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Reminder: Operating Systems

= Goals of OS: process; | --- | processy
= Protection and privacy: Pfocesses Operating system
cannot access each other’s data
= Abstraction: Hide away details Hardware

of underlying hardware

= e.g., processes open and access files instead of issuing raw
commands to hard drive

= Resource management: Controls how processes share hardware
resources (CPU, memory, disk, etc.)

= Key enabling technologies:
= User mode + supervisor mode

= EXxceptions to safely transition Last lecture
into supervisor mode

= Virtual memory to abstract the
storage resources of the machine  loday
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Virtual Memory (VM) Systems

Illusion of a large, private, uniform store

= Protection & Privacy OS

= Each process has a
private address space

proc;
= Demand Paging
= Use main memory Disk
as a cache of disk Main  (Flash/HDD)
= Enables running programs Memory
larger than main memory (DRAM)

= Hides differences in
machine configuration

The price of VM is address translation

on each memory reference
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Names for Memory Locations

Physical
d Memory
(DRAM)

Process

virtual [ )(clesiie| physical
address address

Segmentation
or Paging

= Virtual address

= Address generated by the process

= Specific to the process’s private address space
= Physical address

= Address used to access physical (hardware) memory

= Operating system specifies mapping of virtual addresses
into physical addresses
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Segmentation (Base-and-Bound)
Address Translation

Process Physical
Address Bound Memory
Space Bound Reg —»@—»Violation 0x0
0x0 7 Exception
Base Reg
A,d) Process
Virtual Physical Code &
OxOfff Address Address Data
= Each program’s data is allocated in a

contiguous segment of physical memory Oxf..ff
= Physical address = Virtual Address + Segment Base
= Bound register provides safety and isolation

= Base and Bound registers should not be accessed by user programs
(only accessible in supervisor mode)
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Separate Segments for Code and Data

Data Bound Bounds
Register Violation?
‘ data
Load X V|rtua| AddreSS Segment

>~

S

Data Base -

Register v

P

........................ .E

Program Code Bound , —Bounds g

Address Register Violation?

Space Program code

segment

Counter
Code Base

Register

Pros of this separation?
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Memory Fragmentation

Processes 4 & 5 Processes 2 & 5 free
0S start 0S end

OS
Space ::> Space ::> Space

proc 1 16K proc 1 16K proc 1 16K
proc 2 24K proc 2 24K 24K

roc 4

24K g 186; proc 4 16K

8K

proc 3] 32K proc 3 32K proc 3 39K
24K proc 5 Bt 24K

As processes start and end, storage is “fragmented”.
Therefore, at some point segments have to be moved
around to compact the free space.
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Paged Memory Systems

= Divide physical memory in fixed-size blocks called pages
= Typical page size: 4KB

Virtual address

» Interpret each virtual address as a pair 32l'l3 p

<virtual page number, offset> : ——
Virtual Page # |offset

= Use a page table to translate from
virtual to physical page numbers 7

= Page table contains the physical page 'IID':IgIee
number (i.e., starting physical address) ! !
for each virtual page number Physical Page #|offset

Physical address
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Private Address Space per Process

Proc 1

Proc 2

Proc 3

Page Table

Page Table

VA1l

Physical

Memory

Page Table

= Each process has a page table
= Page table has an entry for each process page

November 15, 2022

B

Page tables make it possible to store the
pages of a program non-contiguously
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Paging vs. Segmentation

Pros of paging vs segmentation?

Cons of paging vs segmentation?

...where do we store the page tables?
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Suppose Page Tables reside in
memory

Physical
0 Page
| \? Number
_ T
Virtual
Page
Number .
Kernel PT Base PTB Proc
= Translation: Accessing
= PPN = Mem[PT Base + VPN] one data
= PA = PPN + offset
. . word or
= All links represent physical : :
addresses; no VA to PA translation 'nSt_rUCt'On
= On process switch requires two
= PT Base Reg := Kernel PT Base + DRAM
new process ID accesses!
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Demand Paging

Using main memory as a cache of disk

= All the pages of the processes
may not fit in main memory.
Therefore, DRAM is backed up
by swap space on disk.
= Page Table Entry (PTE) contains:
= A resident bit to indicate if the
page exists in main memory

= IBPNI (physical page number) for
a memory-resident page

= DPN (disk page number) for a
page on the disk

= Protection and usage bits

= Even if all pages fit in memory,

demand paging allows bringing
only what is needed from disk

= When a process starts, all code

and data are on disk; bring
pages in as they are accessed

Page Table
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Example: Virtual > Physical Translation

16-entry
Page Table
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8-page

Phys. Mem.

VPN 0x4

VPN 0x5

VPN 0x0

VPN OxF

VPN 0x2

VPN OxE

VPN 0xD

VPN 0xC
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0x000

Ox0FC
0x100

Ox1FC
0x200

Ox2FC
0x300

Ox3FC
0x400

0x4FC
0x500

Ox5FC
0x600

Ox6FC
0x700

Ox7FC

VPN  offset
4 8 V A
3| 8 |PA
PPN

Setup:
256 bytes/page (28)
16 virtual pages (24)
8 physical pages (23)
12-bit VA (4 vpn, 8 offset)
11-bit PA (3 ppn, 8 offset)

lw Ox2C8(x0)
VA = 0x2C8, PA =
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Caching vs. Demand Paging

secondary
memory

(disk)
CPU CPU
Caching Demand paging

cache entry page frame
cache block (~32 bytes) page (~4K bytes)
cache miss rate (1% to 20%) page miss rate (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~100 cycles) page miss (~5M cycles)
a miss is handled a miss is handled

in hardware mostly in software
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Page Faults

An access to a page that does Before Page Fault Physical
not have a valid translation Page Table ~ Memory
causes a page fault exception.

R=1
OS page fault handler is \ >< VPN 1
R=0

invoked, handles miss:

— Choose a page to replace,
write it back if dirty. Mark
page as no longer resident

— Read page from disk into After Page Fault Physical

available physical page Page Table  Memory
— Update page table to show e

new page is resident

VPN 5

— Return control to program, \

which re-executes memory 2=

access

November 15, 2022 MIT 6.191 Fall 2022 L18-15



Translation Lookaside Buffer (TLB)

Problem: Address translation is very expensive!
Each reference requires accessing page table

Solution: Cache translations in TLB

TLB hit = Single-cycle translation
TLB miss = Access page table to refill TLB

virtual address

VPN offset
|
| (VPN = virtual page number)
VIR W[D| tag PPN
T 1 : (PPN = physical pagle number)
fault? hit? S e

physical address
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Example: TLB and Page Table

Suppose

e Virtual memory of 232 bytes
e Physical memory of 224 bytes
e Page size is 210 (1 K) bytes

e 4-entry fully associative TLB

TLB VPN

Tag Data 0

VPN | V R D PPN ;
____+ __________

3

© | 100 7 1

6 | 111 2 c

1 | 111 9 .
3 100 5

| 7

8

November 15, 2022

. How many pages can be stored in

physical memory at once?

. How many entries are there in the

page table?

. How many bits per entry in the

Page page table? (Assume each entry
Table has PPN, resident bit, dirty bit)
R D PPN . How many pages does page table
_______ take?
90 7 . What is the physical address for
iLoe virtual address 0x1804? What
é g 2 components are involved in the
19 5 translation?
00 3 . Same for 0x1080
11 2
e . Same for OxXOFC
10 1
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TLB Designs

= Typically 32-128 entries, 4 to 8-way set-associative

= Modern processors use a hierarchy of TLBs
(e.g., 128-entry L1 TLB + 2K-entry L2 TLB)

= Switching processes is expensive because TLB has to be
flushed

= Alternatively, include process ID in TLB entries to avoid flushing

= Handling a TLB miss: Look up the page table (a.k.a. "walk”
the page table). If the page is in memory, load the VPN->PPN
translation in the TLB. Otherwise, cause a page fault
= Page faults are always handled in software

= But page walks are usually handled in hardware using a memory
management unit (MMU)

= RISC-V, x86 access page table in hardware
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Address Translation
Putting it all together

Virtual f\dd ress

[] hardware
[] hardware or software
[] software

the| page is :
¢ memeemory denie permitted

Page Fault Protection Physical

(OS loads page) Fault Address

l Resume process at U | (to mem)
faulting instruction ISEGFAULT

November 15, 2022 MIT 6.191 Fall 2022 L18-19



Using Caches with Virtual Memory

Virtually-Addressed Physically-Addressed
Cache Cache
CPU Ca;the ;TLB <.,I mz:qigryl ___; TLB |- CaE;:he <,»I ml\e4;i2ry|
e FAST: No virtual=>physical e Avoids stale cache data
translation on cache hits after conFext switch |
e Problem: Must flush cache e SLOW: Virtual->physical
after context switch translation before every

cache access
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Best of Both Worlds: Virtually-Indexed,
Physically-Tagged Cache (VIPT)

TLB

P — 't ( Main
CP — : memory

Cache index comes entirely / \
.{ Cache

from address bits in page
offset — don’t need to wait
for TLB to start cache lookup!

OBSERVATION: If cache index bits are a subset of page
offset bits, tag access in a physical cache can be done in
parallel with TLB access. Tag from cache is compared with
physical page address from TLB to determine hit/miss.

Problem: Limits # of bits of cache index - can only increase
cache capacity by increasing associativity!
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Summary

Virtual memory benefits:
= Protection and privacy: Private address space per process
= Demand paging: Can use main memory as a cache of disk

= Segmentation: Each process address space is a contiguous
block (a segment) in physical memory

= Simple: Base and bound registers
= Suffers from fragmentation, no demand paging

= Paging: Each process address space is stored on multiple
fixed-size pages. A page table maps virtual to physical pages
= Avoids fragmentation
= Enables demand paging: pages can be in main memory or disk
= Requires a page table access on each memory reference

TLBs make paging efficient by caching the page table
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Thank you!

Next lecture: Pipelined Processors
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