Covert and Side Channels

Mengjia Yan

Spring 2023

What is a side channel?

By making indirect observations (the number of pizzas ordered), one is able to infer partial information

What is Covert and Side Channel?

- Gather information by measuring or exploiting **indirect** effects of the system or its hardware -- rather than targeting the program or its code directly.
- Covert channel:
 - **Cooperated/Intended** communication between two or more security parties
- Side channel:
 - Unintended communication between two or more security parties
- In both cases:
 - Communication should not be possible, following system semantics
 - The communication medium is not designed to be a communication channel

Side Channels Are Almost Everywhere

Example #1: Acoustic Side Channels

- Monitor keystroke
 - You only need: a cheap microphone + an ML model
- Other sources of acoustic side channels inside a computer?
- Another example: "Hear" the screen

"Hear" The Screen

"Hear" The Screen

(A) is the LCD panel, (B) is the screen's digital logic and image rendering board and, (C) is the screen's power supply board.

Example 2: Network Side Channels

- Website Fingerprinting
 - Frequency of packets, size of packets
 - Response dependent:
 - iSideWith.com
 - Real-time feedback:
 - Google Search auto-complete
- Network traffic contention side channel
 - Active attacker: try stress test

Lescisin et. al. Tools for Active and Passive Network Side-Channel Detection for Web Applications. WOOT'18 Cai et. al. Touching from a distance: Website fingerprinting attacks and defenses. CCS'12.

Example 3: Timing Side Channel

```
def check_password(input):
```

```
size = len(password); # 128 ASCII
```

```
for i in range(0,size):
if (input [i] == password[i]):
    return ("error");
```

```
return ("success");
```

- How many attempts the attacker needs to crack the password?
- Can we reduce the number of attempts? How?

A Rough Classification based on What Attackers Can Observe

Attacker requires measurement equipment \rightarrow physical access

Attacker may be remote (e.g., over an internet connection) Attacker may be remote, or be co-located

Microarchitecture (uArch) Side Channel

Threat Model

enforced isolation

File, Socket, Pipe, Shared memory (shm in Linux) ...

An Example Attack in 1977

- Disk arm optimization
 - Enqueues requests by ascending cylinder number and dequeues (executes) them by the "elevator algorithm."

 Come up with an attack strategy to leak which track a neighboring application accesses.

Analyze A Demo

uArch Attacks Generalization

A Communication Model

Communication Protocols

- How to encode?
 - Encode secrets via time or space
- How to coordinate between the sender and receiver?
 - Synchronization
- Bandwidth

RDRAND unit: 7-200 Kbps MemBus/AES-NI contention: ~550-650 Kbps LLC: 1.2 Mbps Various structures on GPGPU: up to 4 Mbps

(Data from research papers. Not fully optimized)

Mitigations

- Sender does not use the channel -> "data-oblivious execution" or "constant-time programming". (more in LO5)
- Making disjoint channels makes communication impossible.
- Add noise.

Next: Cache Side Channel Deep Dive

