
Constructive Computer Architecture

Tutorial 7:
SMIPS Labs and Epochs

Andy Wright
6.S195 TA

November 1, 2013 http://csg.csail.mit.edu/6.s195 T07-1

Introduction

Lab 6

 6 Stage SMIPS Processor

 Due today

Lab 7

 Complex Branch Predictors

 Posted online

 Due next Friday

November 1, 2013 http://csg.csail.mit.edu/6.s195 T07-2

Lab 6

Does low IPC => low grade?
 Only if low IPC is from a ‘mistake’ in

your processor.

What is a ‘mistake’?
 Not updating your BTB with redirect

information

 Using too small of a scoreboard

 Having schedule conflicts between
pipeline stages

November 1, 2013 http://csg.csail.mit.edu/6.s195 T07-3

Lab 6

What questions do you have?

November 1, 2013 http://csg.csail.mit.edu/6.s195 T07-4

Lab 7

Adding history bits to BTB

 Combines target and direction
prediction

Implement BHT

 Separates direction prediction from
target prediction

Synthesize for FPGA

 Used to calculate IPS

November 1, 2013 T07-5 http://csg.csail.mit.edu/6.s195

Fixed slides from L16

Epoch Management

November 1, 2013 T07-6 http://csg.csail.mit.edu/6.s195

Multiple predictors in a
pipeline

 At each stage we need to take two decisions:

 Whether the current instruction is a wrong path
instruction. Requires looking at epochs

 Whether the prediction (ppc) following the current
instruction is good or not. Requires consulting the
prediction data structure (BTB, BHT, …)

Fetch stage must correct the pc unless the
redirection comes from a known wrong path
instruction

Redirections from Execute stage are always
correct, i.e., cannot come from wrong path
instructions

October 28, 2013 L16-7 http://csg.csail.mit.edu/6.S195

Dropping or poisoning an
instruction

Once an instruction is determined to be on the
wrong path, the instruction is either dropped or
poisoned

Drop: If the wrong path instruction has not
modified any book keeping structures (e.g.,
Scoreboard) then it is simply removed

Poison: If the wrong path instruction has
modified book keeping structures then it is
poisoned and passed down for book keeping
reasons (say, to remove it from the scoreboard)

Subsequent stages know not to update any
architectural state for a poisoned instruction

October 28, 2013 http://csg.csail.mit.edu/6.S195 L16-8

re
c
ir
e
c
t

N-Stage pipeline – BTB only

Execute d2e Decode f2d Fetch PC

miss
pred?

fEpoch

At Execute:
 (pc) if (epoch!=eEpoch) then mark instruction as poisoned
 (ppc) if (no poisoning) & mispred then change eEpoch; send <pc,

newPc, ...> to Fetch

At Fetch:
 msg from execute: train BTB with <pc, newPc, taken, mispredict>
 if msg from execute indicates misprediction then set pc, change

fEpoch

attached to
every fetched
instruction

{pc, ppc, epoch}

eEpoch
{pc, newPc, taken
mispredict, ...}

BTB

...

October 28, 2013 http://csg.csail.mit.edu/6.S195 L16-9

N-Stage pipeline:
Two predictors

Suppose both Decode and Execute can redirect the PC;
Execute redirect should have priority, i.e., Execute
redirect should never be overruled

We will use separate epochs for each redirecting stage
 feEpoch and deEpoch are estimates of eEpoch at Fetch and

Decode, respectively

 fdEpoch is Fetch’s estimates of dEpoch

 Initially set all epochs to 0

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

redirect PC

redirect PC
deEpoch

eEpoch feEpoch e
R
e
c
ir
e
c
t

fdEpoch dEpoch

d
R
e
c
ir
e
c
t

...

October 28, 2013 http://csg.csail.mit.edu/6.S195 L16-10

N-Stage pipeline: Two predictors
Redirection logic

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

deEpoch

eEpoch feEpoch e
R
e
c
ir
e
c
t

fdEpoch dEpoch

d
R
e
c
ir
e
c
t

...

At execute:
 (pc) if (ieEp!=eEp) then poison the instruction
 (ppc) if (no poisoning) & mispred then change eEp;
 (ppc) for every control instruction send <pc, target pc, taken, mispred…> to fetch

At fetch:
 msg from execute: if (mispred) set pc, change feEp,
 msg from decode: If (no redirect message from Execute)
 if (ideEp=feEp) then set pc, change fdEp to idEp

At decode: …

{..., ieEp} {pc, ppc, ieEp, idEp}

{pc, newPc, taken
mispredict, ...}

{pc, newPc,
idEp, ideEp...}

make sure that the msg
from Decode is not from
a wrong path instruction

October 28, 2013 http://csg.csail.mit.edu/6.S195 L16-11

Decode stage
Redirection logic

Execute d2e Decode f2d Fetch PC

miss
pred?

miss
pred?

deEpoch

eEpoch feEpoch e
R
e
c
ir
e
c
t

fdEpoch dEpoch

d
R
e
c
ir
e
c
t

...

{..., ieEp} {pc, ppc, ieEp, idEp}

{pc, newPc, taken
mispredict, ...}

{pc, newPc,
idEp, ideEp...}

October 28, 2013 http://csg.csail.mit.edu/6.S195 L16-12

Is ieEp = deEp ?

Is idEp = dEp ? Current instruction is OK but
Execute has redirected the pc;
Set <deEp, dEp> to <ieEp, idEp>
check the ppc prediction via BHT,
Switch dEp if misprediction

yes no

yes no

Current instruction
is OK; check the
ppc prediction via
BHT, Switch dEp if
misprediction

Wrong path
instruction; drop it

Another way to manage
epochs

Write the rules as simple as
possible (guarded atomic
actions), then add EHRs if
necessary

October 28, 2013 L16-13 http://csg.csail.mit.edu/6.S195

Fetch Rule

fInst.pc = pc;

fInst.ppc = prediction(pc);

fInst.eEpoch = eEpoch;

fInst.dEpoch = dEpoch;

…

pc <= fInst.ppc;

f2dFifo.enq(fInst);

October 28, 2013 L16-14 http://csg.csail.mit.edu/6.S195

Decode Rule

if(dInst.eEpoch != eEpoch)
 kill fInst
else if(dInst.dEpoch != dEpoch)
 kill fInst
else begin
 let newpc = prediction(dInst);
 if(newpc != dInst.ppc) begin
 pc <= newpc
 dEpoch <= !dEpoch;
 end
 …
end

October 28, 2013 L16-15 http://csg.csail.mit.edu/6.S195

Execute Rule

if(eInst.eEpoch != eEpoch)
 poison eInst
else begin
 if(mispredict) begin
 pc <= newpc;
 eEpoch <= !eEpoch;
 train branch predictors
 end
 …
end

October 28, 2013 L16-16 http://csg.csail.mit.edu/6.S195

Conflicts

PC read < PC write
 fetch < {decode, execute}

dEpoch read < dEpoch write
 fetch < decode

eEpoch read < eEpoch write
 {fetch, decode} < execute

PC write C PC write
 fetch C decode C execute C fetch

October 28, 2013 L16-17 http://csg.csail.mit.edu/6.S195

None of these stages can execute in the same clock cycle!

Now add EHRs

1)Choose an ordering between the
rules and assign the corresponding
EHR ports
(fetch, decode, execute)

2)Change conflicting registers into
EHRs
(pc)

Ehr#(3, Addr) pc -> mkEhr(?);

October 28, 2013 L16-18 http://csg.csail.mit.edu/6.S195

Fetch Rule – port 0

fInst.pc = pc[0];

fInst.ppc = prediction(pc[0]);

fInst.eEpoch = eEpoch;

fInst.dEpoch = dEpoch;

…

pc[0] <= fInst.ppc;

f2dFifo.enq(fInst);

October 28, 2013 L16-19 http://csg.csail.mit.edu/6.S195

Decode Rule – port 1

if(dInst.eEpoch != eEpoch)
 kill fInst
else if(dInst.dEpoch != dEpoch)
 kill fInst
else begin
 let newpc = prediction(dInst);
 if(newpc != dInst.ppc) begin
 pc[1] <= newpc;
 dEpoch <= !dEpoch;
 end
 …
end

October 28, 2013 L16-20 http://csg.csail.mit.edu/6.S195

Execute Rule – port 2

if(eInst.eEpoch != eEpoch)
 poison eInst
else begin
 if(mispredict) begin
 pc[2] <= newpc;
 eEpoch <= !eEpoch;
 train branch predictors
 end
 …
end

October 28, 2013 L16-21 http://csg.csail.mit.edu/6.S195

Another Ordering

1) Choose an ordering between the rules
and assign the corresponding EHR ports

(execute, decode, fetch)

2) Change conflicting registers into EHRs
(pc, dEpoch, eEpoch)

Ehr#(3, Addr) pc -> mkEhr(?);

Ehr#(3, Bool) dEpoch -> mkEhr(False);

Ehr#(3, Bool) eEpoch -> mkEhr(False);

October 28, 2013 L16-22 http://csg.csail.mit.edu/6.S195

Fetch Rule – port 2

fInst.pc = pc[2];

fInst.ppc = prediction(pc[2]);

fInst.eEpoch = eEpoch[2];

fInst.dEpoch = dEpoch[2];

…

pc[2] <= fInst.ppc;

f2dFifo.enq(fInst);

October 28, 2013 L16-23 http://csg.csail.mit.edu/6.S195

Decode Rule – port 1

if(dInst.eEpoch != eEpoch[1])
 kill fInst
else if(dInst.dEpoch != dEpoch[1])
 kill fInst
else begin
 let newpc = prediction(dInst);
 if(newpc != dInst.ppc) begin
 pc[1] <= newpc;
 dEpoch[1] <= !dEpoch[1];
 end
 …
end

October 28, 2013 L16-24 http://csg.csail.mit.edu/6.S195

Execute Rule – port 0

if(eInst.eEpoch != eEpoch[0])
 poison eInst
else begin
 if(mispredict) begin
 pc[0] <= newpc;
 eEpoch[0] <= !eEpoch[0];
 train branch predictors
 end
 …
end

October 28, 2013 L16-25 http://csg.csail.mit.edu/6.S195

Different View of EHR

This transformation makes more
sense when you think of an EHR as
sub-cycle register.

This is explained more in the paper
“The Ephemeral History Register:
Flexible Scheduling for Rule-Based
Designs” by Daniel L. Rosenband

October 28, 2013 L16-26 http://csg.csail.mit.edu/6.S195

Questions?

November 1, 2013 http://csg.csail.mit.edu/6.s195 T07-27

November 1, 2013 T07-28 http://csg.csail.mit.edu/6.s195

6 stage SMIPS pipeline

November 1, 2013 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

fEpoch

PC

Redirect

T07-29

Poisoning Pipeline

November 1, 2013 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

fEpoch

PC

Redirect

Poison Kill

T07-30

Correcting PC in Decode
and Execute

November 1, 2013 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem eEpoch

feEpoch

PC

Redirect

1 2 3 4 5 6

Executing Write Back

dEpoch

Decoding

fdEpoch

feEpoch

Fetch has local estimates of eEpoch and dEpoch

Decode has a local estimate of eEpoch
T07-31

fEpoch and PC feedback

November 1, 2013 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Register File

Scoreboard

DMem IMem
Epoch

[0]

Epoch
[1]

PC
[1]

Make the PC an EHR too! Whenever Execute sees a misprediction,
IFetch reads the correct next instruction in the same cycle!

PC
[0]

T07-32

RFile and SB feedback

November 1, 2013 http://csg.csail.mit.edu/6.s195

IFetch Decode WB RFetch Exec Memory

Bypass Register File

Pipeline Scoreboard

DMem IMem eEpoch

fEpoch

PC

Redirect

You can use a scoreboard that removes before searching (called a
pipeline scoreboard because it is similar to pipeline fifo’s deq<enq
behavior)

T07-33

