
1

Constructive Computer Architecture

Cache Coherence

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan
Staff and students in 6.375 (Spring 2013),
6.S195 (Fall 2012), 6.S078 (Spring 2012)
 Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav

Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh

External
 Prof Amey Karkare & students at IIT Kanpur
 Prof Jihong Kim & students at Seoul Nation University
 Prof Derek Chiou, University of Texas at Austin
 Prof Yoav Etsion & students at Technion

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-2

2

Memory Consistency in SMPs

Suppose CPU-1 updates A to 200.
 write-back: memory and cache-2 have stale values
 write-through: cache-2 has a stale value

cache-1A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2A 100

memoryA 100

200

200

Do these stale values matter?
What is the view of shared memory for programming?

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-3

Maintaining Store Atomicity
Store atomicity requires all processors to see
writes occur in the same order
 multiple copies of a location in various caches can

cause this to be violated

To meet the ordering requirement it is
sufficient for hardware to ensure:
 Only one processor at a time has write permission

for a location
 No processor can load a stale copy of the data after

a write to the location

November 18, 2013 L21-4http://www.csg.csail.mit.edu/6.s195

 cache coherence protocols

3

A System with Multiple
Caches

M

L1
P

L1
P

L1
P

L1
P

L2L2
L1
P

L1
P

Interconnect

Modern systems often have hierarchical caches
Each cache has exactly one parent but can have zero
or more children
Logically only a parent and its children can
communicate directly
Inclusion property is maintained between a parent
and its children, i.e.,

a Li a Li+1

Because usually
Li+1 >> Li

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-5

Cache Coherence Protocols
Write request:
 the address is invalidated in all other caches before the write is

performed, or
 the address is updated in all other caches after the write is

performed

Read request:
 if a dirty copy is found in some cache, that is the value that must

be used, e.g., by doing a write-back and reading the memory or
forwarding that dirty value directly to the reader.

November 18, 2013 L21-6http://www.csg.csail.mit.edu/6.s195

We will focus on Invalidation protocols
as opposed to Update protocols

4

State needed to maintain
Cache Coherence

Use MSI encoding in caches where
I means this cache does not contain the location
S means this cache has the location but so may other

caches; hence it can only be read
M means only this cache has the location; hence it can

be read and written
The states M, S, I can be thought of as an
order M > S > I
 A transition from a lower state to a higher state is

called an Upgrade
 A transition from a higher state to a lower state is

called a Downgrade

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-7

Sibling invariant and
compatibility

Sibling invariant:
 Cache is in state M its siblings are in state I
 That is, the sibling states are “compatible”

The states x, y of two siblings are compatible
iff IsCompatible(x, y) is True where

IsCompatible(M, M) = False
IsCompatible(M, S) = False
IsCompatible(S, M) = False
All other cases = True

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-8

5

Cache State Transitions

S M

I

store
load

write-back

invalidate flush

store

optimizations

This state diagram is helpful as long as one remembers
that each transition involves cooperation of other caches
and the main memory

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-9

Cache Actions
On a read miss (i.e., Cache state is I):
 In case some other cache has the location in state M

then write back the dirty data to Memory
 Read the value from Memory and set the state to S

On a write miss (i.e., Cache state is I or S):
 Invalidate the location in all other caches and in case

some cache has the location in state M then write
back the dirty data

 Read the value from Memory if necessary and set
the state to M

Misses cause Cache upgrade actions which in turn may
cause further downgrades or upgrades on other caches

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-10

6

MSI protocol: some issues
It is possible to have multiple requests for the
same location from different processors. Hence
there is a need to arbitrate requests
 In bus-based systems bus controller performs this
function

 In directory-based systems upgrade requests are
passed to the parent who acts as an arbitrator

On a cache miss there is a need to find out the
state of other caches
 In a bus-based system a system-wide broadcast of
the request determines the state of other caches by
“snooping”

 In directory-based systems a directory keeps track of
the state of each child cache

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-11

Directory State Encoding
Two-level (L1, M) system

For each location in a cache, the directory keeps
two types of info
 c.state[a] (sibling info): do c’s siblings have a copy of

location a; M (means no), S (means maybe)
 c.child[ck][a] (children info): the state of c’s child ck for

location a; At most one child can be in state M
Since L1 has no children, only sibling information
is kept and since main (home) memory has no
siblings only children cache information is kept

November 18, 2013 L21-12http://www.csg.csail.mit.edu/6.s195

All addresses in
the home memory
are in state M

a

a
P

L1
P

L1 L1

Interconnect

<S,I,I,I>

S
P P

7

Directory state encoding cont

New states needed to deal with waiting for
responses:
 c.waitp[a] : Denotes if cache c is waiting for a response

from its parent
 Nothing means not waiting
 Valid (M|S|I) means waiting for a response to transition to

M or S or I state, respectively
 c.waitc[ck][a] : Denotes if cache c is waiting for a

response from its child ck
 Nothing | Valid (M|S|I)

Cache state in L1:
<(M|S|I), (Nothing | Valid(M|S|I))>

Directory state in home memory:
<[(M|S|I), (Nothing | Valid(M|S|I))]>

November 18, 2013 L21-13http://www.csg.csail.mit.edu/6.s195

Children’s state

A Directory-based Protocol
an abstract view

interconnectPP

P

c2m

m2c
L1

p2m m2p

mPP

in out

PP

P

c2m

m2c
L1

p2mm2p

Each cache has 2 pairs of queues
 (c2m, m2c) to communicate with the memory
 (p2m, m2p) to communicate with the processor

Message format: <cmd, srcdst, a, s, data>

FIFO message passing between each (srcdst) pair
except a Resp cannot block a Req

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-14

Req/Resp address state

8

Processor Hit Rules
Load-hit rule

p2m.msg=(Load a) &
(c.state[a]>I)

 p2m.deq;
m2p.enq(c.data[a]);

Store-hit rule
p2m.msg=(Store a v) &
c.state[a]=M

 p2m.deq;
m2p.enq(Ack);
c.data[a]:=v;

PP

P

c2m

m2c
L1

p2m m2p

The miss rules are taken
care of by the general
cache rules to be
presented

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-15

Processing a Load or a
Store miss

Child to Parent: Upgrade-to-y request

Parent to Child: process Upgrade-to-y request

Parent to other child caches: Downgrade-to-x request

Child to Parent: Downgrade-to-x response

Parent waits for all Downgrade-to-x responses

Parent to Child: Upgrade-to-y response

Child receives upgrade-to-y response

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-16

9

Processing a Load miss
L1 to Parent: Upgrade-to-S request
(c.state[a]=I) & (c.waitp[a]=Nothing)
 c.waitp[a]:=Valid S;

c2m.enq(<Req, cm, a, S, - >);

Parent to L1: Upgrade-to-S response
(j, m.waitc[j][a]=Nothing) & c2m.msg=<Req,cm,a,S,->
& (i≠c, IsCompatible(m.child[i][a],S))
 m2c.enq(<Resp, mc, a, S, m.data[a]>);

m.child[c][a]:=S; c2m.deq
L1 receiving upgrade-to-S response
m2c.msg=<Resp, mc, a, S, data>
 m2c.deq; c.data[a]:=data; c.state[a]:=S;

c.waitp[a]:=Nothing;
November 18, 2013 L21-17http://www.csg.csail.mit.edu/6.s195

Processing Load miss cont.

What if (i≠c, IsCompatible(m.child[i][a],y)) is false?
Downgrade other child caches

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-18

Parent to L1: Upgrade-to-S response
(j, m.waitc[j][a]=Nothing) & c2m.msg=<Req,cm,a,S,->
& (i≠c, IsCompatible(m.child[i][a],S))
 m2c.enq(<Resp, mc, a, S, m.data[a]>);

m.child[c][a]:=S; c2m.deq
Parent to Child: Downgrade to S request
c2m.msg=<Req,cm,a,S,-> &
(m.child[i][a]>S) & (m.waitc[i][a]=Nothing)
 m.waitc[i][a]:=Valid S; m2c.enq(<Req, mi, a, S, - >);

10

Complete set of cache
actions

req = {1,4,7}
resp = {2,3,5,6,8}

A protocol specifies cache
actions corresponding to
each of these 8 different
messages

Cache

1,5,8 3,7

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-19

Memory

4,2 6

Child Requests
1. Child to Parent: Upgrade-to-y Request

(c.state[a]<y) & (c.waitp[a]=Nothing)
 c.waitp[a]:=Valid y;

c2m.enq(<Req, cm, a, y, - >);

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-20

11

Parent Responds
2. Parent to Child: Upgrade-to-y response

(j, m.waitc[j][a]=Nothing) & c2m.msg=<Req,cm,a,y,->
& (m.child[c][a]<y) & (i≠c, IsCompatible(m.child[i][a],y))
 m2c.enq(<Resp, mc, a, y,

(if (m.child[c][a]=I) then m.data[a] else -)>);
m.child[c][a]:=y; c2m.deq;

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-21

Child receives Response
3. Child receiving upgrade-to-y response

m2c.msg=<Resp, mc, a, y, data>
 m2c.deq;

if(c.state[a]=I) c.data[a]:=data;
c.state[a]:=y;
if(c.waitp[a]=(Valid x) & x≤y) c.waitp[a]:=Nothing;

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-22

12

Parent Requests
4. Parent to Child: Downgrade-to-y Request

(m.child[i][a]>y) & (m.waitc[i][a]=Nothing)
 m.waitc[i][a]:=Valid y;

m2c.enq(<Req, mc, a, y, - >);

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-23

Child Responds
5. Child to Parent: Downgrade-to-y response

(m2c.msg=<Req,mc,a,y,->) & (c.state[a]>y)
 c2m.enq(<Resp, c->m, a, y,

(if (c.state[a]=M) then c.data[a] else -)>);
c.state[a]:=y; m2c.deq

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-24

13

Parent receives Response
6. Parent receiving downgrade-to-y response

c2m.msg=<Resp, cm, a, y, data>
 c2m.deq;

if(m.child[c][a]=M) m.data[a]:=data;
c.state[a]:=y;
if(m.waitc[c][a]=(Valid x) & x≥y)

m.waitc[c][a]:=Nothing;

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-25

Child receives served Request
7. Child receiving downgrade-to-y request

(m2c.msg=<Req, mc, a, y, - >) & (c.state[a]≤y)
 m2c.deq;

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-26

14

Child Voluntarily downgrades
8. Child to Parent: Downgrade-to-y response (vol)

(c.waitp[a]=Nothing) & (c.state[a]>y)
 c2m.enq(<Resp, c->m, a, y,

(if (c.state[a]=M) then c.data[a] else -)>);
c.state[a]:=y;

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-27

Some properties
Rules 1 to 8 are complete - cover all possibilities and
cannot deadlock or violate cache invariants
Our protocol maintains two important invariants:
 Directory state is always a conservative estimate of a

child’s state
 Every request eventually gets a corresponding response

(assuming responses cannot be blocked by requests and a
request cannot overtake a response for the same address)

Starvation, that is a Load or store request is ignored
indefinitely has to be prevented; Fair arbitration at the
memory between requests from various caches will
ensure starvation freedom.

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-28

15

FIFO property of queues
If FIFO property is not enforced, then the protocol
can either deadlock or update with wrong data
A deadlock scenario:

1. Child 1 requests upgrade (from I) to M (msg1)
2. Parent responds to Child 1 with upgrade from I to M

(msg2)
3. Child 2 requests upgrade (from I) to M (msg2)
4. Parent requests Child 1 for downgrade (from M) to I

(msg3)
5. msg3 overtakes msg2
6. Child 1 sees request to downgrade to I and drops it
7. Parent never gets a response from Child 1 for downgrade

to I

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-29

H and L Priority Messages
At the memory, unprocessed request messages cannot
block reply messages. Hence all messages are
classified as H or L priority.
 all messages carrying replies are classified as high

priority

Accomplished by having separate paths for H and L
priority
 In Theory: separate networks
 In Practice:
 Separate Queues
 Shared physical wires for both networks

H
L

November 18, 2013 http://www.csg.csail.mit.edu/6.s195 L21-30

