
Caches

November 3, 2022 MIT 6.191 Fall 2022 L15-1

Reminder: Quiz 2 on Thu 11/10
No lecture next Thu

Christina Delimitrou

The Memory Hierarchy

Want large, fast, and cheap memory, but…
Large memories are slow (e.g., Hard Disk)
Fast memories are small and expensive (e.g., SRAM)

Solution: Use a hierarchy of memories with different
tradeoffs to fake a large, fast, cheap memory

MemCPU Mem Mem

Speed:
Capacity:

Cost:

Fastest
Smallest
Highest

Slowest
Largest
Lowest

Mem

Fast
Large
Cheap

≈

November 3, 2022 MIT 6.191 Fall 2022 L15-2

Memory Hierarchy Interface

§ Programming model: Single memory, single address
space

CPU Mem

November 3, 2022 MIT 6.191 Fall 2022 L15-3

Memory Hierarchy Interface

§ Programming model: Single memory, single address
space

§ Machine transparently stores data in fast or slow
memory, depending on usage patterns

10 GB
DRAM

CPU
100
KB

SRAM

1 TB
Hard
Disk

L1 Cache Main memory Swap space

November 3, 2022 MIT 6.191 Fall 2022 L15-4

Caches

§ Cache: A small, interim storage component that
transparently retains (caches) data from recently
accessed locations

§ Processor sends accesses to cache. Two options:
§ Cache hit: Data for this address in cache, returned quickly
§ Cache miss: Data not in cache

§ Fetch data from memory, send it back to processor
§ Retain this data in the cache (replacing some other

data)
§ Processor must deal with variable memory access time

CPU Cache Main
Memory

Address
Data

Address
Data

November 3, 2022 MIT 6.191 Fall 2022 L15-5

Why Caches Work

§ Two predictable properties of memory accesses:
§ Temporal locality: If a location has been accessed recently,

it is likely to be accessed (reused) soon

§ Spatial locality: If a location has been accessed recently,
it is likely that nearby locations will be accessed soon

§ Result:
§ High hit rate (low miss ratio)
§ Reduced Average Memory Access Time (AMAT):

AMAT = HitTime + MissRatio × MissPenalty

November 3, 2022 MIT 6.191 Fall 2022 L15-6

Basic Cache Algorithm (Reads)

(1-HR)

Tag Data

A

B

Mem[A]

Mem[B]

Q: How do we “search” the cache?

CPU

Main
Memory

On reference to Mem[X],
look for X among cache tags

HIT: X = Tag(i)
for some

cache line i

MISS: X not
found in Tag

of any cache line

Return Data(i) Read Mem[X]
Return Mem[X]
Select a line k

to hold Mem[X]
Write Tag(k)=X,

Data(k) = Mem[X]
November 3, 2022 MIT 6.191 Fall 2022 L15-7

00000000000000000000000011101000

Direct-Mapped Caches

§ Each word in memory maps into a single cache line
§ Access (for cache with 2W lines):

§ Index into cache with W address bits (the index bits)
§ Read out valid bit, tag, and data
§ If valid bit == 1 and tag matches upper address bits, HIT

§ Example 8-line
direct-mapped cache: Tag (27 bits)Valid bit Data (32 bits)

32-bit BYTE address

Index
bits

Tag
bits

Byte
offset
bits =? HIT

0
1
2
3
4
5
6
7

November 3, 2022 MIT 6.191 Fall 2022 L15-8

Example: Direct-Mapped Caches
64-line direct-mapped cache à 64 indices à 6 index bits

1

1

1

1

0

1

0x000058

0x000058

0x000058

0x000040

0x000007

0x000058

0xDEADBEEF

0x00000000

0x00000007

0x42424242

0x6FBA2381

0xF7324A32

Tag (24 bits)Valid bit Data (32 bits)
0

1

2

3

4

63

… ……

Read Mem[0x400C]

HIT, DATA 0x42424242

Part of the address (index bits) is encoded in the location
Tag + Index bits unambiguously identify the data’s address

0100 0000 0000 1100

TAG: 0x40
INDEX: 0x3
BYTE OFFSET: 0x0

Would 0x4008 hit?
INDEX: 0x2 → tag mismatch

→ MISS

November 3, 2022 MIT 6.191 Fall 2022 L15-9

Selection of Index Bits

§ Why do we choose low order bits for index?
§ Allows consecutive memory locations to live in the cache

simultaneously
§ Reduces likelihood of replacing data that may be accessed

again in the near future
§ Helps take advantage of locality

November 3, 2022 MIT 6.191 Fall 2022 L15-10

Block Size
§ Take advantage of spatial locality: Store multiple

words per data line
§ Always fetch entire block (multiple words) from memory
§ Another advantage: Reduces size of tag memory!
§ Potential disadvantage: Fewer indices in the cache

§ Example: 4-block, 16-word direct-mapped cache

Tag (26 bits)Valid bit Data (4 words, 16 bytes)

Index bits: 2
(4 indices)

Tag bits: 26 (=32-6) Block offset bits: 2
(4 words/block)

32-bit BYTE address 0 1 2 3

Byte offset bits: 2
November 3, 2022 MIT 6.191 Fall 2022 L15-11

Block Size Tradeoffs
§ Larger block sizes…

§ Take advantage of spatial locality
§ Incur larger miss penalty since it takes longer to transfer

the block from memory
§ Can increase the average hit time and miss ratio

§ AMAT = HitTime + MissPenalty*MissRatio

Block Size

Miss Penalty AMAT

Block Size

Increased miss penalty
and miss rate

Miss Ratio

Block Size

Exploits spatial locality

Fewer blocks,
compromises
temporal locality

~64 bytes

November 3, 2022 MIT 6.191 Fall 2022 L15-12

Loop A:
Code at
1024,
data at
37

Direct-Mapped Cache Problem:
Conflict Misses

Assume:

1024-line DM cache

Block size = 1 word
Consider looping code, in

steady state
Assume WORD, not BYTE,

addressing

Word
Address

1024
37

1025
38

1026
39

1024
37
…

Cache
Line index

0
37
1
38
2
39
0
37

Hit/
Miss

HIT
HIT
HIT
HIT
HIT
HIT
HIT
HIT

Inflexible mapping
(each address can only be
in one cache location) à
Conflict misses (multiple
addresses map to same
cache index)!

Loop B:
Code at
1024,
data at
2048

1024
2048
1025
2049
1026
2050
1024
2048

...

0
0
1
1
2
2
0
0

MISS
MISS
MISS
MISS
MISS
MISS
MISS
MISS

November 3, 2022 MIT 6.191 Fall 2022 L15-13

Fully-Associative Cache

Opposite extreme: Any address can be in any location
§ No cache index!
§ Flexible (no conflict misses)
§ Expensive: Must compare tags of all entries in parallel to

find matching one

32-bit BYTE address

=?

=?
=?

=?

Tag bits Block offset bits

Tag Valid
bit Data

…… … … … …

0 1 2 3

Byte offset bits
November 3, 2022 MIT 6.191 Fall 2022 L15-14

N-way Set-Associative Cache

§ Use multiple direct-mapped caches in parallel to reduce
conflict misses
§ Nomenclature:

§ # Rows = # Sets
§ # Columns = # Ways
§ Set size = #ways

= “set associativity”
(e.g., 4-way à 4 lines/set)

§ Each address maps to
only one set, but can be
in any way within the set

§ Tags from all ways
are checked in parallel

§ Fully-associative cache: Extreme case with a single set and as
many ways as cache lines

TagData TagDataTagData TagData

8
se

ts

4 ways

=? =? =? =?

INCOMING ADDRESS
IndexTag

SET

WAY

November 3, 2022 MIT 6.191 Fall 2022 L15-15

Issue: Replacement Policy

Associativity Implies Choices

address

Fully associative

address

Direct-mapped

N
address

N-way set-associative

• Compare addr
with only one tag

• Location A can be
stored in exactly
one cache line

• Compare addr with N
tags simultaneously

• Location A can be
stored in exactly one
set, but in any of the
N cache lines
belonging to that set

• Compare addr with
each tag
simultaneously

• Location A can be
stored in any cache

line

November 3, 2022 MIT 6.191 Fall 2022 L15-16

Replacement Policies

§Optimal policy: Replace the line that is accessed furthest in the
future

§ Requires knowing the future…
§ Idea: Predict the future from looking at the past

§ If a line has not been used recently, it’s often less likely to be
accessed in the near future (a locality argument)

§ Least Recently Used (LRU): Replace the line that was accessed
furthest in the past

§ Works well in practice
§ Need to keep ordered list of N items → N! orderings

→ O(log2N!) = O(N log2N) “LRU bits” + complex logic
§ Caches often implement cheaper approximations of LRU

§Other policies:
§ First-In, First-Out (least recently replaced)
§ Random: Choose a candidate at random

§ Not very good, but does not have adversarial access patterns
November 3, 2022 MIT 6.191 Fall 2022 L15-17

Write Policy

Write-through: CPU writes are cached, but also written to
main memory immediately (stalling the CPU until write is
completed). Memory always holds current contents

§ Simple, slow, wastes bandwidth

Write-back: CPU writes are cached, but not written to main
memory until we replace the line. Memory contents can be
“stale”

§ Fast, low bandwidth, more complex
§ Commonly implemented in current systems

November 3, 2022 MIT 6.191 Fall 2022 L15-18

Example: Cache Write-Hit
16-line direct-mapped cache à 4 index bits
Block size = 4 à 2 block offset bits
Write Policy = Write Back
Write: 0x09 to 0x4818

0100 1000 0001 1000

Tag: 0x48
Index: 0x1
Block Off: 2
Byte Off: 0x0

0

0

0

0x48 0x01

Tag (24 bits)V Line (4 words, 16 bytes)

0 1 2 3

1

1

0

D

2

0x02 0x03 0x040x091

D=1: cache contents no longer match main
memory so write back line to memory upon
replacement

…… … …… … …

0

1

15

November 3, 2022 MIT 6.191 Fall 2022 L15-19

Example: Cache Write-Miss

Tag: 0x48
Index: 0x1
Block Off: 2
Byte Off: 0x0

Write: 0x09 to 0x4818

1. Tags don’t match -> Miss
§ D=1: Write cache line 1 (tag = 0x280: addresses

0x28010-0x2801C) back to memory
§ If D=0: Don’t need to write line back to memory.

2. Load line (tag = 0x48: addresses 0x4810-0x481C) from
memory

3. Write 0x09 to 0x4818 (block offset 2), set D=1.

0

1

0

0x20

0x280

0x100

0x21

Tag (24 bits)V Line (4 words, 16 bytes)

0 1 2 3

1

1

0

D

2

0x32 0x43 0x54…… … …… … …

0

1

15

0100 1000 0001 1000

0x040x030x020x010x480 0x091

November 3, 2022 MIT 6.191 Fall 2022 L15-20

Summary: Cache Tradeoffs

§ Cache size

§ Block size

§ Associativity

§ Replacement policy

§ Write policy

AMAT = HitTime + MissRatio × MissPenalty

November 3, 2022 MIT 6.191 Fall 2022 L15-21

Example: Comparing Hit Rates
3 Caches: DM, 2-Way, FA: each has 8 words, block size=1, LRU
Access following addresses repeatedly: 0x0, 0x10, 0x4, 0x24

DM 2-Way FA

0x0 = 0b000000
DM index = 000
2-Way index = 00

M[0x0]

M[0x10]

M[0x0] M[0x0]M[0x10]

M[0x10]M[0x4] M[0x4]

M[0x4]

M[0x24] M[0x24]

M[0x24]

0x10 = 0b010000
DM index = 100
2-Way index = 00

0x4 = 0b000100
DM index = 001
2-Way index = 01

0x24 = 0b100100
DM index = 001
2-Way index = 01

M[0x4]

DM: 50% hit rate
2-Way: 100% hit rate
FA: 100% hit rate

November 3, 2022 MIT 6.191 Fall 2022 L15-22

Example 2: Comparing Hit Rates
Access: 0x0, 0x4, 0x8, 0xC, 0x10, 0x14, 0x18, 0x1C,
0x20 repeatedly

M[0x0]
M[0x20]
M[0x4]
M[0x8]
M[0xC]
M[0x10]
M[0x14]
M[0x18]
M[0x1C]

DM
M[0x0]
M[0x20]
M[0x10]
M[0x4]
M[0x8]
M[0xC]

M[0x10]
M[0x0]
M[0x20]
M[0x14]
M[0x18]
M[0x1C]

2-Way

M[0x4] M[0x0]

M[0x8] M[0x4]

M[0xC] M[0x8]

M[0x10] M[0xC]

M[0x14] M[0x10]

M[0x18] M[0x14]

M[0x1C] M[0x18]

M[0x0] M[0x20]

FA

DM: Hit rate = 7/9 2-Way: Hit rate = 6/9 FA: Hit rate = 0%

November 3, 2022 MIT 6.191 Fall 2022 L15-23

Example 3: Comparing Hit Rates
Access: 0x0, 0x4, 0x8, 0xC, 0x20, 0x24, 0x28, 0x2C, 0x10
repeatedly

M[0x0]
M[0x20]
M[0x4]
M[0x24]
M[0x8]
M[0x28]
M[0xC]
M[0x2C]
M[0x10]

DM
M[0x0]
M[0x10]
M[0x20]
M[0x4]
M[0x8]
M[0xC]

M[0x20]
M[0x0]
M[0x10]
M[0x24]
M[0x28]
M[0x2C]

2-Way

M[0x4] M[0x0]

M[0x8] M[0x4]

M[0xC] M[0x8]

M[0x20] M[0xC]

M[0x24] M[0x20]

M[0x28] M[0x24]

M[0x2C] M[0x28]

M[0x0] M[0x10]

FA

DM: Hit rate = 1/9 2-Way: Hit rate = 6/9 FA: Hit rate = 0%
November 3, 2022 MIT 6.191 Fall 2022 L15-24

Thank you!

Next lecture: Operating
Systems

November 3, 2022 MIT 6.191 Fall 2022 L15-25

