
Software-Hardware Contract
for Side Channel Defenses

Mengjia Yan
Spring 2023

Attack Examples

2

def check_password(input):

size = len(password);

for i in range(0,size):
if (input [i] == password[i]):
return ("error");

return (“success”);

Example #1: termination time vulnerability for i = n-1 to 0 do
r = sqr(r)
r = r mod n
if ei == 1 then
r = mul(r, b)
r = r mod n

end
end

Example #2: RSA cache vulnerability

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Example #3: Meltdown

Who to blame? Who to fix the problem?

3

Break SW and HW Contract

4

Instruction Set
Architecture (ISA)

Software

Hardware

The contract
for functional
correctness.

Software Developer's Problem

5

Software developers:
• Need to write software for devices with

unknown design details.
• How can I know whether the program is

secure running on different devices?

Hardware Designer’s Problem

6

Hardware designer:
• Need to design processors for arbitrary

programs.
• How to describe what kind of programs can

run securely on my device?

Example: Termination Time Vulnerability
• How to fix it?

7

Make the computation time independent
from the secret (password)

def check_password(input):

size = len(password);

for i in range(0,size):
if (input [i] != password[i]):
return ("error");

return (“success”);

Non-Interference Example

8

High: root password, etc.

Low: public data base,
website content

• Intuitively: not affecting
• Any sequence of low inputs will produce the same low outputs,

regardless of what the high level inputs are.

Non-Interference: A Formal Definition

• The definition of noninterference for a deterministic program P

9

∀ M1,M2, P

M1! = M2! ∧ (M1, P) →∗ M1′ ∧ (M2, P) →∗ M2′

⟹ M1!" = M2!′

Non-Interference for Side Channels

• The definition of noninterference for a deterministic program P

10

∀ M1,M2, P

M1! = M2! ∧ (M1, P) →∗ M1′ ∧ (M2, P) →∗ M2′

⟹ O1=O2

O1 O2

What should be included in the observation trace?

Understand the Property

Consider input as part of M
• What is ML ?
• What is MH ?
• What is O ?

11

def check_password(input):

size = len(password);

for i in range(0,size):
if (input [i] == password[i]):
return ("error");

return (“success”);

∀M1,M2, P

M1! = M2! ∧ (M1, P) →∗ M1′ ∧ (M2, P) →∗ M2′

⟹ O1=O2

O1 O2

Constant-Time Programming

Think about whether the statement below is true or false.

• For any inputs, secret values, and machines, a program always takes the same
amount of time to execute.
• For any inputs, secret values, a program always takes the same amount of

time when executing on the same machine.
• For any secret values, a program always takes the same amount of time for

the same input when executing on the same machine.
• For any secret values, a program always takes the same amount of time for

the same input when executing on the same machine, and this holds for
arbitrary inputs.

12

How to Check?

• Looking at single-trace is insufficient. We usually have to collect two
traces and compare them.
• Finding a violation on an insecure implementation is not too difficult
• Proving the non-interference property on a system for all possible

inputs is not easy (computation scalability).
• Need to use some tools: symbolic execution or formal theorem proof.
• Conservative approach: taint tracking.

13

∀M1,M2, P

M1! = M2! ∧ (M1, P) →∗ M1′ ∧ (M2, P) →∗ M2′

⟹ O1=O2

O1 O2

Data-oblivious/Constant-time programming

• How to deal with conditional branches/jumps?

• How to deal with memory accesses?

• How to deal with arithmetic operations: division, shift/rotation,
multiplication?

14

For details on real-world constant-time crypto, check this out:
https://www.bearssl.org/constanttime.html

Your Code

Compiler

Hardware

15

def check_password(input):

size = len(password);

for i in range(0,size):
if (input [i] != password[i]):
return ("error");

return (“success”);

def check_password(input):

size = len(password);

dontmatch = false;

for i in range(0,size):

if (input [i] != password[i]):

dontmatch = true;

return dontmatch;

16

def check_password(input):

size = len(password);

dontmatch = false;

for i in range(0,size):

dontmatch |= (input [i] != password[i])

return dontmatch;

def check_password(input):

size = len(password);
dontmatch = false;
for i in range(0,size):
if (input [i] != password[i]):

dontmatch = true;

return dontmatch;

Real-world Crypto Code

from libsodium cryptographic library:

17

for (i = 0; i < n; i++)
d |= x[i] ^ y[i];

return (1 & ((d - 1) >> 8)) - 1;

Compare two buffers x and y, if match, return 0, otherwise, return -1.

What do we assume about
the hardware here?

Examples from Cauligi et al. FaCT: A DSL for Timing-Sensitive Computation. PLDI’19

Eliminate Secret-dependent Branches

• Be a master of bitmask operations

• An instruction: cmov_
• Check the state of one or more of the status flags in the EFLAGS

register (cmovz: moves when ZF=1)
• Perform a move operation if the flags are in a specified state
• Otherwise, a move is not performed and execution continues with

the instruction following the cmov instruction

18

Conditional Branches

if (secret) x = e

x = (-secret & e) | (secret - 1) & x

test secret, secret // set ZF=1 if zero
cmovz r2, r1 // r2 for x, r1 for e

19

What do we assume
about the hardware here?

More Conditional Branches

if (secret)
res = f1();

else
res = f2();

r1 ← f1();
r2 ← f2();
mov r3, r1
test secret, secret
cmovz r3, r2
// res in r3

20

Potential problems:
• What if we have nested branches?
• What if when secret==0, f1 is not executable, e.g.,

causing page fault or divide by zero?
• What if f1 or f2 needs to write to memory, perform IO,

make system calls?
• Hardware assumption: what if cmovz will be executed

as soon as the flag is known (e.g., speculative
execution)?

What do we assume
about the hardware here?

Memory Accesses

• Performance overhead.
• Techniques such as ORAM can reduce

the overhead when the buffer is large

21

a = buffer[secret]

for (i=0; i<size; i++)
{

tmp = buffer[i];
xor secret, i
cmovz a, tmp

}

An Optimization

• We can reduce the redundant accesses by only ßaccessing one byte in
each cache line.

22

offset = secret % 64;
for (i=0; i<size; i+=64)
{

index = i+offset;
tmp = buffer[index];
xor secret, index
cmovz a, tmp

}

for (i=0; i<size; i++)
{

tmp = buffer[i];
xor secret, i
cmovz a, tmp

}

What do we assume
about the hardware here?

OpenSSL Patches Against Timing Channel

23

Yarom et al. CacheBleed: A Timing Attack on OpenSSL Constant Time RSA.
https://faculty.cc.gatech.edu/~genkin/cachebleed/index.html

CacheBleed, an attack leaks SSL
keys via L1 cache bank conflict.

Arithmetic Operations

Subnormal floating point numbers

24

The Problem and A Solution

25

Rane et al. Secure, Precise, and Fast Floating-Point Operations on x86 Processors. USENIX’16

Single Instruction Multiple Data (SIMD)

26

Scalar code
LI R4, 64

loop:
L.D F0, 0(R1)
L.D F2, 0(R2)
ADD.D F4, F2, F0
S.D F4, 0(R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop

Vector code
LI VLR, 64
LV V1, R1
LV V2, R2
ADDV.D V3, V1, V2
SV V3, R3

C code
for (i=0; i<64; i++)
C[i] = A[i] + B[i];

SIMD Hardware Implementation

Example: 4 pipelined functional units

27

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Vector code
LI VLR, 64
LV V1, R1
LV V2, R2
ADDV.D V3, V1, V2
SV V3, R3

double escort_mul_dp(double x, double y)
{
const double k_normal_dp = 1.4;
const double k_subnormal_dp = 2.225e-322;
double result;
__asm__ volatile(
"movdqa %1, %%xmm14;"
"movdqa %2, %%xmm15;" // save x and y
"pslldq $8, %1;"
"pslldq $8, %2;" // put x, y in lane 2
"por %3, %1;"
"por %4, %2;" // put dummy in lane 1
"movdqa %2, %0;" // adjust destination reg
"mulpd %1, %0;" // Perform an SIMD multiply
"psrldq $8, %0;" // remove lane 1 result
"movdqa %%xmm14, %1;"
"movdqa %%xmm15, %2;" // restore x and y
: "=x" (result), "+x" (x), "+x" (y)
: "x" (k_subnormal_dp), "x" (k_normal_dp)
: "xmm15", "xmm14");

return result;
}

28

Hardware Assumption:
1. The selected subnormal number

takes the maximum length
2. SIMD returns only if the slowest

lane finishes

What do we assume
about the hardware here?

Why not Constant-time ISA?

• The key problem:
• No explicitly SW-HW contract for timing
• SW developers derive hardware assumptions from existing attacks and

impose implicit assumptions on the hardware.

• Some incoming efforts:
• ARM Data Independent Timing (DIT)
• Intel Data Operand Independent Timing (DOIT)

29

ARM DIT: https://developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/DIT--Data-Independent-Timing
Intel DOIT: https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
operand-independent-timing-isa-guidance.html

Speculation Causes More Problems

Vulnerable snippet from __libc__message().
Compiler inserts code in the function epilogue to check for stack smashing and
print error message by calling this function.

30

Cauligi et al. Constant-Time Foundations for the New Spectre Era. PLDI’20

for (int cnt = nlist - 1; cnt >= 0; --cnt)
{

iov[cnt].iov_base = (char *) list->str;
// ...
list = list->next;

}

The Usage of Fences

31

Ld1: uint8_t secret = *kernel_address;

Ld2: unit8_t dummy = probe_array[secret*64];

Br: if (x < size_array1) {

Ld1: secret = array1[x]

Ld2: y = array2[secret*64]

}

Br: jmp target // indirect jump

// target = Ld1

…

Ld1: secret = array1[x]

Ld2: y = array2[secret*4096]

What do we assume
about the hardware here?

Meltdown

Spectre v1 Spectre v2

Software Fix for Spectre v2

Spectre V2 Vulnerability (Branch Target Injection)

32

Software fix: retpoline

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-
documentation/retpoline-branch-target-injection-mitigation.html

Before
retpoline

jmp *%rax

After
retpoline

1. call load_label

2.capture_ret_spec:
3. pause ; LFENCE
4. jmp capture_ret_spec

5.load_label:
6. mov %rax, (%rsp)
7. RET

33

What do we assume
about the hardware here?

Adopted in Linux

Intel eIBRS

34
Barberis et al. Branch History Injection: On the Effectiveness of Hardware Mitigations Against
Cross-Privilege Spectre-v2 Attacks. USENIX’22 https://www.vusec.net/projects/bhi-spectre-bhb/

eIBRS: Enhanced Indirect Branch Restricted Speculation
Isolate BTB entries across privilege levels.
Advertised as a mitigation against Spectre v2.

branch
Source
address

Vulnerabilities of Intel eIBRS

35

What security property does eIBRS
provide exactly? What does the so-called
“isolation” mean? Non-interference?

Lesson: should not communication
security properties based on gadget
patterns.

An Attempted SW-HW Contract

• Leakage/observation model: ct and arch

• Execution model: seq and spec (or with more details)

• The goal:
• SW can check against the contract, whether my program can leak or not.
• HW can also check against the contract to see which contract I support.

36
Guarnieri et al. Hardware-Software Contracts for Secure Speculation. SP’19

Two Programming Contexts

37

Execution Model

Sequential (committed) Speculative
(can mispredict/transient)

Observation
Model

Program Counter
+ Memory Address

Program Counter
+ Memory Address
+ Register Content

Programing Contexts

The traditional
constant-time

programming model

Sandboxing and
process isolation

Analyze existing work

38

Execution Model

Sequential (committed) Speculative
(can mispredict/transient)

Observation
Model

Program Counter
+ Memory Address

Program Counter
+ Memory Address
+ Register Content

Software people want to only look at this column

No speculative
execution Hardware

STT and NDA,
related defenses

Speculative Baseline

Paper Discussion

A Channel
(a micro-architecture structure)

Attacker

secret-dependent
execution

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

39

Next:
Side Channel Paper Discussion

