
Modern Processor 
Architecture

December 6, 2022 MIT 6.191 Fall 2022 L22-1



Lecture Goals

§ Learn about the key techniques that modern 
processors use to achieve high performance

§ Emphasize the techniques that may help you
in the design project (e.g., simple branch 
prediction)

December 6, 2022 MIT 6.191 Fall 2022 L22-2



Reminder: Processor Performance

§ Pipelining lowers tCLK. What about CPI?

§ CPI = CPIideal + CPIhazard
§ CPIideal: cycles per instruction if no stalls

§ CPIhazard contributors
§ Data hazards: long operations, cache misses
§ Control hazards: branches, jumps, exceptions

Cycle
Time

nInstructio
Cycles

Program
nsInstructio

Program
Time ××=

CPI tCLK

December 6, 2022 MIT 6.191 Fall 2022 L22-3



Standard 5-Stage Pipeline

§ Assume full bypassing 

§ CPIideal=1.0

§ CPIhazard due to data hazards:
Up to how many cycles lost to 
each load-to-use hazard?

§ CPIhazard due to control hazards: 
How many cycles lost to each 
jump and taken branch?

PC

Instruction
Cache

Decode Register
File

Data
Cache

Execute

Register
File

+4

NOP

ANNUL

ANNUL

ANNUL

ANNUL

2

2

December 6, 2022 MIT 6.191 Fall 2022 L22-4



Design Project Pipeline (Part 2)

§ 4 stages: IF, DEC, EXE, WB
§ No MEM stage

§ CPIhazard due to data hazards:
Up to how many cycles lost to 
each load-to-use hazard?

§ IF uses PC bypassing: On 
annulment, IF starts fetching at 
the jump/branch target on the 
same cycle

§ CPIhazard due to control hazards: 
How many cycles lost to each 
jump and taken branch?

Instruction
Cache

Decode Register
File

Data
Cache

Execute

Register
File

NOP

ANNUL

ANNUL

PCANNUL
STALL

+4

ANNUL

1

1

Fetch

December 6, 2022 MIT 6.191 Fall 2022 L22-5



Improving Processor Performance

§ Increase clock frequency: deeper pipelines
§ Overlap more instructions

§ Reduce CPIideal: wider pipelines
§ Each pipeline stage processes multiple instructions

§ Reduce impact of data hazards: out-of-order 
execution
§ Execute each instruction as soon as its source operands 

are available

§ Reduce impact of control hazards: branch 
prediction
§ Predict both direction and target of branches and jumps

December 6, 2022 MIT 6.191 Fall 2022 L22-6



Deeper Pipelines

§ Break up datapath into N pipeline stages
§ Ideal tCLK = 1/N compared to non-pipelined
§ So let’s use a large N!

§ Advantage: Higher clock frequency
§ The workhorse behind multi-GHz processors
§ Intel Skylake, AMD Zen2: 19 stages, 4-5 GHz

§ Disadvantages
§ More overlapping Þ more dependencies

§ CPIhazard grows due to data and control 
hazards

§ Pipeline registers add area & power

Fetch 1

Decode

ALU

Memory 1

Write Registers

Fetch 2

Read Registers

Memory 2

December 6, 2022 MIT 6.191 Fall 2022 L22-7



Wider (aka Superscalar) Pipelines

§ Each stage operates on up to W 
instructions each clock cycle

§ Advantage: Lower CPIideal (1/W)
§ Skylake & Zen2: 6-wide, Apple M1: 8-wide

§ Disadvantages
§ Parallel execution Þ more dependencies

§ CPIhazard grows due to data and control 
hazards

§ Much higher cost & complexity
§ More ALUs, register file ports, …
§ Many bypass & stall cases to check

Fetch

Decode
Read Registers

ALU

Memory

Write Registers

December 6, 2022 MIT 6.191 Fall 2022 L22-8



Resolving Hazards

§ Strategy 1: Stall. Wait for the result to be available 
by freezing earlier pipeline stages

§ Strategy 2: Bypass. Route data to the earlier 
pipeline stage as soon as it is calculated

§ Strategy 3: Speculate
§ Guess a value and continue executing anyway
§ When actual value is available, two cases

§ Guessed correctly à do nothing
§ Guessed incorrectly à kill & restart with correct value

§ Strategy 4: Find something else to do

December 6, 2022 MIT 6.191 Fall 2022 L22-9



Out-of-Order Execution

acbaD 7)(3 +-=

Sequential code
ld a
ld b
sub a-b
mul 3(a-b)
ld c
mul ac
mul 7ac
add 3(a-b)+7ac
st d

Dataflow graph
ld ald b ld c

+

*-

* *

st d

§ Consider the expression

Out-of-order execution runs instructions
as soon as their inputs become available

December 6, 2022 MIT 6.191 Fall 2022 L22-10



Out-of-Order Execution Example

§ If ld b takes a few cycles (e.g., cache miss), can 
execute instructions that do not depend on b

Sequential code
ld a
ld b
sub a-b
mul 3(a-b)
ld c
mul ac
mul 7ac
add 3(a-b)+7ac
st d

Dataflow graph

ld ald b ld c

+

*-

* *

st d

Completed

Executing

Not ready

December 6, 2022 MIT 6.191 Fall 2022 L22-11



A Modern Out-of-Order Superscalar 
Processor

I-Cache

Fetch Unit

Instruction Buffer

Decode/Rename

Dispatch

Branch
Predict

Int Int FP FP L/S L/S

Reservation Stations

Write Buffer

Retire

D-Cache

In
 O

rd
er

In
 O

rd
er

O
ut

 O
f O

rd
er

Reorder Buffer

Reconstruct
dataflow graph

Execute each instruction
as soon as its source
operands are available

Write back results
in program order

Why is this needed?
December 6, 2022 MIT 6.191 Fall 2022 L22-12



Control Hazard Penalty

§ Modern processors have >10 
pipeline stages between next PC 
calculation and branch resolution!

§ How much work is lost every time 
pipeline does not follow correct 
instruction flow?

§ One branch every 5-20
instructions… performance
impact of mispredictions?

Fetch

Decode

WriteBack

PC

RegRead

Execute

…
…

…
…

Branch
executed

Next fetch 
started

Loose
loop

Loop length x Pipeline width

December 6, 2022 MIT 6.191 Fall 2022 L22-13



RISC-V Branches and Jumps

§ Each instruction fetch depends on information from 
the preceding instruction:
1) Is the preceding instruction a taken branch or jump?
2) If so, what is the target address?

Instruction Taken known? Target known?

JAL

JALR

Branches

After Inst. Decode After Inst. Decode

After Inst. Decode After Inst. Execute

After Inst. Execute After Inst. Decode

December 6, 2022 MIT 6.191 Fall 2022 L22-14



Resolving Hazards

§ Strategy 1: Stall. Wait for the result to be available 
by freezing earlier pipeline stages

§ Strategy 2: Bypass. Route data to the earlier 
pipeline stage as soon as it is calculated

§ Strategy 3: Speculate
§ Guess a value and continue executing anyway
§ When actual value is available, two cases

§ Guessed correctly à do nothing
§ Guessed incorrectly à kill & restart with correct value

§ Strategy 4: Find something else to do

Predict jump/branch
target and direction

December 6, 2022 MIT 6.191 Fall 2022 L22-15



Static Branch Prediction

§ Probability a branch is taken is ~60-70%, but:

§ Some ISAs attach preferred direction hints to 
branches, e.g., Motorola MC88110
§ bne0 (preferred taken) beq0 (not taken)

§ Achieves ~80% accuracy

BEQ

BEQbackward
90%

forward
50%

Good way to improve CPI on part 3 of the 
design project if you use a 4-stage pipeline

December 6, 2022 MIT 6.191 Fall 2022 L22-16



Dynamic Branch Prediction
Learning from past behavior

§ Temporal correlation
§ The way a branch resolves may be a good predictor of 

the way it will resolve at the next execution

§ Spatial correlation 
§ Several branches may resolve in a highly correlated 

manner (a preferred path of execution)

PC

Truth/Feedback

Prediction
Predictor

pr
ed

ic
t

update

December 6, 2022 MIT 6.191 Fall 2022 L22-17



Predicting the Target Address:
Branch Target Buffer (BTB)

§ BTB is a cache for targets: Remembers last 
target PC for taken branches and jumps
§ If hit, use stored target as predicted next PC
§ If miss, use PC+4 as predicted next PC
§ After target is known, update if prediction is wrong 

2k-entry direct-mapped BTB
(can also be set-associative)

PC

k

Valid

valid

Entry PC

=
match

predicted

target

target PC

December 6, 2022 MIT 6.191 Fall 2022 L22-18



Integrating the BTB in the Pipeline

Fetch

Decode

WriteBack

PC

RegRead

Execute

…
…

…
…

Predict next PC
immediately BTB

Tight loop

Correct
mispred

Correct misprediction when
the right outcome is known

December 6, 2022 MIT 6.191 Fall 2022 L22-19



BTB Implementation Details

§ Unlike caches, it is fine if the BTB produces an invalid next PC
§ It’s just a prediction! 

§ Therefore, BTB area & delay can be reduced by
§ Making tags arbitrarily small (match with a subset of PC bits)
§ Storing only a subset of target PC bits (fill missing bits from current PC)
§ Not storing valid bits

§ Even small BTBs are very effective!

iMem
pc

tag(pci) targeti valid

match

k

2k-entry direct-mapped BTB

December 6, 2022 MIT 6.191 Fall 2022 L22-20



BTB Interface

typedef struct
{ Word pc; Word nextPc; Bool taken; } UpdateArgs;

module BTB;
method Addr predict(Addr pc);
input Maybe#(UpdateArgs) update default = Invalid;

endmodule

§ predict: Simple lookup to predict nextPC in Fetch stage
§ update: On a pc misprediction, if the jump or branch 

at the pc was taken, then the BTB is updated with the 
new (pc, nextPC). Otherwise, the pc entry is deleted.

A BTB is a good way to improve CPI
on part 3 of the design project

(and has lower tCLK than static prediction)

December 6, 2022 MIT 6.191 Fall 2022 L22-21



Better Branch Direction Prediction

§ Consider the following loop:

§ How many mispredictions does
the BTB incur per loop?
§ One on loop exit
§ Another one on first iteration

loop: …
addi a1, a1, -1
bnez a1, loop

December 6, 2022 MIT 6.191 Fall 2022 L22-22



Two-Bit Direction Predictor
Smith 1981

§ Use two bits per BTB entry instead of one valid bit
§ Manage them as a saturating counter:

§ Direction prediction changes only after
two wrong predictions

§ How many mispredictions per loop?

O
n not-taken è

ç
O

n taken

1 1 Strongly taken

1 0 Weakly taken

0 1 Weakly not-taken

0 0 Strongly not-taken

1

December 6, 2022 MIT 6.191 Fall 2022 L22-23



Modern Processors Combine Multiple 
Specialized Predictors

Fetch

Decode

WriteBack

PC

RegRead

Execute
…

…
…

…

Predict next PC
immediately

Instruction type &
branch/JAL target known

Branch direction &
JALR target known

BTB

Branch dir
predictor

Correct
mispred

Loop
predictor

Return addr
predictor

Best predictors reflect 
program behavior

December 6, 2022 MIT 6.191 Fall 2022 L22-24



Putting It All Together: Intel Core i7 
(Skylake)

§ Each core has 19 pipeline 
stages, ~4GHz

§ 6-wide superscalar
§ Out of order execution
§ Multi-level branch 

predictors
§ Caches:

§ L1: 32KB I + 32KB D
§ L2: 256KB
§ L3: 8MB, shared

§ Large overheads vs 
simple cores!

Execution
Units

Out-of-Order
Scheduling &
Retirement

L2 Cache

L1 
ICacheInstruction

Decode &
Microcode

Paging

L1 
Data Cache

Memory Ordering
& Execution

Branch
Prediction

Your RISC-V core

Intel, 2016, 14nm,
1.7B transistors, 122mm2

Core
1

Core
2

Core
3

Memory controller

GPU I/Os

Core
0

L3 & Ring

December 6, 2022 MIT 6.191 Fall 2022 L22-25



Design Project Leaderboard

§ Available in Labs > DP > Leaderboard

L22-26December 6, 2022 MIT 6.191 Fall 2022



Thank you!

Good luck on Quiz 3 J

December 6, 2022 MIT 6.191 Fall 2022 L22-27


