
Practical Cache Attacks
Mengjia Yan
Spring 2023



Leak Crypto Library #1: RSA
• Square-and-Multiply Exponentiation

Input : 
base b
modulo m
exponent e = (en−1 ...e0 )2 

Output:
be mod m

r = 1

for i = n-1 to 0 do

r = sqr(r) 

r  = mod(r, m)

if ei == 1 then

r = mul(r, b)

r = mod(r, m)

end 

end
2



Leak Crypto Library #2: AES

3



Why Cache?

• Large attack surface. Shared across cores/sockets.

• Fast. Can be used to build high-bandwidth channels

• Many states. Can encode secrets spatially to further improve bandwidth 
and precision.

• There exist many cache-like structures. The same attack concepts and 
tricks will apply.

4



The Goal:
Monitor access patterns at 
cache line granularity



Attack Strategy #1: Flush+Reload

• The flush instructions allow explicit control of cache states
• In X86,   clflush vaddr
• In ARM,  DC CIVAC vaddr

• What are these flush instructions used for except for attacks?
• For coherence, in the case when the data in the cache is inconsistent 

with the data in the DRAM. 
• 1) old time, incoherent DMA
• 2) nowadays, Non-volatile memory for crash recovery

6



Flush+Reload

7

Cache

Victim Attacker A shared cache line

Time

DRAM

Attacker:
Flush

Victim:
Access

Attacker:
Flush

Victim:
No Access

Attacker:
Reload -> 

low latency

Attacker:
Reload -> 

high latency



Address Translation (4KB page)

Physical Address (32bit):

Virtual Address (48bit):

48                                                        12 11                                        0

Virtual page number (VPN) Page offset
(12 bits)

31                                            12 11                                        0

Physical page number (PPN) Page offset
(12 bits)

Page 
Table Copy 

page offset

6.888 L4 - Practical Cache Attacks 8



Shared Memory Between Untrusted Domains?

9

Process-1 Process-2 Same?

PID

PPN of “printf”

PPN of “a stack variable”

PPN of 
“a heap variable”

After allocated

After read access

After write access



The Attack Code

lfence

mfence

rdtsc

mov %eax, %edi

mov (<vaddr>), %rsi

lfence

rdtsc

sub %edi, %eax

10

In x86, 8 GPR:
• rax, rbx, rcx, rdx
• rsp, rbp
• rsi, rdi
“r” means 64-bit
replacing “r” with “e” means the lower 32 bits.

rdtsc: 
• Read Time-Stamp Counter
• edx:eax := TimeStampCounter;

lfence:
• Load Fence
• Performs a serializing operation on all load instructions



A Demo

11



Attack Strategy #2: ?

• Cache state manipulation instructions
• In X86,   clflush vaddr
• In ARM,  DC CIVAC vaddr

• What if these instructions are not available in user space?
• Apple devices
• “Except ARMv8-A CPUs, ARM processors do not support a flush 

instruction”

from ARMageddon: Cache Attacks on Mobile Devices (USENIX’16)

12



Attack Strategy #2: Evict+Reload

13

Cache

Victim Attacker A shared cache line

Time

DRAM

Attacker:
Access a 

large buffer
Victim:
Access

Victim:
No Access

Attacker:
Reload -> 

low latency

Attacker:
Reload -> 

high latency

Attacker:
Access a 

large buffer



Lessons Learnt So Far

The fundamental problem: 
shared memory between 
different security domains.

14

Source: https://kb.vmware.com/s/article/2080735



Attack Strategy #3: Prime+Probe

15

Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a 

cache set
Victim:
Access

Victim:
No Access

Attacker:
Prime a 

cache set

Sender’s line

Receiver’s line



Attack Strategy #3: Prime+Probe

16

Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a 

cache set
Victim:
Access

Victim:
No Access

Attacker:
Prime a 

cache set

Sender’s line

Receiver’s line



Attack Strategy #3: Prime+Probe

17

Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a 

cache set
Victim:
Access

Victim:
No Access

Attacker:
Prime a 

cache set

Sender’s line

Receiver’s line

Attacker:
Probe -> 

high latency

Attacker:
Probe -> 

low latency



Analogy: Bucket/Ball

Shared Cache

Sender Receiver

Cache Set

# ways

Sender’s address Receiver’s address

Each cache set is a bucket 
that can hold 8 balls

18



N-way Set-Associative Cache

• Does cache use virtual address or physical address?

19

Tag Data Tag DataTag Data Tag Data
8 

se
ts

4 ways

=? =? =? =?

INCOMING  ADDRESS

IndexTag

SET

WAY



Using Caches with Virtual Memory

Cache TLBCPU
Main 

memory

Physically-Addressed Cache

• Avoids stale cache data after context 
switch

• SLOW: virtualàphysical translation 
before every cache access

Virtually-Addressed Cache

• FAST: No virtualàphysical translation on 
cache hits

• Problem: Must flush cache after context 
switch

CacheTLBCPU
Main 

memory



Best of Both Worlds (L1 Cache): 
Virtually-Indexed, Physically-Tagged Cache (VIPT)

Cache

CPU Main
memory

TLB

Cache index comes entirely from address bits 
in page offset – don’t need to wait for TLB to 
start cache lookup!



Cache and Address Translation

Cache L1-D

size=32KB (2^15 Bytes)
linesize=64B (2^8 Bytes)

associativity=8

Cache L3

size=32MB (2^25 Bytes)
linesize=64B (2^8 Bytes)

associativity=16

Addr1 Addr2 Conflict? Addr1 Addr3 Conflict?

Virtual
Address -- --

Set Index Yes Conflict

Physical
Address -- --

Set Index ? ?

22



Using Huge Pages

• Huge page size: 2MB or 1GB

Virtual Address :
4KB page

48                                                        12 11                                        0

Virtual page number Page offset
(12 bits)

48 21 20                                                                 0

Virtual page number Page offset
(21 bits)

Virtual Address :
2MB page

Line offset
(6 bits)

Set Index
(8 bits)

TagCache mapping:
(256 sets)

6.888 L4 - Practical Cache Attacks 23



Takeaways

• Practical challenges in implementing a reliable cache attack
• Page sharing
• Noise due to prefetchers
• Uncertainty due to page mapping
• Replacement policy
• Etc.

• Hardware and software optimizations make attacks easier
• Transparent page sharing
• Copy-on-write
• Huge pages
• Virtually-indexed and physically-tagged caches

24



Next: 
Transient Execution Attacks


