
1

Constructive Computer Architecture

Cache Coherence

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

Includes slides from L21

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-1

Contributors to the course
material

Arvind, Rishiyur S. Nikhil, Joel Emer,
Muralidaran Vijayaraghavan

Staff and students in 6.375 (Spring 2013),
6.S195 (Fall 2012), 6.S078 (Spring 2012)

 Asif Khan, Richard Ruhler, Sang Woo Jun, Abhinav
Agarwal, Myron King, Kermin Fleming, Ming Liu, Li-
Shiuan Peh

External

 Prof Amey Karkare & students at IIT Kanpur

 Prof Jihong Kim & students at Seoul Nation University

 Prof Derek Chiou, University of Texas at Austin

 Prof Yoav Etsion & students at Technion

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-2

2

Memory Consistency in SMPs

Suppose CPU-1 updates A to 200.

 write-back: memory and cache-2 have stale values

 write-through: cache-2 has a stale value

cache-1 A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2 A 100

memory A 100

200

200

Do these stale values matter?
What is the view of shared memory for programming?

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-3

Maintaining Store Atomicity
Store atomicity requires all processors to see
writes occur in the same order

 multiple copies of an address in various caches can
cause this to be violated

To meet the ordering requirement it is
sufficient for hardware to ensure:

 Only one processor at a time has write permission
for a address

 No processor can load a stale copy of the data after
a write to the address

 cache coherence protocols

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-4

3

A System with Multiple
Caches

M

 L1
 P

 L1
 P

 L1
 P

 L1
 P

 L2 L2

 L1

P

 L1
 P

Interconnect

Modern systems often have hierarchical caches

Each cache has exactly one parent but can have zero
or more children

Logically only a parent and its children can
communicate directly

Inclusion property is maintained between a parent
and its children, i.e.,

 a  Li  a  Li+1

Because usually
Li+1 >> Li

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-5

Cache Coherence Protocols
Write request:

 the address is invalidated in all other caches before
the write is performed

Read request:

 if a dirty copy is found in some cache, that value
must be used by doing a write-back and then
reading the memory or forwarding that dirty value
directly to the reader

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-6

4

State needed to maintain
Cache Coherence

Use MSI encoding in caches where

I means this cache does not contain the address

S means this cache has the address but so may other
caches; hence it can only be read

M means only this cache has the address; hence it can
be read and written

The states M, S, I can be thought of as an
order M > S > I

 A transition from a lower state to a higher state is
called an Upgrade

 A transition from a higher state to a lower state is
called a Downgrade

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-7

Sibling invariant and
compatibility

Sibling invariant:

 Cache is in state M  its siblings are in state I

 That is, the sibling states are “compatible”

IsCompatible(M, M) = False

IsCompatible(M, S) = False

IsCompatible(S, M) = False

All other cases = True

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-8

5

Cache State Transitions

S M

I

store
load

write-back

invalidate flush

store

optimizations

This state diagram is helpful as long as one remembers
that each transition involves cooperation of other caches
and the main memory to maintain the sibling invariants

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-9

Cache Actions
On a read miss (i.e., Cache state is I):

 In case some other cache has the address in state M
then write back the dirty data to Memory

 Read the value from Memory and set the state to S

On a write miss (i.e., Cache state is I or S):

 Invalidate the address in all other caches and in case
some cache has the address in state M then write
back the dirty data

 Read the value from Memory if necessary and set
the state to M

Misses cause Cache upgrade actions which in turn may
cause further downgrades or upgrades on other caches

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-10

6

MSI protocol: some issues
It never makes sense to have two outstanding
requests for the same address from the same
processor/cache

It is possible to have multiple requests for the
same address from different processors. Hence
there is a need to arbitrate requests

On a cache miss there is a need to find out the
state of other caches

A cache needs to be able to evict an address in
order to make room for a different address

 Voluntary downgrade

Memory system (higher-level cache) should be
able to force a lower-level cache to downgrade

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-11

Directory State Encoding
Two-level (L1, M) system

For each address in a cache, the directory keeps
two types of info

 c.state[a] (sibling info): do c’s siblings have a copy of
address a; M (means no), S (means maybe)

 m.child[ck][a] (children info): the state of child ck for
address a; At most one child can be in state M

a

 a
 P

 L1
 P

 L1 L1

Interconnect

<S,I,I,I>

S
 P P

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-12

7

Directory state encoding
wait states

New states needed to deal with waiting for
responses:

 c.waitp[a] : Denotes if cache c is waiting for a response
from its parent

 Nothing means not waiting

 Valid (M|S|I) means waiting for a response to transition to
M or S or I state, respectively

 m.waitc[ck][a] : Denotes if memory m is waiting for a
response from its child ck

 Nothing | Valid (M|S|I)

Cache state in L1:

<(M|S|I), (Nothing | Valid(M|S|I))>

Directory state in home memory:

 <[(M|S|I), (Nothing | Valid(M|S|I))]>

Children’s state

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-13

A Directory-based Protocol
an abstract view

interconnect PP

P

c2m

m2c
L1

p2m m2p

m PP

in out

PP

P

c2m

m2c
L1

p2m m2p

Each cache has 2 pairs of queues

 (c2m, m2c) to communicate with the memory

 (p2m, m2p) to communicate with the processor

Message format: <cmd, srcdst, a, s, data>

FIFO message passing between each (srcdst) pair
except a Req cannot block a Resp

Messages in one srcdst path cannot block messages
in another srcdst path

Req/Resp address state

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-14

8

Processor Hit Rules

 Load-hit rule
 p2m.msg=(Load a) &
 (c.state[a]>I)

  p2m.deq;

 m2p.enq(c.data[a]);

 Store-hit rule
p2m.msg=(Store a v) &

 c.state[a]=M
  p2m.deq;

 m2p.enq(Ack);
 c.data[a]:=v;

PP

P

c2m

m2c
L1

p2m m2p

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-15

Processing misses:
Requests and Responses

Cache

Upgrade req
Downgrade resp

Downgrade req
Upgrade resp

Memory

Cache

Downgrade req SI, MS, MI
Upgrade resp

IS, SM, IM Upgrade req
Downgrade resp

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-16

Downgrade req
Upgrade resp

Upgrade req
Downgrade resp

9

Processing a Load or a
Store miss incomplete

Child to Parent: Upgrade-to-y request

Parent to Child: process Upgrade-to-y request

 Parent to other child caches: Downgrade-to-x request

 Child to Parent: Downgrade-to-x response

 Parent waits for all Downgrade-to-x responses

Parent to Child: Upgrade-to-y response

Child receives upgrade-to-y response

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-17

Processing a Load miss
ad hoc attempt

L1 to Parent: Upgrade-to-S request

(c.state[a]=I) & (c.waitp[a]=Nothing)

 c.waitp[a]:=Valid S;

 c2m.enq(<Req, cm, a, S, - >);

Parent to L1: Upgrade-to-S response

(j, m.waitc[j][a]=Nothing) & c2m.msg=<Req,cm,a,S,->
& (i≠c, IsCompatible(m.child[i][a],S))

 m2c.enq(<Resp, mc, a, S, m.data[a]>);

 m.child[c][a]:=S; c2m.deq

L1 receiving upgrade-to-S response

m2c.msg=<Resp, mc, a, S, data>

 m2c.deq; c.data[a]:=data; c.state[a]:=S;

 c.waitp[a]:=Nothing;

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-18

10

Processing Load miss cont.

What if (i≠c, IsCompatible(m.child[i][a],y)) is false?

Downgrade other child caches

Parent to L1: Upgrade-to-S response

(j, m.waitc[j][a]=Nothing) & c2m.msg=<Req,cm,a,S,->
& (i≠c, IsCompatible(m.child[i][a],S))

 m2c.enq(<Resp, mc, a, S, m.data[a]>);

 m.child[c][a]:=S; c2m.deq

Parent to Child: Downgrade to S request

 c2m.msg=<Req,cm,a,S,-> &

 (m.child[i][a]>S) & (m.waitc[i][a]=Nothing)

  m.waitc[i][a]:=Valid S; m2c.enq(<Req, mi, a, S, - >);

It is difficult to design a protocol in this manner

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-19

Invariants for a CC-protocol
design

Directory state is always a conservative estimate
of a child’s state
 E.g., if directory thinks that a child cache is in S state then

the cache has to be in either I or S state

For every request there is a corresponding
response, though sometimes a response may have
been generated even before the request was
processed

Communication system has to ensure that
 responses cannot be blocked by requests

 a request cannot overtake a response for the same
address

At every merger point for requests, we will
assume fair arbitration to avoid starvation

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-20

11

Complete set of
cache/memory actions

Cache

1,5,8 3,5,7

Memory

2,4 2,6

1 Up req send (cache)
2 Up req proc, Up resp send (memory)
3 Up resp proc (cache)
4 Dn req send (memory)
5 Dn req proc, Dn resp send (cache)
6 Dn resp proc (memory)
7 Dn req proc, drop (cache)
8 Voluntary Dn resp (cache)

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-21

Child Requests
1. Child to Parent: Upgrade-to-y Request

(c.state[a]<y) & (c.waitp[a]=Nothing)

 c.waitp[a]:=Valid y;

 c2m.enq(<Req, cm, a, y, - >);

This is a blocking cache since we did not deque the
requesting message in case of a miss

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-22

12

Parent Responds
2. Parent to Child: Upgrade-to-y response

(j, m.waitc[j][a]=Nothing) & c2m.msg=<Req,cm,a,y,->
& (i≠c, IsCompatible(m.child[i][a],y))

 m2c.enq(<Resp, mc, a, y,

 (if (m.child[c][a]=I) then m.data[a] else -)>);

 m.child[c][a]:=y; c2m.deq;

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-23

Child receives Response
3. Child receiving upgrade-to-y response

m2c.msg=<Resp, mc, a, y, data>

 m2c.deq;

 if(c.state[a]=I) c.data[a]:=data;

 c.state[a]:=y;

 c.waitp[a]:=Nothing;

// the child must be waiting for a state ≤ y

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-24

13

Parent Requests
4. Parent to Child: Downgrade-to-y Request

c2m.msg=<Req,cm,a,y,-> &

(m.child[i][a]>y) & (m.waitc[i][a]=Nothing)

 m.waitc[i][a]:=Valid y;

 m2c.enq(<Req, mc, a, y, - >);

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-25

Child Responds
5. Child to Parent: Downgrade-to-y response

(m2c.msg=<Req,mc,a,y,->) & (c.state[a]>y)

 c2m.enq(<Resp, c->m, a, y,

 (if (c.state[a]=M) then c.data[a] else -)>);

 c.state[a]:=y; m2c.deq

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-26

14

Parent receives Response
6. Parent receiving downgrade-to-y response

c2m.msg=<Resp, cm, a, y, data>

 c2m.deq;

 if(m.child[c][a]=M) m.data[a]:=data;

 m.child[c][a]:=y;

 if(m.waitc[c][a]=(Valid x) & x≥y)

 m.waitc[c][a]:=Nothing;

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-27

Child receives served Request
7. Child receiving downgrade-to-y request

(m2c.msg=<Req, mc, a, y, - >) & (c.state[a]≤y)

 m2c.deq;

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-28

15

Child Voluntarily downgrades
8. Child to Parent: Downgrade-to-y response (vol)

(c.waitp[a]=Nothing) & (c.state[a]>y)

 c2m.enq(<Resp, c->m, a, y,

 (if (c.state[a]=M) then c.data[a] else -)>);

 c.state[a]:=y;

Rules 1 to 8 are complete - cover all possibilities
and cannot deadlock or violate cache invariants

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-29

Are the rules exhaustive?
Parent rules

2. Parent to Child: Upgrade-to-y response

(j, m.waitc[j][a]=Nothing) & c2m.msg=<Req,cm,a,y,-> &
(i≠c, IsCompatible(m.child[i][a],y))

 m2c.enq(<Resp, mc, a, y,

 (if (m.child[c][a]=I) then m.data[a] else -)>);

 m.child[c][a]:=y; c2m.deq;

No deq, hence the request is kept pending at the head of the
queue;
The address is marked as “busy”, i.e., waiting

What if (i≠c, IsCompatible(m.child[i][a],y)) is False?

Rule 4 will get invoked
4. Parent to Child: Downgrade-to-y Request

c2m.msg=<Req,cm,a,y,-> &
(m.child[i][a]>y) & (m.waitc[i][a]=Nothing)
 m.waitc[i][a]:=Valid y; m2c.enq(<Req, mi, a, y, - >);

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-30

16

Are rules exhaustive?
Parent rules

2. Parent to Child: Upgrade-to-y response

(j, m.waitc[j][a]=Nothing) & c2m.msg=<Req,cm,a,y,-> &
(i≠c, IsCompatible(m.child[i][a],y))

 m2c.enq(<Resp, mc, a, y,

 (if (m.child[c][a]=I) then m.data[a] else -)>);

 m.child[c][a]:=y; c2m.deq;

4. Parent to Child: Downgrade-to-y Request

(m.child[i][a]>y) & (m.waitc[i][a]=Nothing)

 m.waitc[i][a]:=Valid y; m2c.enq(<Req, mc, a, y, - >);

6. Parent receiving downgrade-to-y response

c2m.msg=<Resp, cm, a, y, data>

 c2m.deq; if(m.child[c][a]=M) m.data[a]:=data; c.state[a]:=y;

 if(m.waitc[c][a]=(Valid x) & x≥y) m.waitc[c][a]:=Nothing;

 What if (j, m.waitc[j][a]=Nothing) is False?
It is OK not to process the request because this
condition will eventually be cleared out

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-31

Is every rule necessary?
Consider rule 7 for cache

7. Child receiving downgrade-to-y request

(m2c.msg=<Req, mc, a, y, - >) & (c.state[a]≤y)

 m2c.deq;

Can happen because of voluntary downgrade

8. Child to Parent: Downgrade-to-y response (vol)

(c.waitp[a]=Nothing) & (c.state[a]>y)

 c2m.enq(<Resp, c->m, a, y,

 (if (c.state[a]=M) then c.data[a] else -)>);

 c.state[a]:=y;

A downgrade request comes but the cache is already
in the downgraded state

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-32

17

More rules?

How about a voluntary upgrade rule from
parent?

Parent to Child: Upgrade-to-S response (vol)

(m.waitc[c][a]=Nothing) & (m.cstate[c][a]=S)

 m2c.enq(<Resp, m->c, a, M, -);

 m.cstate[c][a]:=M;

The child could have simultaneously evicted the line, in
which case the parent eventually makes m.cstate[c][a] =
I while the child makes its c.state[a] = M. This breaks
our invariant

A cc protocol is like a Swiss watch, even the smallest
change can easily (and usually does) introduce bugs

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-33

Communication Network

Two virtual networks:

 For requests and responses from cache to memory

 For requests and responses from memory to caches

Each network has H and L priority messages -
a L message can never block an H message
other than that messages are delivered in
FIFO order

Mem

 P
 L1
 P

 L1 L1

Interconnect P P
 L1

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-34

18

H and L Priority Messages
At the memory, unprocessed request messages cannot
block reply messages.

H and L messages can share the same wires but must
have separate queues

H

L An L message can be
processed only if H
queue is empty

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-35

FIFO property of queues
If FIFO property is not enforced, then the protocol
can either deadlock or update with wrong data

A deadlock scenario:

1. Child 1 requests upgrade (from I) to M (msg1)

2. Parent responds to Child 1 with upgrade from I to M
(msg2)

3. Child 2 requests upgrade (from I) to M (msg3)

4. Parent requests Child 1 for downgrade (from M) to I
(msg4)

5. msg4 overtakes msg2

6. Child 1 sees request to downgrade to I and drops it

7. Parent never gets a response from Child 1 for downgrade
to I

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-36

19

Deadlocks due to buffer
space

A cache or memory always accepts a
response, thus responses will always drain
from the network

From the children to the parent, two buffers
are needed to implement the H-L priority. A
child’s req can be blocked and generate more
requests

From parent to all the children, just one buffer
in the overall network is needed for both
requests and responses because a parent’s req
only generates responses

November 20, 2013 http://www.csg.csail.mit.edu/6.s195 L22-37

Integrating PP into a non-
blocking cache

November 20, 2013 L22-38 http://www.csg.csail.mit.edu/6.s195

St

Q

Ld

Buff

Wait

Q

V/

D/

 I/

W

Tag Data

mReqQ mRespQ

hitQ

resp req

PP

P

c2m m2c

L1

p2m m2p

Some cache
rules need to
be changed

