
Pipelined Processors
Data and Control Hazards

November 29, 2022 MIT 6.191 Fall 2022 L20-1

§ “Iron Law” of performance:

§ Pipelining Goals:
§ Lower CPI: Keep CPI as close to 1 as possible
§ Lower cycle time since each pipeline stage does less work

than a single cycle processor.

Reminder: Processor Performance

Cycle
Time

nInstructio
Cycles

Program
nsInstructio

Program
Time

××=
Time
1Perf =

November 29, 2022 MIT 6.191 Fall 2022 L20-2

Reminder: Pipelining with Data
Hazards
§ Strategy 1: Stall. Wait for the result to be available

by freezing earlier pipeline stages
§ Simple, wastes cycles, higher CPI

§ Strategy 2: Bypass. Route data to the earlier
pipeline stage as soon as it is calculated
§ More expensive, lower CPI
§ Still needs stalls when result is produced after EXE stage
§ Can trade off having fewer bypasses with stalling more

often

November 29, 2022 MIT 6.191 Fall 2022 L20-3

Resolving Data Hazards by Stalling

§ Strategy 1: Stall. Wait for the
result to be available by
freezing earlier pipeline stages

1 2 3 4 5 6 7 8
IF addi xor sub sub sub sub xori

DEC addi xor xor xor xor sub xori
EXE addi NOP NOP NOP xor sub
MEM addi NOP NOP NOP xor
WB addi NOP NOP NOP

x11 updated

Stalls increase CPI!

Stall

addi x11, x10, 2
xor x13, x11, x12
sub x17, x15, x16
xori x19, x18, 0xF

November 29, 2022 MIT 6.191 Fall 2022 L20-4

Resolving Data Hazards by Bypassing

§ Strategy 2: Bypass. Route data
to the earlier pipeline stage
as soon as it is calculated

§ addi writes to x11 at the end of cycle 5…
but the result is produced during cycle 3,
at the EXE stage!

1 2 3 4 5
IF addi xor sub xori

DEC addi xor sub xori
EXE addi xor sub
MEM addi xor
WB addi

x11 updatedaddi result computed

addi x11, x10, 2
xor x13, x11, x12
sub x17, x15, x16
xori x19, x18, 0xF

November 29, 2022 MIT 6.191 Fall 2022 L20-5

1 2 3 4 5 6 7 8
IF lw xor sub sub sub xori

DEC lw xor xor xor sub xori
EXE lw NOP NOP xor sub xori
MEM lw NOP NOP xor sub
WB lw NOP NOP xor

Load-To-Use Stalls

§ Bypassing cannot eliminate load delays because
their data is not available until the WB stage

§ Bypassing from WB still
saves a cycle:

x11 updatedlw data available

lw x11, 0(x10)
xor x13, x11, x12
sub x17, x15, x16
xori x19, x18, 0xF

November 29, 2022 MIT 6.191 Fall 2022 L20-6

Variable Memory Response Time
§ Timing of clocked read assuming cache hit (returns data by

next clock cycle)

§ Timing of clocked read on cache miss. The cache will produce
a stall signal, telling the pipeline to wait until the memory
responds.

PC

Instruction
Cache

+4
address

data

data

address
CLK

A0 A1 A2
D0 D1

data

address
CLK

A0 A1
D0

stall

November 29, 2022 MIT 6.191 Fall 2022 L20-7

Handling Instruction Cache Miss by
Stalling

1 2 3 4 5 6 7 8
IF addi xor sub sub sub sub xori

DEC addi xor xor xor xor sub xori
EXE addi NOP NOP NOP xor sub
MEM addi NOP NOP NOP xor
WB addi NOP NOP NOP

Instruction cache
returns xor instruction
Begins fetch of sub

Stall

addi x9, x10, 2
xor x13, x11, x12
sub x17, x15, x16
xori x19, x18, 0xF

§ Strategy 1: Stall. Wait for the
result to be available by
freezing earlier pipeline stages

Instruction cache
hasn’t responded
to fetch of xor

November 29, 2022 MIT 6.191 Fall 2022 L20-8

Stall Logic for Instruction Cache
Miss

§ STALL==1
§ Disables PC and IF pipeline

register
§ Instruction cache keeps

working to fetch data from
memory

§ Injects NOP instruction into
EXE stage

§ Control logic sets STALL=1 if
instruction cache misses (in
addition to setting it when a
data hazard exists.)

PC

Instruction
Cache

Decode Register
File

Data
Cache

Execute

Register
File

+4IF

DEC

EXE

MEM

WB

STALL

STALL

STALL
NOP

November 29, 2022 MIT 6.191 Fall 2022 L20-9

Resolving Data Cache Miss by
Stalling
§ Strategy 1: Stall. Wait for the

result to be available by
freezing earlier pipeline stages

1 2 3 4 5 6 7 8
IF addi lw sub xori ori nextI nextI nextI

DEC addi lw sub xori ori ori ori

EXE addi lw sub xori xori xori
MEM addi lw sub sub sub
WB addi lw lw lw

lw completes

Stall

addi x9, x10, 2
lw x13, 0(x11)
sub x17, x15, x16
xori x19, x18, 0xF
ori x2, x1, 0x3

Data cache miss on
lw request of cycle 5

November 29, 2022 MIT 6.191 Fall 2022 L20-10

Control Hazards

November 29, 2022 MIT 6.191 Fall 2022 L20-11

Which instruction to fetch next?

§ So far, we have only considered sequential
execution where nextPC = PC + 4.

§ Now, we will add support for branch and jump
instructions.

November 29, 2022 MIT 6.191 Fall 2022 L20-12

Control Hazards

§ What do we need to compute nextPC?
§ We always need opcode to know how to compute nextPC

§ JAL: nextPC = pc + immJ
§ JALR: nextPC = {(reg[rs1] + immI)[31:1], 1’b0}
§ Branches: nextPC = brFun(reg[rs1], reg[rs2])? pc + immB

: pc + 4
§ All other instructions: nextPC = PC + 4

§ In what stage is nextPC available?
§ Depends on the pipeline and instruction type

November 29, 2022 MIT 6.191 Fall 2022 L20-13

Resolving Control Hazards

JAL
JALR

Branches
Others

IF

DEC

EXE

MEM

WB

PC

Instruction
Cache

Decode Register
File

Data
Cache

Execute

Register
File

EXE
EXE
EXE
DEC

§ In what stage is nextPC
available?

pc available in IF

opcode, imm available in DEC

operations on pc, imm, reg[rs1],
reg[rs2] available in EXE

nextPC

November 29, 2022 MIT 6.191 Fall 2022 L20-14

Resolving Hazards

§ Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages

§ Strategy 2: Bypass (aka Forward). Route data to
the earlier pipeline stage as soon as it is calculated

§ Strategy 3: Speculate
§ Guess a value and continue executing anyway
§ When actual value is available, two cases

§ Guessed correctly à do nothing
§ Guessed incorrectly à kill & restart with correct value

November 29, 2022 MIT 6.191 Fall 2022 L20-15

Resolving Control Hazards By
Stalling
§ Assume bne is taken

in this example

loop: addi x12, x11, -1
sub x14, x15, x16
bne x13, x0, loop

1 2 3 4 5 6 7 8 9

IF addi NOP sub NOP bne NOP NOP addi NOP

DEC addi NOP sub NOP bne NOP NOP addi

EXE addi NOP sub NOP bne NOP NOP
MEM addi NOP sub NOP bne NOP

WB addi NOP sub NOP bne

Opcode not known yet
nextPC unknown à Stall

Opcode = addi
nextPC = PC + 4

Opcode = bne
nextPC unknown (branch outcome
in EXE) à Stall once more

CPI = 7 cycles / 3 instructions !
Might as well not pipeline…

November 29, 2022 MIT 6.191 Fall 2022 L20-16

Resolving Hazards

§ Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages

§ Strategy 2: Bypass (aka Forward). Route data to
the earlier pipeline stage as soon as it is calculated

§ Strategy 3: Speculate
§ Guess a value and continue executing anyway
§ When actual value is available, two cases

§ Guessed correctly à do nothing
§ Guessed incorrectly à kill & restart with correct value

November 29, 2022 MIT 6.191 Fall 2022 L20-17

Resolving Control Hazards with
Speculation
§ What’s a good guess

for nextPC?

§ Assume bne is not taken
in example

loop: addi x12, x11, -1
sub x14, x15, x16
bne x13, x0, loop
and x16, x17, x18
xor x19, x20, x21
…

PC+4

1 2 3 4 5 6 7 8 9

IF addi sub bne and xor

DEC addi sub bne and xor

EXE addi sub bne and xor

MEM addi sub bne and xor

WB addi sub bne and xor

Start fetching at PC+4 (and) but
bne not resolved yet…

Guessed right, keep going

November 29, 2022 MIT 6.191 Fall 2022 L20-18

Resolving Control Hazards with
Speculation
§ What’s a good guess

for nextPC?

§ Assume bne is taken
in example

PC+4

1 2 3 4 5 6 7 8 9

IF addi sub bne and xor addi sub bne and

DEC addi sub bne and NOP addi sub bne

EXE addi sub bne NOP NOP addi sub

MEM addi sub bne NOP NOP addi

WB addi sub bne NOP NOP

Start fetching at PC+4 (and) but
bne not resolved yet …

Guessed wrong, annul and & xor
and restart fetching at loop

loop: addi x12, x11, -1
sub x14, x15, x16
bne x13, x0, loop
and x16, x17, x18
xor x19, x20, x21
…

November 29, 2022 MIT 6.191 Fall 2022 L20-19

Speculation Logic

§ When EXE finds a jump
or taken branch, it
supplies nextPC and
sets ANNUL==1
§ Writes NOPs in IF/DEC

and DEC/EXE pipeline
registers, annulling
instructions currently in
IF and DEC stages (called
branch annulment)

§ Loads the branch or jump
target into PC register

PC

Instruction
Cache

Decode Register
File

Data
Cache

Execute

Register
File

+4
IF

DEC

EXE

MEM

WB

NOP

ANNUL

ANNUL

ANNUL

ANNUL

STALL

STALL

STALL

November 29, 2022 MIT 6.191 Fall 2022 L20-20

Interaction Between Stalling and
Speculation
§ Suppose that, on the same cycle,

§ EXE wants to annul DEC and IF due to a control hazard
§ DEC wants to stall due to a data hazard

§ Example: Assume bne is taken

§ Which should take precedence, ANNUL or STALL?
ANNUL, because it comes from an earlier instruction

loop: addi x12, x11, -1
lw x14, 0(x15)
bne x13, x0, loop
and x16, x14, x18
xor x19, x20, x21

1 2 3 4 5
IF addi lw bne and xor
DEC addi lw bne and
EXE addi lw bne
MEM addi lw
WB addi

bne wants to annul; and wants to stall

November 29, 2022 MIT 6.191 Fall 2022 L20-21

Putting It All Together

§ Let’s see an example with
stalls, bypassing, and
(mis)speculation

§ Assume bne is taken once,
then not taken

loop: addi x12, x11, -1
lw x14, 0(x15)
bne x13, x0, loop
and x16, x14, x18
xor x19, x20, x21

1 2 3 4 5 6 7 8 9 10 11 12

IF addi lw bne and xor addi lw bne and xor xor

DEC addi lw bne and NOP addi lw bne and and xor

EXE addi lw bne NOP NOP addi lw bne NOP and

MEM addi lw bne NOP NOP addi lw bne NOP

WB addi lw bne NOP NOP addi lw bne

bne taken, annuls and and xor and stalls on x14
lw value bypassed

November 29, 2022 MIT 6.191 Fall 2022 L20-22

Summary

§ Stalling can address
all pipeline hazards
§ Simple, but hurts CPI

§ Bypassing improves
CPI on data hazards

§ Speculation improves
CPI on control hazards
§ Speculation works only

when it’s easy to make good guesses

IF

DEC

EXE

MEM

WB

PC

Instruction
Cache

Decode Register
File

Data
Cache

Execute

Register
File

+4

NOP

ANNUL

ANNUL

ANNUL

ANNUL

STALL

November 29, 2022 MIT 6.191 Fall 2022 L20-23

Thank you!

Next lecture: Synchronization

November 29, 2022 MIT 6.191 Fall 2022 L20-24

