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Lecture Goals

§ Learn about the key techniques that modern 
processors use to achieve high performance

§ Emphasize the techniques that may help you
in the design project (e.g., simple branch 
prediction)
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Reminder: Processor Performance

§ Pipelining lowers tCLK. What about CPI?

§ CPI = CPIideal + CPIhazard
§ CPIideal: cycles per instruction if no stalls

§ CPIhazard contributors
§ Data hazards: long operations, cache misses
§ Control hazards: branches, jumps, exceptions
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Standard 5-Stage Pipeline

§ Assume full bypassing 

§ CPIideal=1.0

§ CPIhazard due to data hazards:
Up to how many cycles lost to 
each load-to-use hazard?

§ CPIhazard due to control hazards: 
How many cycles lost to each 
jump and taken branch?
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Design Project Pipeline (Part 2)

§ 4 stages: IF, DEC, EXE, WB
§ No MEM stage

§ CPIhazard due to data hazards:
Up to how many cycles lost to 
each load-to-use hazard?

§ IF uses PC bypassing: On 
annulment, IF starts fetching at 
the jump/branch target on the 
same cycle

§ CPIhazard due to control hazards: 
How many cycles lost to each 
jump and taken branch?
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Improving Processor Performance

§ Increase clock frequency: deeper pipelines
§ Overlap more instructions

§ Reduce CPIideal: wider pipelines
§ Each pipeline stage processes multiple instructions

§ Reduce impact of data hazards: out-of-order 
execution
§ Execute each instruction as soon as its source operands 

are available

§ Reduce impact of control hazards: branch 
prediction
§ Predict both direction and target of branches and jumps
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Deeper Pipelines

§ Break up datapath into N pipeline stages
§ Ideal tCLK = 1/N compared to non-pipelined
§ So let’s use a large N!

§ Advantage: Higher clock frequency
§ The workhorse behind multi-GHz processors
§ Intel Skylake, AMD Zen2: 19 stages, 4-5 GHz

§ Disadvantages
§ More overlapping Þ more dependencies

§ CPIhazard grows due to data and control 
hazards

§ Pipeline registers add area & power
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Wider (aka Superscalar) Pipelines

§ Each stage operates on up to W 
instructions each clock cycle

§ Advantage: Lower CPIideal (1/W)
§ Skylake & Zen2: 6-wide, Apple M1: 8-wide

§ Disadvantages
§ Parallel execution Þ more dependencies

§ CPIhazard grows due to data and control 
hazards

§ Much higher cost & complexity
§ More ALUs, register file ports, …
§ Many bypass & stall cases to check
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Resolving Hazards

§ Strategy 1: Stall. Wait for the result to be available 
by freezing earlier pipeline stages

§ Strategy 2: Bypass. Route data to the earlier 
pipeline stage as soon as it is calculated

§ Strategy 3: Speculate
§ Guess a value and continue executing anyway
§ When actual value is available, two cases

§ Guessed correctly à do nothing
§ Guessed incorrectly à kill & restart with correct value

§ Strategy 4: Find something else to do
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Out-of-Order Execution

acbaD 7)(3 +-=

Sequential code
ld a
ld b
sub a-b
mul 3(a-b)
ld c
mul ac
mul 7ac
add 3(a-b)+7ac
st d

Dataflow graph
ld ald b ld c

+

*-

* *

st d

§ Consider the expression

Out-of-order execution runs instructions
as soon as their inputs become available
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Out-of-Order Execution Example

§ If ld b takes a few cycles (e.g., cache miss), can 
execute instructions that do not depend on b

Sequential code
ld a
ld b
sub a-b
mul 3(a-b)
ld c
mul ac
mul 7ac
add 3(a-b)+7ac
st d

Dataflow graph

ld ald b ld c

+

*-

* *

st d

Completed

Executing

Not ready
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A Modern Out-of-Order Superscalar 
Processor
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Control Hazard Penalty

§ Modern processors have >10 
pipeline stages between next PC 
calculation and branch resolution!

§ How much work is lost every time 
pipeline does not follow correct 
instruction flow?

§ One branch every 5-20
instructions… performance
impact of mispredictions?
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RISC-V Branches and Jumps

§ Each instruction fetch depends on information from 
the preceding instruction:
1) Is the preceding instruction a taken branch or jump?
2) If so, what is the target address?

Instruction Taken known? Target known?
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Resolving Hazards

§ Strategy 1: Stall. Wait for the result to be available 
by freezing earlier pipeline stages

§ Strategy 2: Bypass. Route data to the earlier 
pipeline stage as soon as it is calculated

§ Strategy 3: Speculate
§ Guess a value and continue executing anyway
§ When actual value is available, two cases

§ Guessed correctly à do nothing
§ Guessed incorrectly à kill & restart with correct value

§ Strategy 4: Find something else to do

Predict jump/branch
target and direction
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Static Branch Prediction

§ Probability a branch is taken is ~60-70%, but:

§ Some ISAs attach preferred direction hints to 
branches, e.g., Motorola MC88110
§ bne0 (preferred taken) beq0 (not taken)

§ Achieves ~80% accuracy

BEQ

BEQbackward
90%

forward
50%

Good way to improve CPI on part 3 of the 
design project if you use a 4-stage pipeline
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Dynamic Branch Prediction
Learning from past behavior

§ Temporal correlation
§ The way a branch resolves may be a good predictor of 

the way it will resolve at the next execution

§ Spatial correlation 
§ Several branches may resolve in a highly correlated 

manner (a preferred path of execution)
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Predicting the Target Address:
Branch Target Buffer (BTB)

§ BTB is a cache for targets: Remembers last 
target PC for taken branches and jumps
§ If hit, use stored target as predicted next PC
§ If miss, use PC+4 as predicted next PC
§ After target is known, update if prediction is wrong 
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Integrating the BTB in the Pipeline
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BTB Implementation Details

§ Unlike caches, it is fine if the BTB produces an invalid next PC
§ It’s just a prediction! 

§ Therefore, BTB area & delay can be reduced by
§ Making tags arbitrarily small (match with a subset of PC bits)
§ Storing only a subset of target PC bits (fill missing bits from current PC)
§ Not storing valid bits

§ Even small BTBs are very effective!
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BTB Interface

typedef struct
{ Word pc; Word nextPc; Bool taken; } UpdateArgs;

module BTB;
method Addr predict(Addr pc);
input Maybe#(UpdateArgs) update default = Invalid;

endmodule

§ predict: Simple lookup to predict nextPC in Fetch stage
§ update: On a pc misprediction, if the jump or branch 

at the pc was taken, then the BTB is updated with the 
new (pc, nextPC). Otherwise, the pc entry is deleted.

A BTB is a good way to improve CPI
on part 3 of the design project

(and has lower tCLK than static prediction)
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Better Branch Direction Prediction

§ Consider the following loop:

§ How many mispredictions does
the BTB incur per loop?
§ One on loop exit
§ Another one on first iteration

loop: …
addi a1, a1, -1
bnez a1, loop
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Two-Bit Direction Predictor
Smith 1981

§ Use two bits per BTB entry instead of one valid bit
§ Manage them as a saturating counter:

§ Direction prediction changes only after
two wrong predictions

§ How many mispredictions per loop?

O
n not-taken è

ç
O

n taken

1 1 Strongly taken

1 0 Weakly taken

0 1 Weakly not-taken

0 0 Strongly not-taken

1
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Modern Processors Combine Multiple 
Specialized Predictors
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Putting It All Together: Intel Core i7 
(Skylake)

§ Each core has 19 pipeline 
stages, ~4GHz

§ 6-wide superscalar
§ Out of order execution
§ Multi-level branch 

predictors
§ Caches:

§ L1: 32KB I + 32KB D
§ L2: 256KB
§ L3: 8MB, shared

§ Large overheads vs 
simple cores!
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Design Project Leaderboard

§ Available in Labs > DP > Leaderboard
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Thank you!

Good luck on Quiz 3 J
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