N
““Constructive Computer Architecture

Tutorial 7:

SMIPS Labs and Epochs

Andy Wright
6.S5195 TA

N

November 1, 2013 http://csg.csail.mit.edu/6.s195 TO7-1

Introduction

N

#Lab 6
m 6 Stage SMIPS Processor
= Due today

®Lab 7

s Complex Branch Predictors
= Posted online
s Due next Friday

November 1, 2013 http://csg.csail.mit.edu/6.s195 T07-2

Lab 6

N

#Does low IPC => low grade?

m Only if low IPC is from a ‘mistake’ in
your processor.

#\What is a ‘'mistake’?

= Not updating your BTB with redirect
information

= Using too small of a scoreboard

= Having schedule conflicts between
pipeline stages

November 1, 2013 http://csg.csail.mit.edu/6.s195

TO7-3

Lab 6

N

#What questions do you have?

November 1, 2013 http://csg.csail.mit.edu/6.s195 T07-4

Lab 7

N

Adding history bits to BTB

s Combines target and direction
prediction

®Implement BHT

s Separates direction prediction from
target prediction

#Synthesize for FPGA
s Used to calculate IPS

November 1, 2013 http://csg.csail.mit.edu/6.s195 TO7-5

Fixed slides from L16

Epoch Management

N

November 1, 2013 http://csg.csail.mit.edu/6.s195 TO7-6

Multiple predictors in a
pipeline

At each stage we need to take two decisions:

= Whether the current instruction is a wrong path
instruction. Requires looking at epochs

s Whether the prediction (ppc) following the current
instruction is good or not. Requires consulting the
prediction data structure (BTB, BHT, ...)

Fetch stage must correct the pc unless the
redirection comes from a known wrong path
instruction

Redirections from Execute stage are always

correct, i.e., cannot come from wrong path
instructions

N

October 28, 2013 http://csg.csail.mit.edu/6.5195 L16-7

Dropping or poisoning an
Instruction

j@ Once an instruction is determined to be on the
wrong path, the instruction is either dropped or
poisoned

Drop: If the wrong path instruction has not
modified any book keeping structures (e.g.,
Scoreboard) then it is simply removed

Poison: If the wrong path instruction has
modified book keeping structures then it is
poisoned and passed down for book keeping
reasons (say, to remove it from the scoreboard)

Subsequent stages know not to update any
architectural state for a poisoned instruction

N

October 28, 2013 http://csg.csail.mit.edu/6.5195 L16-8

N-Stage pipeline — BTB only

Y fEpoch |« *g:',' eEpoch
attached to g:‘, {p_c, nev_vPc, taken
every|fetched mispredict, ...}
instruiction < :
BTB miss
pred?
1 {pc, ppc, epoch} T
PC|—» Fetch ——»f2d|—» Decode —»d2g—»|Execute}—» ...

At Execute:

m (pc) if (epoch!=eEpoch) then mark instruction as poisoned
= (ppc) if (no poisoning) & mispred then change eEpoch; send <pc,
newPc, ...> to Fetch

At Fetch:

= msg from execute: train BTB with <pc, newPc, taken, mispredict>

= if msg from execute indicates misprediction then set pc, change
fEpoch

October 28, 2013 http://csg.csail.mit.edu/6.5195

L16-9

N-Stage pipeline:
Two predictors

N

L/

redirect PC

eRecirect

feEpoch
fdEpoch|*

eEpoch

dRecirect

) dEpoch||deEpoch
redirect PC

; g

Suppose both Decode and Execute can redirect the PC;
Execute redirect should have priority, i.e., Execute
redirect should never be overruled

#® We will use separate epochs for each redirecting stage

» feEpoch and deEpoch are estimates of eEpoch at Fetch and
Decode, respectively

s fdEpoch is Fetch’s estimates of dEpoch

= Initially set all epochs to 0

October 28, 2013 http://csg.csail.mit.edu/6.5195

——»f2d|—» Decode —»d2e—» Execute—» -

L16-10

N-Stage pipeline: Two predictors

Redirection logic [F] we newre, taken
A 8 | mispredict, ...}
- |feEpoch|* = - eEpoch
fdEpoch [+ % {pC. newpC, dEpoch||deEpoch
& | idEp, ideEp...}
(] (]

‘ {PC, pp¢, ieEp, idEp} {..., ieEp} T

® At execute:

s (pc) if (ieEp!=eEp) then poison the instruction
s (ppc) if (no poisoning) & mispred then change eEp;

PC|—» Fetch —»f2d|—» Decode ——»d2e—»|Execute[—» :--

= (ppc) for every control instruction send <pc, target pc, taken, mispred...> to fetch

® At fetch:

» msg from execute: if (mispred) set pc, change feEp,

= msg from decode: If (no redirect message from Execute)

. if (ideEp=feEp) then set pc, change fdEp to idEp
@ At decode: ... make sure that the msg
from Decode is not from
a wrong path instruction

October 28, 2013 http://csg.csail.mit.edu/6.5195

Decode stage
Redirection logic

feEpoch|*
fdEpoch |+

{pc, newPc, taken
mispredict, ...}

N

eRecirect

eEpoch

{pc, newPc, dEpoch||deEpoch
idEp, ideEp...}
v @
{pc, ppc, ieEp, idEp}ﬁ l

L PC|—» Fetch —»f2d—»

dRecirect

Decode ——»d2@—»Execute[—» ---

yes Is ieEp = deEp ? no
Is idEp = dEp ? Current instruction is OK but
yes/ ~_ho Execute has redirected the pc;
Current instruction Wrong path Set <deEp, dEp> to <ieEp, idEp>
is OK; check the instruction; drop it~ check the ppc prediction via BHT,
ppc prediction via Switch dEp if misprediction

BHT, Switch dEp if
misprediction

October 28, 2013 http://csg.csail.mit.edu/6.5195 L16-12

" Another way to manage
epochs

Write the rules as simple as
possible (guarded atomic

actions), then add EHRs if
necessary

N

October 28, 2013 http://csg.csail.mit.edu/6.5195 L16-13

Fetch Rule

N

fiInst.pc = pc;

fiInst.ppc = prediction(pc);
finst.eEpoch = eEpoch;
fiInst.dEpoch = dEpoch;

pc <= fInst.ppc;
f2dFifo.enq(fInst);

October 28, 2013 http://csg.csail.mit.edu/6.5195

L16-14

Decode Rule

N

if(dInst.eEpoch != eEpoch)
kill fInst
else if(dInst.dEpoch !'= dEpoch)
kill fIinst
else begin
let newpc = prediction(dInst);
if(newpc != dInst.ppc) begin
pC <= newpc
dEpoch <= !dEpoch;

end

end

October 28, 2013 http://csg.csail.mit.edu/6.5195 L16-15

Execute Rule

N

if(eInst.eEpoch != eEpoch)
poison elnst
else begin
if(mispredict) begin
pC <= Newpc;
eEpoch <= leEpoch;
train branch predictors

end

end

October 28, 2013 http://csg.csail.mit.edu/6.5195

L16-16

Conflicts

N

#PC read < PC write
n fetch < {decode, execute}

#dEpoch read < dEpoch write
s fetch < decode

#eEpoch read < eEpoch write
s {fetch, decode} < execute

#®PC write C PC write
n fetch C decode C execute C fetch

None of these stages can execute in the same clock cycle!

October 28, 2013 http://csg.csail.mit.edu/6.5195 L16-17

Now add EHRSs

N

1) Choose an ordering between the
rules and assign the corresponding
EHR ports

(fetch, decode, execute)

2) Change conflicting registers into
EHRs

(pc)

Ehr#(3, Addr) pc -> mkEhr(?);

October 28, 2013 http://csg.csail.mit.edu/6.5195 L16-18

Fetch Rule — port O

N

finst.pc = pc[0];

finst.ppc = prediction(pc[0]);
finst.eEpoch = eEpoch;
fiInst.dEpoch = dEpoch;

pc[0] <= fInst.ppc;
f2dFifo.enq(fInst);

October 28, 2013 http://csg.csail.mit.edu/6.5195

L16-19

Decode Rule — port 1

N

if(dInst.eEpoch != eEpoch)
kill fInst
else if(dInst.dEpoch !'= dEpoch)
kill fIinst
else begin
let newpc = prediction(dInst);
if(newpc != dInst.ppc) begin
pc[1] <= newpc;
dEpoch <= !dEpoch;

end

end

October 28, 2013 http://csg.csail.mit.edu/6.5195 L16-20

Execute Rule — port 2

N

if(eInst.eEpoch != eEpoch)
poison elnst
else begin
if(mispredict) begin
pc[2] <= newpc;
eEpoch <= leEpoch;
train branch predictors

end

end

October 28, 2013 http://csg.csail.mit.edu/6.5195 L16-21

Another Ordering

N

1) Choose an ordering between the rules
and assign the corresponding EHR ports

(execute, decode, fetch)
2) Change conflicting registers into EHRs
(pc, dEpoch, eEpoch)

L

r#(3, Addr) pc -> mkEhr(?);
nr# (3, Bool) dEpoch -> mkEhr(False);
Ehr#(3, Bool) eEpoch -> mkEhr(False);

L

October 28, 2013 http://csg.csail.mit.edu/6.5195 L16-22

Fetch Rule - port 2

N
\J

finst.pc = pc[2];

finst.eEpoch = eEpoch
fIinst.dEpoch = dEpoch

pc[2] <= fInst.ppc;
f2dFifo.enq(fInst);

October 28, 2013 http://csg.csail.mit.edu/6.5195

finst.ppc = prediction(pc[2]);
2];
2];

47

47

L16-23

Decode Rule - port 1

N

if(dInst.eEpoch = eEpoch[1])
Kill fInst
else if(dInst.dEpoch != dEpoch[1])
Kill fInst
else begin
let newpc = prediction(dInst);
if(newpc != dInst.ppc) begin
pc[1] <= newpc;
dEpoch[1] <= !'dEpoch[1];
end

end

October 28, 2013 http://csg.csail.mit.edu/6.5195

L16-24

Execute Rule — port O

N

if(eInst.eEpoch !'= eEpoch[0])
poison elnst
else begin
if(mispredict) begin
pc[0] <= newpc;
eEpoch[0] <= leEpoch[0];
train branch predictors

end

end

October 28, 2013 http://csg.csail.mit.edu/6.5195

L16-25

Different View of EHR

N

#®This transformation makes more
sense when you think of an EHR as
sub-cycle register.

#®This is explained more in the paper
“The Ephemeral History Register:
Flexible Scheduling for Rule-Based

Designs” by Daniel L. Rosenband

October 28, 2013 http://csg.csail.mit.edu/6.5195 L16-26

Questions?

N

November 1, 2013 http://csg.csail.mit.edu/6.s195 T07-27

N
¥

November 1, 2013 http://csg.csail.mit.edu/6.s195 TO7-28

N

Redirect

PC

IMem

November 1, 2013

http://csg.csail.mit.edu/6.s195

6 stage SMIPS pipeline

—>

Register File <«

Scoreboard <

eEpoch

DMem

TO07-29

N

Redirect

PC

IMem

November 1, 2013

http://csg.csail.mit.edu/6.s195

Poisoning Pipeline

—>

Register File

Scoreboard

Exec

4

[Poison |

l

eEpoch

Kill |

|

odt

DMem

T07-30

Correcting PC in Decode
‘and Execute

— Register File

Redirect \—> Scoreboard

DMem

Fetch has local estimates of eEpoch and dEpoch
Decode has a local estimate of eEpoch

November 1, 2013

http://csg.csail.mit.edu/6.s195

TO07-31

fEpoch and PC feedback

p
\
—> Register File <«

Epgj:h —> Scoreboard <

A
e e
PC PC || Epoch
[1] IMem [0] [0] DMem

Make the PC an EHR too! Whenever Execute sees a misprediction,
IFetch reads the correct next instruction in the same cycle!

November 1, 2013 http://csg.csail.mit.edu/6.s195 T07-32

RFile and SB feedback

—> Bypass Register File [«

N

fEpoch Redirect \—> Pipeline Scoreboard |

PC IMem eEpoch DMem

You can use a scoreboard that removes before searching (called a
pipeline scoreboard because it is similar to pipeline fifo's deg<eng

behavior)
November 1, 2013 http://csg.csail.mit.edu/6.s195 TO7-33

