Virtual Memory

November 15, 2022 MIT 6.191 Fall 2022 L18-1

Reminder: Operating Systems

= Goals of OS: process; | --- | processy
= Protection and privacy: Pfocesses Operating system
cannot access each other’s data
= Abstraction: Hide away details Hardware

of underlying hardware

= e.g., processes open and access files instead of issuing raw
commands to hard drive

= Resource management: Controls how processes share hardware
resources (CPU, memory, disk, etc.)

= Key enabling technologies:
= User mode + supervisor mode

= EXxceptions to safely transition Last lecture
into supervisor mode

= Virtual memory to abstract the
storage resources of the machine loday

November 15, 2022 MIT 6.191 Fall 2022 L18-2

Virtual Memory (VM) Systems

Illusion of a large, private, uniform store

= Protection & Privacy OS

= Each process has a
private address space

proc;
= Demand Paging
= Use main memory Disk
as a cache of disk Main (Flash/HDD)
= Enables running programs Memory
larger than main memory (DRAM)

= Hides differences in
machine configuration

The price of VM is address translation

on each memory reference

November 15, 2022 MIT 6.191 Fall 2022

L18-3

Names for Memory Locations

Physical
d Memory
(DRAM)

Process

virtual [)(clesiie| physical
address address

Segmentation
or Paging

= Virtual address

= Address generated by the process

= Specific to the process’s private address space
= Physical address

= Address used to access physical (hardware) memory

= Operating system specifies mapping of virtual addresses
into physical addresses

November 15, 2022 MIT 6.191 Fall 2022 L18-4

Segmentation (Base-and-Bound)
Address Translation

Process Physical
Address Bound Memory
Space Bound Reg —»@—»Violation 0x0
0x0 7 Exception
Base Reg
A,d) Process
Virtual Physical Code &
OxOfff Address Address Data
= Each program’s data is allocated in a

contiguous segment of physical memory Oxf..ff
= Physical address = Virtual Address + Segment Base
= Bound register provides safety and isolation

= Base and Bound registers should not be accessed by user programs
(only accessible in supervisor mode)

November 15, 2022 MIT 6.191 Fall 2022 L18-5

Separate Segments for Code and Data

Data Bound Bounds
Register Violation?
‘ data
Load X V|rtua| AddreSS Segment

>~

S

Data Base -

Register v

P

........................ .E

Program Code Bound , —Bounds g

Address Register Violation?

Space Program code

segment

Counter
Code Base

Register

Pros of this separation?

November 15, 2022 MIT 6.191 Fall 2022 L18-6

Memory Fragmentation

Processes 4 & 5 Processes 2 & 5 free
0S start 0S end

OS
Space ::> Space ::> Space

proc 1 16K proc 1 16K proc 1 16K
proc 2 24K proc 2 24K 24K

roc 4

24K g 186; proc 4 16K

8K

proc 3] 32K proc 3 32K proc 3 39K
24K proc 5 Bt 24K

As processes start and end, storage is “fragmented”.
Therefore, at some point segments have to be moved
around to compact the free space.

November 15, 2022 MIT 6.191 Fall 2022 L18-7

Paged Memory Systems

= Divide physical memory in fixed-size blocks called pages
= Typical page size: 4KB

Virtual address

» Interpret each virtual address as a pair 32l'l3 p

<virtual page number, offset> : ——
Virtual Page # |offset

= Use a page table to translate from
virtual to physical page numbers 7

= Page table contains the physical page 'IID':IgIee
number (i.e., starting physical address) ! !
for each virtual page number Physical Page #|offset

Physical address

November 15, 2022 MIT 6.191 Fall 2022 L18-8

Private Address Space per Process

Proc 1

Proc 2

Proc 3

Page Table

Page Table

VA1l

Physical

Memory

Page Table

= Each process has a page table
= Page table has an entry for each process page

November 15, 2022

B

Page tables make it possible to store the
pages of a program non-contiguously

MIT 6.191 Fall 2022

L18-9

Paging vs. Segmentation

Pros of paging vs segmentation?

Cons of paging vs segmentation?

...where do we store the page tables?

November 15, 2022 MIT 6.191 Fall 2022

L18-10

Suppose Page Tables reside in
memory

Physical
0 Page
| \? Number
_ T
Virtual
Page
Number .
Kernel PT Base PTB Proc
= Translation: Accessing
= PPN = Mem[PT Base + VPN] one data
= PA = PPN + offset
. . word or
= All links represent physical : :
addresses; no VA to PA translation 'nSt_rUCt'On
= On process switch requires two
= PT Base Reg := Kernel PT Base + DRAM
new process ID accesses!

November 15, 2022 MIT 6.191 Fall 2022 L18-11

Demand Paging

Using main memory as a cache of disk

= All the pages of the processes
may not fit in main memory.
Therefore, DRAM is backed up
by swap space on disk.
= Page Table Entry (PTE) contains:
= A resident bit to indicate if the
page exists in main memory

= IBPNI (physical page number) for
a memory-resident page

= DPN (disk page number) for a
page on the disk

= Protection and usage bits

= Even if all pages fit in memory,

demand paging allows bringing
only what is needed from disk

= When a process starts, all code

and data are on disk; bring
pages in as they are accessed

Page Table

November 15, 2022 MIT 6.191 Fall 2022

Virtual address

PT Base Reg [VPN T Ofset]

NdA

Data Pages

Data word

L18-12

Example: Virtual > Physical Translation

16-entry
Page Table

0

0

2

0

0

4

0

0

0

1

1

1

1
1
1

= | = a0l 0CO|C|lC|O|m|=m|lO|l=OC|=

7
6
5

-m m O O W > v ©®© N O A W N =~ O

[] []]]]]
o -— -— -— H H H H H H

1

-—

3

D W R PPN
Dirty
Writable

Resident

November 15, 2022

8-page

Phys. Mem.

VPN 0x4

VPN 0x5

VPN 0x0

VPN OxF

VPN 0x2

VPN OxE

VPN 0xD

VPN 0xC

MIT 6.191 Fall 2022

0x000

Ox0FC
0x100

Ox1FC
0x200

Ox2FC
0x300

Ox3FC
0x400

0x4FC
0x500

Ox5FC
0x600

Ox6FC
0x700

Ox7FC

VPN offset
4 8 V A
3| 8 |PA
PPN

Setup:
256 bytes/page (28)
16 virtual pages (24)
8 physical pages (23)
12-bit VA (4 vpn, 8 offset)
11-bit PA (3 ppn, 8 offset)

lw Ox2C8(x0)
VA = 0x2C8, PA =

L18-13

Caching vs. Demand Paging

secondary
memory

(disk)
CPU CPU
Caching Demand paging

cache entry page frame
cache block (~32 bytes) page (~4K bytes)
cache miss rate (1% to 20%) page miss rate (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~100 cycles) page miss (~5M cycles)
a miss is handled a miss is handled

in hardware mostly in software

November 15, 2022 MIT 6.191 Fall 2022 L18-14

Page Faults

An access to a page that does Before Page Fault Physical
not have a valid translation Page Table ~ Memory
causes a page fault exception.

R=1
OS page fault handler is \ >< VPN 1
R=0

invoked, handles miss:

— Choose a page to replace,
write it back if dirty. Mark
page as no longer resident

— Read page from disk into After Page Fault Physical

available physical page Page Table Memory
— Update page table to show e

new page is resident

VPN 5

— Return control to program, \

which re-executes memory 2=

access

November 15, 2022 MIT 6.191 Fall 2022 L18-15

Translation Lookaside Buffer (TLB)

Problem: Address translation is very expensive!
Each reference requires accessing page table

Solution: Cache translations in TLB

TLB hit = Single-cycle translation
TLB miss = Access page table to refill TLB

virtual address

VPN offset
|
| (VPN = virtual page number)
VIR W[D| tag PPN
T 1 : (PPN = physical pagle number)
fault? hit? S e

physical address

November 15, 2022 MIT 6.191 Fall 2022 L18-16

Example: TLB and Page Table

Suppose

e Virtual memory of 232 bytes
e Physical memory of 224 bytes
e Page size is 210 (1 K) bytes

e 4-entry fully associative TLB

TLB VPN

Tag Data 0

VPN | V R D PPN ;
____+ __________

3

© | 100 7 1

6 | 111 2 c

1 | 111 9 .
3 100 5

| 7

8

November 15, 2022

. How many pages can be stored in

physical memory at once?

. How many entries are there in the

page table?

. How many bits per entry in the

Page page table? (Assume each entry
Table has PPN, resident bit, dirty bit)
R D PPN . How many pages does page table
_______ take?
90 7 . What is the physical address for
iLoe virtual address 0x1804? What
é g 2 components are involved in the
19 5 translation?
00 3 . Same for 0x1080
11 2
e . Same for OxXOFC
10 1

MIT 6.191 Fall 2022 L18-17

TLB Designs

= Typically 32-128 entries, 4 to 8-way set-associative

= Modern processors use a hierarchy of TLBs
(e.g., 128-entry L1 TLB + 2K-entry L2 TLB)

= Switching processes is expensive because TLB has to be
flushed

= Alternatively, include process ID in TLB entries to avoid flushing

= Handling a TLB miss: Look up the page table (a.k.a. "walk”
the page table). If the page is in memory, load the VPN->PPN
translation in the TLB. Otherwise, cause a page fault
= Page faults are always handled in software

= But page walks are usually handled in hardware using a memory
management unit (MMU)

= RISC-V, x86 access page table in hardware

November 15, 2022 MIT 6.191 Fall 2022 L18-18

Address Translation
Putting it all together

Virtual f\dd ress

[] hardware
[] hardware or software
[] software

the| page is :
¢ memeemory denie permitted

Page Fault Protection Physical

(OS loads page) Fault Address

l Resume process at U | (to mem)
faulting instruction ISEGFAULT

November 15, 2022 MIT 6.191 Fall 2022 L18-19

Using Caches with Virtual Memory

Virtually-Addressed Physically-Addressed
Cache Cache
CPU Ca;the ;TLB <.,I mz:qigryl ___; TLB |- CaE;:he <,»I ml\e4;i2ry|
e FAST: No virtual=>physical e Avoids stale cache data
translation on cache hits after conFext switch |
e Problem: Must flush cache e SLOW: Virtual->physical
after context switch translation before every

cache access

November 15, 2022 MIT 6.191 Fall 2022 L18-20

Best of Both Worlds: Virtually-Indexed,
Physically-Tagged Cache (VIPT)

TLB

P — 't (Main
CP — : memory

Cache index comes entirely / \
.{ Cache

from address bits in page
offset — don’t need to wait
for TLB to start cache lookup!

OBSERVATION: If cache index bits are a subset of page
offset bits, tag access in a physical cache can be done in
parallel with TLB access. Tag from cache is compared with
physical page address from TLB to determine hit/miss.

Problem: Limits # of bits of cache index - can only increase
cache capacity by increasing associativity!

November 15, 2022 MIT 6.191 Fall 2022 L18-21

Summary

Virtual memory benefits:
= Protection and privacy: Private address space per process
= Demand paging: Can use main memory as a cache of disk

= Segmentation: Each process address space is a contiguous
block (a segment) in physical memory

= Simple: Base and bound registers
= Suffers from fragmentation, no demand paging

= Paging: Each process address space is stored on multiple
fixed-size pages. A page table maps virtual to physical pages
= Avoids fragmentation
= Enables demand paging: pages can be in main memory or disk
= Requires a page table access on each memory reference

TLBs make paging efficient by caching the page table

November 15, 2022 MIT 6.191 Fall 2022 L18-22

Thank you!

Next lecture: Pipelined Processors

November 15, 2022 MIT 6.191 Fall 2022 L18-23

