to the reader.
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We will focus on Invalidation protocols 
as opposed to Update protocols
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State needed to maintain 
Cache Coherence

Use MSI encoding in caches where
I means this cache does not contain the location
S means this cache has the location but so may other 

caches; hence it can only be read
M means only this cache has the location; hence it can 

be read and written
The states M, S, I can be thought of as an 
order M > S > I
 A transition from a lower state to a higher state is 

called an Upgrade
 A transition from a higher state to a lower state is 

called a Downgrade
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Sibling invariant and 
compatibility

Sibling invariant: 
 Cache  is in state M  its siblings are in state I
 That is, the sibling states are “compatible”

The states x, y of two siblings are compatible 
iff IsCompatible(x, y) is True where

IsCompatible(M, M) = False
IsCompatible(M, S) = False
IsCompatible(S, M) = False
All other cases        = True
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Cache State Transitions

S M

I

store
load

write-back

invalidate flush

store

optimizations

This state diagram is helpful as long as one remembers 
that each transition involves cooperation of other caches 
and the main memory
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Cache Actions
On a read miss (i.e., Cache state is I):
 In case some other cache has the location in state M 

then write back the dirty data to Memory
 Read the value from Memory and set the state to S 

On a write miss (i.e., Cache state is I or S):
 Invalidate the location in all other caches and in case 

some cache has the location in state M then write 
back the dirty data

 Read the value from Memory if necessary and set 
the state to M 

Misses cause Cache upgrade actions which in turn may 
cause further downgrades or upgrades on other caches
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MSI protocol: some issues
It is possible to have multiple requests for the 
same location from different processors. Hence 
there is a need to arbitrate requests
 In bus-based systems bus controller performs this 
function

 In directory-based systems upgrade requests are 
passed to the parent who acts as an arbitrator

On a cache miss there is a need to find out the 
state of other caches
 In a bus-based system a system-wide broadcast of 
the request determines the state of other caches  by 
“snooping”

 In directory-based systems a directory keeps track of 
the state of each child cache 

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-11

Directory State Encoding
Two-level (L1, M) system

For each location in a cache, the directory keeps 
two types of info
 c.state[a] (sibling info): do c’s siblings have a copy of 

location a; M (means no),  S (means maybe)
 c.child[ck][a] (children info): the state of c’s child ck for 

location a; At most one child can be in state M
Since L1 has no children, only sibling information 
is kept and since main (home) memory has no 
siblings only children cache information is kept
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All addresses in 
the home memory 
are in state M

a

a
P
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P

L1 L1

Interconnect

<S,I,I,I>

S
P P



7

Directory state encoding cont

New states needed to deal with waiting for 
responses:
 c.waitp[a] : Denotes if cache c is waiting for a response 

from its parent
 Nothing means not waiting
 Valid (M|S|I) means waiting for a response to transition to 

M or S or I state, respectively
 c.waitc[ck][a] : Denotes if cache c is waiting for a 

response from its child ck
 Nothing | Valid (M|S|I)

Cache state in L1: 
<(M|S|I), (Nothing | Valid(M|S|I))> 

Directory state in home memory: 
<[(M|S|I), (Nothing | Valid(M|S|I))]> 
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Children’s state

A Directory-based Protocol 
an abstract view

interconnectPP

P

c2m

m2c
L1

p2m m2p

mPP

in out

PP

P

c2m

m2c
L1

p2mm2p

Each cache has 2 pairs of queues 
 (c2m, m2c) to communicate with the memory
 (p2m, m2p) to communicate with the processor

Message format:  <cmd, srcdst, a, s, data>

FIFO message passing between each (srcdst) pair 
except a Resp cannot block a Req
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Req/Resp address state



8

Processor Hit Rules
Load-hit rule

p2m.msg=(Load a) &
(c.state[a]>I)

 p2m.deq;
m2p.enq(c.data[a]);

Store-hit rule
p2m.msg=(Store a v) & 
c.state[a]=M

 p2m.deq; 
m2p.enq(Ack);
c.data[a]:=v; 

PP

P

c2m

m2c
L1

p2m m2p

The miss rules are taken
care of by the general 
cache rules to be 
presented
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Processing a Load or a 
Store miss

Child to Parent: Upgrade-to-y request

Parent to Child: process Upgrade-to-y request

Parent to other child caches: Downgrade-to-x request

Child to Parent: Downgrade-to-x response

Parent waits for all Downgrade-to-x responses

Parent to Child: Upgrade-to-y response

Child receives upgrade-to-y response
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Processing a Load miss
L1 to Parent: Upgrade-to-S request
(c.state[a]=I) & (c.waitp[a]=Nothing) 
 c.waitp[a]:=Valid S;

c2m.enq(<Req, cm, a, S, - >);

Parent to L1: Upgrade-to-S response
(j, m.waitc[j][a]=Nothing) & c2m.msg=<Req,cm,a,S,-> 
& (i≠c, IsCompatible(m.child[i][a],S))
 m2c.enq(<Resp, mc, a, S, m.data[a]>);

m.child[c][a]:=S; c2m.deq
L1 receiving upgrade-to-S response
m2c.msg=<Resp, mc, a, S, data>
 m2c.deq; c.data[a]:=data; c.state[a]:=S;

c.waitp[a]:=Nothing;
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Processing Load miss cont.

What if (i≠c, IsCompatible(m.child[i][a],y)) is false?
Downgrade other child caches
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Parent to L1: Upgrade-to-S response
(j, m.waitc[j][a]=Nothing) & c2m.msg=<Req,cm,a,S,-> 
& (i≠c, IsCompatible(m.child[i][a],S))
 m2c.enq(<Resp, mc, a, S, m.data[a]>);

m.child[c][a]:=S; c2m.deq
Parent to Child: Downgrade to S request
c2m.msg=<Req,cm,a,S,-> &
(m.child[i][a]>S) & (m.waitc[i][a]=Nothing)
 m.waitc[i][a]:=Valid S; m2c.enq(<Req, mi, a, S, - >);
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Complete set of cache 
actions

req = {1,4,7}
resp = {2,3,5,6,8}

A protocol specifies cache 
actions corresponding to 
each of these 8 different 
messages

Cache

1,5,8 3,7
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Memory

4,2 6

Child Requests
1. Child to Parent: Upgrade-to-y Request

(c.state[a]<y) & (c.waitp[a]=Nothing) 
 c.waitp[a]:=Valid y;

c2m.enq(<Req, cm, a, y, - >);

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-20



11

Parent Responds
2. Parent to Child: Upgrade-to-y response

(j, m.waitc[j][a]=Nothing) & c2m.msg=<Req,cm,a,y,-> 
& (m.child[c][a]<y) & (i≠c, IsCompatible(m.child[i][a],y))
 m2c.enq(<Resp, mc, a, y,

(if (m.child[c][a]=I) then m.data[a] else -)>);
m.child[c][a]:=y; c2m.deq;
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Child receives Response
3. Child receiving upgrade-to-y response

m2c.msg=<Resp, mc, a, y, data>
 m2c.deq;

if(c.state[a]=I) c.data[a]:=data;
c.state[a]:=y;
if(c.waitp[a]=(Valid x) & x≤y) c.waitp[a]:=Nothing;    
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Parent Requests
4. Parent to Child: Downgrade-to-y Request

(m.child[i][a]>y) & (m.waitc[i][a]=Nothing)
 m.waitc[i][a]:=Valid y; 

m2c.enq(<Req, mc, a, y, - >);
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Child Responds
5. Child to Parent: Downgrade-to-y response

(m2c.msg=<Req,mc,a,y,->) & (c.state[a]>y) 
 c2m.enq(<Resp, c->m, a, y,

(if (c.state[a]=M) then c.data[a] else - )>);
c.state[a]:=y; m2c.deq
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Parent receives Response
6. Parent receiving downgrade-to-y response

c2m.msg=<Resp, cm, a, y, data>
 c2m.deq;

if(m.child[c][a]=M) m.data[a]:=data;
c.state[a]:=y;
if(m.waitc[c][a]=(Valid x) & x≥y) 

m.waitc[c][a]:=Nothing;
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Child receives served Request
7. Child receiving downgrade-to-y request

(m2c.msg=<Req, mc, a, y, - >) & (c.state[a]≤y)
 m2c.deq;
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Child Voluntarily downgrades 
8. Child to Parent: Downgrade-to-y response (vol)

(c.waitp[a]=Nothing) & (c.state[a]>y) 
 c2m.enq(<Resp, c->m, a, y,

(if (c.state[a]=M) then c.data[a] else - )>);
c.state[a]:=y;
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Some properties
Rules 1 to 8 are complete - cover all possibilities and 
cannot deadlock or violate cache invariants
Our protocol maintains two important invariants:
 Directory state is always a conservative estimate of a 

child’s state
 Every request eventually gets a corresponding response 

(assuming responses cannot be blocked by requests and a 
request cannot overtake a response for the same address)

Starvation, that is a Load or store request is ignored 
indefinitely has to be prevented; Fair arbitration at the 
memory between requests from various caches will 
ensure starvation freedom.
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FIFO property of queues
If FIFO property is not enforced, then the protocol 
can either deadlock or update with wrong data
A deadlock scenario:

1. Child 1 requests upgrade (from I) to M (msg1)
2. Parent responds to Child 1 with upgrade from I to M 

(msg2)
3. Child 2 requests upgrade (from I) to M (msg2)
4. Parent requests Child 1 for downgrade (from M) to I 

(msg3)
5. msg3 overtakes msg2
6. Child 1 sees request to downgrade to I and drops it
7. Parent never gets a response from Child 1 for downgrade 

to I
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H and L Priority Messages
At the memory, unprocessed request messages cannot 
block reply messages. Hence all messages are 
classified as H or L priority.
 all messages carrying replies are classified as high 

priority

Accomplished by having separate paths for H and L
priority
 In Theory: separate networks
 In Practice:
 Separate Queues
 Shared physical wires for both networks

H
L
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