Constructive Computer Architecture

Tutorial 1

Andy Wright
6.5195 TA

September 9, 2013 http://csg.csail.mit.edu/6.s195 T01-1

Administrative Stuff

#®Piazza
= Was everyone added to the class?

#®Lab 1 (Due Friday)

= Has everyone tried logging onto
vilsifarm?

= What about checking out the lab git
repositories?

= Anyone having technical problems?

September 9, 2013 http://csg.csail.mit.edu/6.s195 TO1-2

Bluespec Introduction

Combinational Circuits
= Written as Functions
+ Problem: all functions inlined, no code reuse
= Written as Modules
+ Allows for code reuse, but is more complicated
Sequential Circuits
= Requires Reg#(...)’s and Rules

+ Currently the examples from lecture only use 1
rule.

+ Adding multiple rules compilcates things and will
be covered in a later lecture.

September 9, 2013 http://csg.csail.mit.edu/6.s195 T01-3

Bluespec Types

A
typedef enum {
#Bool ADD,
. SUB,
#®Bit#(n) ot
#Enum DAY
} Operation deriving(Bits, Eq);

@ Struct

typedef struct {
Operation op;
Bit# (32) val;
} Command deriving (Bits, Eq);

September 9, 2013 http://csg.csail.mit.edu/6.s195 TO1-4

Bluespec Type - Tuples

#Type: Tuple2#(type a, type b)

= Also Tuple3#(a,b,c) up to Tuple8#(...)
#Values: tuple2(val_a, val_b)
Components: tpl_1(t), tpl_2(t), ...

Tuple2# (Bool, Bit#(16)) t = tuple2(true, 4);
Bool a val = tpl 1(t);
Bit#(16) b val = tpl 2(t);

September 9, 2013 http://csg.csail.mit.edu/6.s195

T01-5

Bluespec Type - Vectors

Type: Vector#(numeric type size, type
data_type)

Values: newVector(), replicate(val)

Elements accessed by []

Advanced functions like zip, map, and fold

. S?e the Bluespec Reference Manual for more
info

rfile values([7] = 5;

Vector# (32, Bit#(32)) rfile values = replicate(0);

September 9, 2013 http://csg.csail.mit.edu/6.s195

T01-6

Bluespec Type - Reg

#® Type: Reg#(type data_type)

Instantiated differently from normal
variables
= Uses <- notation

Written to differently from normal variables
s Uses <= notation

Reg# (Bit#(32)) a reg <- mkReg(0) // value set to 0
Reg# (Bit#(32)) b reg <- mkRegU() // uninitialized

// write to b reg (needs to be done inside rule)

b reg <= 7;

September 9, 2013 http://csg.csail.mit.edu/6.s195

T01-7

Reg and Vector

#Register of Vectors
= Reg#(Vector#(32, Bit#(32))) rfile;
= rfile <- mkReg(replicate(0));
#®\Vector of Registers
» Vector#(32, Reg#(Bit#(32))) rfile;
= rfile <- replicateM(mkReg(0));

#Each has its own advantages and
disadvantages

September 9, 2013 http://csg.csail.mit.edu/6.s195

T01-8

Numeric Types

typedef 5 N; // N is the numeric type 5
Bit# (N); // Same as Bit# (5)
valueOf (N); // The Integer 5

Bit#(n); // type variable

http://csg.csail.mit.edu/6.s195

T01-9

September 9, 2013

Modules

#Modules are building blocks for
larger systems
= Modules contain other modules and

ruls
= Moduels are accessed through their

interface
®#module mkAdder (Adder# (32));

= Adder#(32) is the interface

http://csg.csail.mit.edu/6.s195

T01-10

September 9, 2013

Interfaces

Interfaces contain methods for other
modules to interact with the given
module

» Interfaces can also contain other
interfaces

interface MylInterface# (numeric type n);
method ActionValue# (Bit# (b)) £();
interface SublInterface s;

endinterface

September 9, 2013 http://csg.csail.mit.edu/6.s195 TO1-11

Interface Methods

Method

= Returns value, doesn’t change state

» method Bit#(32) peek at front();
@ Action

» Changes state, doesn’t return value

m method Action enqueue ()
ActionValue

» Changes state, returns value

m method ActionValue# (Bit# (32))
dequeue front ()

September 9, 2013 http://csg.csail.mit.edu/6.s195 TO1-12

Strong Typing

The Bluespec Compiler throws errors if it can’t figure
out a type

Which of the following lines work?

Bit#(32) a = 7; Bit#(8) small b = 3;

let b = zeroExtend(small b);
Bit# (32) other b = zeroExtend(small b);
let a plus b = a + zeroExtend(small b);

Bit#(8) small b plus fifty truncated
= truncate(50 + zeroExtend(small b));

September 11, 2013 http://csg.csail.mit.edu/6.s195 T01-13

WideMux Example

September 9, 2013 http://csg.csail.mit.edu/6.s195 TO1-14

Addition Circuits and
Critical Paths

September 9, 2013 http://csg.csail.mit.edu/6.s195 T01-15

Multiplication by repeated
addition

b Multiplicand 1101 (13) a0~+{ mo_]
a Muliplier * 1011 (11) ai %
tp 0000 Ol

mO + 1101

tp 01101 add4

m1 + 1101

a2 m2
R T]
m2 + 0000

tp 0100111 add4
m3 + 1101 a3 m
tp 10001111 (143)

add4 |
EEE LD

September 9, 2013 http://csg.csail.mit.edu/6.s195 TO1-16

mi = (a[i]==0)? 0 : b; | |

=

Design issues with
combinational multiply

Lot of hardware
= 32-bit multiply uses 31 add32 circuits

Long chains of gates

= 32-bit ripple carry adder has a 31-long
chain of gates

= 32-bit multiply has 31 ripple carry adders in
sequence!

The speed of a combinational circuit is

determined by its longest input-to-output

path

What is this path?

September 9, 2013 http://csg.csail.mit.edu/6.s195 T01-17

