
The Memory Hierarchy

November 1, 2022 MIT 6.191 Fall 2022 L15-1

Christina Delimitrou

Reminders: Quiz (11/10)
and Quiz Review (11/8)
next week

Memory Wall

November 1, 2022 L15-2MIT 6.191 Fall 2022

- Processor speed improving faster than memory
speed

Memory is Expensive

November 1, 2022 L15-3MIT 6.191 Fall 2022

Operation Energy [pJ] Relative Cost

32 bit int ADD 0.1 1
32 bit float ADD 0.9 9
32 bit Register File 1 10
32 bit int MULT 3.1 31
32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50
32 bit DRAM Memory 640 6400

1 10 100 1000 10000

Relative Energy Cost

Figure 1: Energy table for 45nm CMOS process [7]. Memory access is 3 orders of magnitude more
energy expensive than simple arithmetic.

To achieve this goal, we present a method to prune network connections in a manner that preserves the
original accuracy. After an initial training phase, we remove all connections whose weight is lower
than a threshold. This pruning converts a dense, fully-connected layer to a sparse layer. This first
phase learns the topology of the networks — learning which connections are important and removing
the unimportant connections. We then retrain the sparse network so the remaining connections can
compensate for the connections that have been removed. The phases of pruning and retraining may
be repeated iteratively to further reduce network complexity. In effect, this training process learns
the network connectivity in addition to the weights - much as in the mammalian brain [8][9], where
synapses are created in the first few months of a child’s development, followed by gradual pruning of
little-used connections, falling to typical adult values.

2 Related Work

Neural networks are typically over-parameterized, and there is significant redundancy for deep learn-
ing models [10]. This results in a waste of both computation and memory. There have been various
proposals to remove the redundancy: Vanhoucke et al. [11] explored a fixed-point implementation
with 8-bit integer (vs 32-bit floating point) activations. Denton et al. [12] exploited the linear
structure of the neural network by finding an appropriate low-rank approximation of the parameters
and keeping the accuracy within 1% of the original model. With similar accuracy loss, Gong et al.

[13] compressed deep convnets using vector quantization. These approximation and quantization
techniques are orthogonal to network pruning, and they can be used together to obtain further gains
[14].

There have been other attempts to reduce the number of parameters of neural networks by replacing
the fully connected layer with global average pooling. The Network in Network architecture [15]
and GoogLenet [16] achieves state-of-the-art results on several benchmarks by adopting this idea.
However, transfer learning, i.e. reusing features learned on the ImageNet dataset and applying them
to new tasks by only fine-tuning the fully connected layers, is more difficult with this approach. This
problem is noted by Szegedy et al. [16] and motivates them to add a linear layer on the top of their
networks to enable transfer learning.

Network pruning has been used both to reduce network complexity and to reduce over-fitting. An
early approach to pruning was biased weight decay [17]. Optimal Brain Damage [18] and Optimal
Brain Surgeon [19] prune networks to reduce the number of connections based on the Hessian of the
loss function and suggest that such pruning is more accurate than magnitude-based pruning such as
weight decay. However, second order derivative needs additional computation.

HashedNets [20] is a recent technique to reduce model sizes by using a hash function to randomly
group connection weights into hash buckets, so that all connections within the same hash bucket
share a single parameter value. This technique may benefit from pruning. As pointed out in Shi et al.

[21] and Weinberger et al. [22], sparsity will minimize hash collision making feature hashing even
more effective. HashedNets may be used together with pruning to give even better parameter savings.

2

[Han et al, NIPS’15]

Memory System is Important

November 1, 2022 L15-4MIT 6.191 Fall 2022

- Example: AI applications are going “tiny” with
many IoT applications.

- However, it’s challenging to fit powerful AI
applications with a tight memory budget.

- It’s important to learn about the memory system.

Memory Technologies

§ Technologies have vastly different tradeoffs between
capacity, latency, bandwidth, energy, and cost

Capacity Latency Cost/GB
Register 100s of bits 20 ps $$$$

SRAM ~10KB-10 MB 1-10 ns ~$1000
DRAM ~10 GB 80 ns ~$10
Flash* ~100 GB 100 us ~$1

Hard disk* ~1 TB 10 ms ~$0.1
I/O

subsystem

Memory
Hierarchy

Processor
Datapath

* non-volatile (retains contents when powered off)

November 1, 2022 MIT 6.191 Fall 2022 L15-5

Memory Technologies:
SRAM, DRAM, Flash, Hard Disk

NOTE: Demystification,
will not be on the quiz

November 1, 2022 MIT 6.191 Fall 2022 L15-6

Static RAM (SRAM)
Drivers

Sense
amplifiers

Address
decoder

SRAM cell

Wordlines
(horizontal)

Bitlines
(vertical)

8x6 SRAM
array

Address

3

Data in
6

Data out6
November 1, 2022 MIT 6.191 Fall 2022 L15-7

SRAM Cell

6-transistor (6T) cell:
§ Two CMOS inverters (4 FETs) forming a bistable element
§ Two access transistors

6T SRAM Cell

Wordline
access FETs

bitline bitline

Vdd

GND

GND

Vdd

Bistable element
(two stable states)
stores a single bit

“1”

“0”

November 1, 2022 MIT 6.191 Fall 2022 L15-8

SRAM Read

1. Drivers precharge all
bitlines to Vdd (1),
and leave them
floating

2. Address decoder
activates one wordline

3. Each cell in the
activated word slowly
pulls down one of the
bitlines to GND (0)

4. Sense amplifiers
sense change in
bitline voltages,
produce output data

6T SRAM Cell

wordline access FETs

bitline bitline

1

2 3

4

OFFàON

1 0

GNDàVdd

2 2t

V(t)

t

V(t) 3

VddVdd 1

November 1, 2022 MIT 6.191 Fall 2022 L15-9

SRAM Write

1. Drivers set and hold
bitlines to desired values
(Vdd and GND for 1,
GND and Vdd for 0)

2. Address decoder
activates one wordline

3. Each cell in word is
overpowered by the
drivers, stores value

wordline access FETs

bitline bitline

1

2 3

OFFàON

Vdd

GNDàVdd

2 2

VddGND 11 3
àGND GNDàVdd

Cell transistors are carefully sized
so that bitline GND overpowers

cell Vdd, but bitline Vdd does not
overpower cell GND

November 1, 2022 MIT 6.191 Fall 2022 L15-10

§ SRAM so far can do either one read or one
write/cycle

§ We can do multiple reads and writes with
multiple ports by adding one set of wordlines and
bitlines per port

§ Cost/bit for N ports?
§ Wordlines?
§ Bitlines?
§ Access FETs?

§ Wires dominate
area à O(N2) area!

Multiported SRAMs

2*N
2*N
N

November 1, 2022 MIT 6.191 Fall 2022 L15-11

Summary: SRAMs

§ Array of k*b cells (k words, b cells per word)
§ Cell is a bistable element + access transistors

§ Analog circuit with carefully sized transistors
§ Read: Precharge bitlines, activate wordline, sense
§ Write: Drive bitlines, activate wordline, overpower

cells

§ 6 FETs/cell… can we do better?

November 1, 2022 MIT 6.191 Fall 2022 L15-12

1T Dynamic RAM (DRAM) Cell

wordline

bitline

access FET

1T DRAM Cell

VREF

Storage
capacitor

Trench capacitors
take little area

ü~20x smaller area than SRAM cell à Denser and cheaper!
û Problem: Capacitor leaks charge, must be refreshed
periodically (~milliseconds)

Cyferz (CC BY 2.5)

November 1, 2022 MIT 6.191 Fall 2022 L15-13

DRAM Writes and Reads

§ Writes: Drive bitline to Vdd or GND,
activate wordline, charge or
discharge capacitor

§ Reads:
1. Precharge bitline to Vdd/2
2. Activate wordline
3. Capacitor and bitline share charge

§ If capacitor was discharged, bitline voltage decreases
slightly

§ If capacitor was charged, bitline voltage increases
slightly

4. Sense bitline to determine if 0 or 1
§ Issue: Reads are destructive! (charge is gone!)

§ Data must be rewritten to cells at end of read

word
line

bitline

access FET

1T DRAM Cell

VREF

Storage
capacitor

November 1, 2022 MIT 6.191 Fall 2022 L15-14

Non-Volatile Storage: Flash

Flash Memory: Use “floating gate” transistors to store
charge (floating gate is a well insulated conductor)
• Very dense: Multiple bits/transistor, read and written in blocks
• Slow (especially on writes), 10-100 us
• Limited number of writes: charging/discharging the floating

gate (writes) requires large voltages that damage transistor

Cyferz (CC BY 2.5)

Electrons here diminish
strength of field from
control gate ⇒ no
inversion ⇒ NFET stays
off even when word line
is high.

November 1, 2022 MIT 6.191 Fall 2022 L15-15

Non-Volatile Storage: Hard Disk

Hard Disk: Rotating magnetic platters + read/write head
• Extremely slow (~10ms): Mechanically move head to

position, wait for data to pass underneath head
• ~100MB/s for sequential read/writes
• ~100KB/s for random read/writes
• Cheap

Surachit (CC BY 2.5)
Circular track
divided into sectors

Disk head

November 1, 2022 MIT 6.191 Fall 2022 L15-16

The Memory Hierarchy

November 1, 2022 MIT 6.191 Fall 2022 L15-17

Summary: Memory Technologies

§ Different technologies have vastly different tradeoffs
§ Size is a fundamental limit, even setting cost aside:

§ Small + low latency, high bandwidth, low energy, or
§ Large + high-latency, low bandwidth, high energy

§ Can we get best of both worlds? (large, fast, cheap)

Capacity Latency Cost/GB
Register 100s of bits 20 ps $$$$

SRAM ~10 KB-10
MB

1-10 ns ~$1000

DRAM ~10 GB 80 ns ~$10
Flash ~100 GB 100 us ~$1

Hard disk ~1 TB 10 ms ~$0.1

November 1, 2022 MIT 6.191 Fall 2022 L15-18

The Memory Hierarchy

Want large, fast, and cheap memory, but…
Large memories are slow (even if built with fast
components)
Fast memories are expensive

Solution: Use a hierarchy of memories with different
tradeoffs to fake a large, fast, cheap memory

MemCPU Mem Mem

Speed:
Capacity:

Cost:

Fastest
Smallest
Highest

Slowest
Largest
Lowest

Mem

Fast
Large
Cheap

≈

November 1, 2022 MIT 6.191 Fall 2022 L15-19

Memory Hierarchy Interface

Approach 1: Expose Hierarchy
§ Registers, SRAM, DRAM,

Flash, Hard Disk each
available as storage
alternatives

§ Tell programmers: “Use them cleverly”
Approach 2: Hide Hierarchy
§ Programming model: Single memory, single address space
§ Machine transparently stores data in fast or slow memory,

depending on usage patterns

10 GB
DRAMCPU

10 KB
SRAM

10 MB
SRAM 1 TB

SSD

10 GB
DRAM

CPU
100
KB

SRAM

1 TB
SSD

L1 Cache Main memory Swap spaceX?

November 1, 2022 MIT 6.191 Fall 2022 L15-20

Typical Memory Access Patterns

time

address

data

stack

code

loop

local
variable
accesses

array
accesses

procedure calls

November 1, 2022 MIT 6.191 Fall 2022 L15-21

Common Predictable Patterns

§ Two predictable properties of memory accesses:

§ Temporal locality: If a location has been accessed recently,
it is likely to be accessed (reused) soon

§ Spatial locality: If a location has been accessed recently,
it is likely that nearby locations will be accessed soon

November 1, 2022 MIT 6.191 Fall 2022 L15-22

Caches

§ Cache: A small, interim storage component that
transparently retains (caches) data from recently
accessed locations

§ Processor sends accesses to cache. Two options:
§ Cache hit: Data for this address in cache, returned quickly
§ Cache miss: Data not in cache

§ Fetch data from memory, send it back to processor
§ Retain this data in the cache (replacing some other

data)
§ Processor must deal with variable memory access time

CPU Cache Main
Memory

Address
Data

Address
Data

November 1, 2022 MIT 6.191 Fall 2022 L15-23

A Typical Memory Hierarchy
Computers use many levels of caches:

Registers

Level 1 Cache

Level 2 Cache

Level 3 Cache

Main Memory

Flash Drive

Hard Disk

On
chip

Other
chips
and

devices

On the
CPU

Access time Capacity Managed By

1 cycle 1 KB Software/Compiler

2-4 cycles 32 KB Hardware

10 cycles 256 KB Hardware

40 cycles 10 MB Hardware

200 cycles 10 GB Software/OS

10-100us 100 GB Software/OS

10ms 1 TB Software/OS

November 1, 2022 MIT 6.191 Fall 2022 L15-24

§ Hit Ratio:

§ Miss Ratio:

§ Average Memory Access Time (AMAT):

§ Goal of caching is to improve AMAT
§ Formula can be applied recursively in multi-level

hierarchies:

Cache Metrics

HR = hits
hits+misses

=1−MR

MR = misses
hits+misses

=1−HR

...)(32211

211

=´+´+=
=´+=

LLLLL

LLL

AMATMissRatioHitTimeMissRatioHitTimeAMAT
AMATMissRatioHitTimeAMAT

AMAT = HitTime + MissRatio × MissPenalty

November 1, 2022 MIT 6.191 Fall 2022 L15-25

Example: How High of a Hit Ratio?

What hit ratio do we need to break even?
(Main memory only: AMAT = 100)

CPU Cache Main
Memory

4 cycles 100 cycles

What hit ratio do we need to achieve AMAT = 5 cycles?

100 = 4 + (1 − HR) × 100 ⇒ HR = 4%

5 = 4 + (1 − HR) × 100 ⇒ HR = 99%

November 1, 2022 MIT 6.191 Fall 2022 L15-26

Basic Cache Algorithm (Reads)

(1-HR)

Tag Data

A

B

Mem[A]

Mem[B]

Q: How do we “search” the cache?

CPU

Main
Memory

On reference to Mem[X],
look for X among cache tags

HIT: X = Tag(i)
for some

cache line i

MISS: X not
found in Tag

of any cache line

Return Data(i) Read Mem[X]
Return Mem[X]
Select a line k

to hold Mem[X]
Write Tag(k)=X,

Data(k) = Mem[X]
November 1, 2022 MIT 6.191 Fall 2022 L15-27

00000000000000000000000011101000

Direct-Mapped Caches

§ Each word in memory maps into a single cache line
§ Access (for cache with 2W lines):

§ Index into cache with W address bits (the index bits)
§ Read out valid bit, tag, and data
§ If valid bit == 1 and tag matches upper address bits, HIT

§ Example 8-line
direct-mapped cache: Tag (27 bits)Valid bit Data (32 bits)

32-bit BYTE address

Index
bits

Tag
bits

Byte
offset
bits =? HIT

0
1
2
3
4
5
6
7

November 1, 2022 MIT 6.191 Fall 2022 L15-28

Example: Direct-Mapped Caches
64-line direct-mapped cache à 64 indices à 6 index bits

1

1

1

1

0

1

0x000058

0x000058

0x000058

0x000040

0x000007

0x000058

0xDEADBEEF

0x00000000

0x00000007

0x42424242

0x6FBA2381

0xF7324A32

Tag (24 bits)Valid bit Data (32 bits)
0

1

2

3

4

63

… ……

Read Mem[0x400C]

HIT, DATA 0x42424242

Part of the address (index bits) is encoded in the location
Tag + Index bits unambiguously identify the data’s address

0100 0000 0000 1100

TAG: 0x40
INDEX: 0x3
BYTE OFFSET: 0x0

Would 0x4008 hit?
INDEX: 0x2 → tag mismatch

→ MISS

November 1, 2022 MIT 6.191 Fall 2022 L15-29

Thank you!

Next lecture: Cache
Tradeoffs

November 1, 2022 MIT 6.191 Fall 2022 L15-30

