Modern Processor
Architecture

December 6, 2022 MIT 6.191 Fall 2022 122-1

Lecture Goals

= |earn about the key techniques that modern
processors use to achieve high performance

= Emphasize the techniques that may help you
in the design project (e.g., simple branch
prediction)

December 6, 2022 MIT 6.191 Fall 2022 122-2

Reminder: Processor Performance

Time _ Instructions Cycles Time

Program Program Instruction Cycle

CPI ok
= Pipelining lowers t; k. What about CPI?

= CPI = CPIligea + CPlazarg

» CPI4e4: cycles per instruction if no stalls

= CPI, ,,arg CONtributors
= Data hazards: long operations, cache misses
= Control hazards: branches, jumps, exceptions

December 6, 2022 MIT 6.191 Fall 2022 122-3

Standard 5-Stage Pipeline

Assume full bypassing
" CPIidea|=1'O

= CPIl,,,aq due to data hazards:
Up to how many cycles lost to
each load-to-use hazard? 2

= CPI};,arq due to control hazards:

How many cycles lost to each
jump and taken branch? 2

December 6, 2022

MIT 6.191 Fall 2022

ANNUL
PC
—
4 Instruction
+ Cache
ANNULS . A
—| Register
Decodel, File
oL DOt
[]
¥ v ¥
ANNUL Execute=D
| | — | |
| |
v v
Data
L, | Cache

Register
File

A 4 %
A 4

L22-4

Design Project Pipeline (Part 2)

4 stages: IF, DEC, EXE, WB
= No MEM stage

= CPl;,,4q due to data hazards:
Up to how many cycles lost to
each load-to-use hazard?

= IF uses PC bypassing: On
annulment, IF starts fetching at
the jump/branch target on the
same cycle

= CPIl},,4rq due to control hazards:
How many cycles lost to each
jump and taken branch? 1

December 6, 2022 MIT 6.191 Fall 2022

ANNUL

2y

Instruction
Cache

STALL—[pc_

ANNUL™*

L 2

Decodel,

—| Register
File

vNOP |§

ANNUL

R Y
e — —9_,_/—9\.,I_/

y

ANNUL

v v
EXGCUt(?:D

—

Data
Cache

A 4 %
A 4

Register
File

L22-5

Improving Processor Performance

= Increase clock frequency: deeper pipelines
= QOverlap more instructions

= Reduce CPI.,.,: wider pipelines
= Each pipeline stage processes multiple instructions

= Reduce impact of data hazards: out-of-order
execution

= Execute each instruction as soon as its source operands
are available

= Reduce impact of control hazards: branch
prediction
= Predict both direction and target of branches and jumps

December 6, 2022 MIT 6.191 Fall 2022 122-6

Deeper Pipelines

Feteh | = Break up datapath into N pipeline stages
‘ = Ideal t; x = 1/N compared to non-pipelined
e = So let’s use a large N!

Decode

= Advantage: Higher clock frequency

Read Registers = The workhorse behind multi-GHz processors
= Intel Skylake, AMD Zen2: 19 stages, 4-5 GHz

A
ALU

= Disadvantages

Y

Memory 1 = More overlapping = more dependencies
\ = CPl}.,arg grows due to data and control
Memory 2 hazardS

= Pipeline registers add area & power

Y

Write Registers

December 6, 2022 MIT 6.191 Fall 2022 122-7

Wider (aka Superscalar) Pipelines

Each stage operates on up to W
instructions each clock cycle

Fetch

T = Advantage: Lower CPIiy., (1/W)
Read Reciutors = Skylake & Zen2: 6-wide, Apple M1: 8-wide
s
L = Disadvantages
i = Parallel execution = more dependencies
- = CPl}.,arg grows due to data and control
Memory hazards
T = Much higher cost & complexity
e R‘;gisters = More ALUs, register file ports, ...

= Many bypass & stall cases to check

December 6, 2022 MIT 6.191 Fall 2022 122-8

Resolving Hazards

= Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages

= Strategy 2: Bypass. Route data to the earlier
pipeline stage as soon as it is calculated

= Strategy 3: Speculate
= Guess a value and continue executing anyway
= When actual value is available, two cases
= Guessed correctly - do nothing
= Guessed incorrectly =2 kill & restart with correct value

= Strategy 4: Find something else to do

December 6, 2022 MIT 6.191 Fall 2022 122-9

Out-of-Order Execution

= Consider the expression D =3(a—b)+7ac

Sequential code Dataflow graph

Id a @ @ @

Id b
sub a-b

mul 3(a-b) () (*)

Id ¢

mul ac c °

mul 7ac
add 3(a-b)+7ac

st d °

Out-of-order execution runs instructions @

as soon as their inputs become available

December 6, 2022 MIT 6.191 Fall 2022 L22-10

Out-of-Order Execution Example

= If 1d b takes a few cycles (e.g., cache miss), can
execute instructions that do not depend on b

Sequential code Dataflow graph

- B @ @

December 6, 2022

sub a-b

mul 3(a-b) — Completed
dc O &

mul ac

mul 7ac ° ° — Executing

add 3(a-b)+7ac
std ° — Not ready

MIT 6.191 Fall 2022 L22-11

A Modern Out-of-Order Superscalar
Processor

> I-Cache

v

Branch | Fetch Unit

Predict B Reconstruct

:I:V:E nstruction Buffer d a ta fl OW g I'a p h

\J
Decode/Rename

In Order

Dispatch

Y =

/ /) Reservation Stations

/

]

oy Y Y Execute each instruction
— AaS SO0nN as its source
operands are available

— =2
=3
13
=3

Out Of Order

- - - e
H
| ctll

J\

-l

Reorder Buffer T 1

3 ' Write back results

o) Retire —

< 7 v ‘ in program order
Write Buffer [[T+ D-Cache \

Why is this needed?

December 6, 2022 MIT 6.191 Fall 2022 122-12

Control Hazard Penalty

= Modern processors have >10 NteXE fgtch PC
pipeline stages between next PC >
calculation and branch resolution!

= How much work is lost every time Loose Decode
pipeline does not follow correct loop :

instruction flow?

Loop length x Pipeline width

eIl Execute
= One branch every 5-20 executed :
instructions... performance :

impact of mispredictions? WriteBack

December 6, 2022 MIT 6.191 Fall 2022 122-13

RISC-V Branches and Jumps

= Each instruction fetch depends on information from
the preceding instruction:

1) Is the preceding instruction a taken branch or jump?
2) If so, what is the target address?

Instruction Taken known? Target known?

JAL After Inst. Decode After Inst. Decode
JALR After Inst. Decode After Inst. Execute
Branches After Inst. Execute After Inst. Decode

December 6, 2022 MIT 6.191 Fall 2022 122-14

Resolving Hazards

= Strategy 1: Stall. Wait for the result to be available
by freezing earlier pipeline stages

= Strategy 2: Bypass. Route data to the earlier
pipeline stage as soon as it is calculated

Predict jump/branch
= Strategy 3: Speculate target and direction

= |Guess a value and continue executing anyway|
= When actual value is available, two cases
= Guessed correctly - do nothing
= Guessed incorrectly =2 kill & restart with correct value

Strategy 4: Find something else to do

December 6, 2022 MIT 6.191 Fall 2022 122-15

Static Branch Prediction

= Probability a branch is taken is ~60-70%, but:

backward : forward
90% 50%

= Some ISAs attach preferred direction hints to
branches, e.g., Motorola MC88110

= bneO (preferred taken) beqO (not taken)
= Achieves ~80% accuracy

Good way to improve CPI on part 3 of the
design project if you use a 4-stage pipeline

December 6, 2022 MIT 6.191 Fall 2022 122-16

Dynamic Branch Prediction
Learning from past behavior

Truth/Feedback

update

PC Prediction‘

Predictor

predict

= Temporal correlation

= The way a branch resolves may be a good predictor of
the way it will resolve at the next execution

= Spatial correlation

= Several branches may resolve in a highly correlated
manner (a preferred path of execution)

December 6, 2022 MIT 6.191 Fall 2022 122-17

Predicting the Target Address:
Branch Target Buffer (BTB)

2k-entry direct-mapped BTB

(can also be set-associative)

PC predicted
— Entry PC || Vali target PC

I

Z

métch valid target

= BTB is a cache for targets: Remembers last
target PC for taken branches and jumps
= If hit, use stored target as predicted next PC
= If miss, use PC+4 as predicted next PC
= After target is known, update if prediction is wrong

December 6, 2022 MIT 6.191 Fall 2022 122-18

Integrating the BTB in the Pipeline

Tight loop

Predict next PC [

immediately PC —__BTB |

Decode

Correct misprediction when
the right outcome is known

Correct
mispred

WriteBack

December 6, 2022 MIT 6.191 Fall 2022 122-19

BTB Implementation Details

2k-entry direct-mapped BTB

pC
— tag(pc;) target; [valid

iMem

& [|

= Unlike caches, it is fine if the BTB produces an invalid next PC
= It's just a prediction!

= Therefore, BTB area & delay can be reduced by
= Making tags arbitrarily small (match with a subset of PC bits)

= Storing only a subset of target PC bits (fill missing bits from current PC)
= Not storing valid bits

= Even small BTBs are very effective!

December 6, 2022 MIT 6.191 Fall 2022 122-20

BTB Interface

typedef struct

{ Word pc; Word nextPc; Bool taken; } UpdateArgs;
module BTB;

method Addr predict(Addr pc);

input Maybe#(UpdateArgs) update default = Invalid;
endmodule

= predict: Simple lookup to predict nextPC in Fetch stage

= ypdate: On a pc misprediction, if the jump or branch
at the pc was taken, then the BTB is updated with the
new (pc, nextPC). Otherwise, the pc entry is deleted.

A BTB is a good way to improve CPI
on part 3 of the design project
(and has lower t; ¢ than static prediction)

December 6, 2022 MIT 6.191 Fall 2022 122-21

Better Branch Direction Prediction

= Consider the following loop:

loop: ..
addi al, al, -1
bnez al, loop

= How many mispredictions does
the BTB incur per loop?

= One on loop exit
= Another one on first iteration

December 6, 2022 MIT 6.191 Fall 2022 122-22

Two-Bit Direction Predictor
Smith 1981

= Use two bits per BTB entry instead of one valid bit
= Manage them as a saturating counter:

1 |1

1|0

01

00

= Direction prediction changes only after
two wrong predictions

= How many mispredictions per loop? 1

December 6, 2022 MIT 6.191 Fall 2022 122-23

Modern Processors Combine Multiple
Specialized Predictors

| v
Pre_dlct ne_xt PC To 5TH
immediately 7y

Instruction type &

Branch dir||Return addr|| Loop
branch/JAL target known Decode predictor || predictor ||predictor
\ A |]
Branch direction & | Correct
JALR target known [eGlelies mispred / \

WriteBack Best predictors reflect
program behavior

December 6, 2022 MIT 6.191 Fall 2022 122-24

Putting It All Together: Intel Core i/
(Skylake)

= Each core has 19 pipeline
stages, ~4GHz

= 6-wide superscalar
= Qut of order execution
= Multi-level branch

sl Memory controller
i i

predictors T
= Caches: © Intel, 2016, 14nm,
= |1: 32KBI + 32KB D 1.7B transistors, 122mm?
m | 2 256KB Ak DataCache |2 Cache
= L3: 8MB, shared “M= Memory Ordering
Paging
£l
Out-of-Order Instruction ICache
" Large overheads vs Schedullng & Decode & 0/
simple cores! Prediction

sYour RISC-V core
December 6, 2022 MIT 6.191 Fall 2022 122-25

Design Project Leaderboard

= Available in Labs > DP > Leaderboard

6.191

December 6, 2022

& 6191.mit.edu

ok wODdN =

Ranking
1

2

6.191

Submitter
netburst alu
pdp-11 bht
sage itlb

sgi origin itlb
pentium fpu
ibm 360 rob
grace dtlb
sunny cove bht

cray-1 btb

Home Information v Material v

Welcome, dnl (No submission yet)

We will take your most recent submission from Didit

All submissions are anonymous

Labs v

Lower values are better. For ties, we sort alphabetically

Staff solutions may be included. Staff entries are bold
Results are live as of the refresh time. If you want to get updates, just press "Refresh"

Part 1 Instructions &
158496

114636

155321

176322

157105

168428

177551

183519

159424

Part2 CPI &
1.33477797353862
1.16212364354569
1.121942296686155
1.157013163358059
1.424237187328164
1.33477797353862
1.184318434312262
1.263996588524425

1.16212364354569

MIT 6.191 Fall 2022

b v = #» 0O

Help v dnlv

Part 3 Runtime &
79979

87794

97520

114883

117578

124193

124469

126904

131417

D

L22-26

Thank you!

Good luck on Quiz 3 ©

December 6, 2022 MIT 6.191 Fall 2022 122-27

