Software-Hardware Contract
for Side Channel Defenses

Mengjia Yan
Spring 2023

-y

Attack Examples

Example #1: termination time vulnerability

def check password(input):
size = len(password);

for i in range(@,size):

if (input [i] == password[i]):

return ("error");

return (“success”);

Example #2: RSA cache vulnerability

for i = n-1 to © do
r = sqr(r)
r = r mod n
if e; == 1 then
r = mul(r, b)
r = r mod n
end
end

Example #3: Meltdown

Ldl: uint8 t secret = *kernel address;

Ld2: unit8 t dummy = probe array[secret*64];

A

I Who to blame? Who to fix the problem?

ot

Break SW and HW Contract

001077,
101070,270771019

%1100 Software The contract

> Instruction Set for functional
Architecture (ISA) correctness.

9P
)

o [im]
T

I-O

Hardware

TG

Software Developer's Problem

Software developers:

* Need to write software for devices with
0010109970,3010 unknown design details.
900711010 :
* How can | know whether the program is

secure running on different devices?

Hardware Designer’s Problem

Hardware designer:

* Need to design processors for arbitrary
programs.

* How to describe what kind of programs can
run securely on my device?

I Example: Termination Time Vulnerability

e How to fix it?

def check password(input):

size = len(password);
Make the computation time independent

for i in range(@,size):
if (input [1] 1 password[i]): from the secret (password)

return ("error");

return (“success”);

Non-Interference Example

High: root password, etc.

@
_ ey
4

am

\ Low: public data base,
website content

LUCNLL(

* Intuitively: not affecting

* Any sequence of low inputs will produce the same low outputs,
regardless of what the high level inputs are.

I Non-Interference: A Formal Definition

* The definition of noninterference for a deterministic program P

vV M1,M2, P

M1, =M2;, A (ML,P)->"M1" A (M2,P)->" M2

— M]_L = MZL’

I Non-Interference for Side Channels

* The definition of noninterference for a deterministic program P

v M1, M2, P
01 , ,
M1, =M2, A (ML1,P) >* M1

= 01=02

A (M2,P) 5%

M2’

What should be included in the observation trace?

10

I Understand the Property

v M1,M2, P

01* ! 02* !
M1, =M2;, A (ML1,P) -*M1' A (M2,P) —-*M2

= 01=02

Consider input as part of M
* What is M ?

* What is My ?

* Whatis O ?

def check password(input):
size = len(password);

for i in range(0@,size):
if (input [i] == password[i]):
return ("error");

return (“success”);

I Constant-Time Programming

Think about whether the statement below is true or false.

* For any inputs, secret values, and machines, a program always takes the same
amount of time to execute.

* For any inputs, secret values, a program always takes the same amount of
time when executing on the same machine.

* For any secret values, a program always takes the same amount of time for
the same input when executing on the same machine.

* For any secret values, a program always takes the same amount of time for
the same input when executing on the same machine, and this holds for
arbitrary inputs.

12

How to Check?

* Looking at single-trace is insufficient. We usually have to collect two
traces and compare them.

* Finding a violation on an insecure implementation is not too difficult

* Proving the non-interference property on a system for all possible
inputs is not easy (computation scalability).
* Need to use some tools: symbolic execution or formal theorem proof.

* Conservative approach: taint tracking.

v M1,M2,P

01* ! 02* !
M1, =M2, A (MLP) 5*M1" A (M2,P) -*M2

= 01=02

13

Data-oblivious/Constant-time programming

* How to deal with conditional branches/jumps?
* How to deal with memory accesses?

* How to deal with arithmetic operations: division, shift/rotation,
multiplication?

Your Code

Compiler

For details on real-world constant-time crypto, check this out:

https.//www.bearssl.org/constanttime.html Hardware

14

def check password(input):
size = len(password);

for i in range(@,size):

if (input [i] != password[i]):

return ("error");

return (“success”);

def check password(input):

size = len(password);
dontmatch = false;
for i in range(0@,size):
if (input [i] != password[i]):

dontmatch = true;

return dontmatch;

15

def check_password(input): def check password(input):

size = len(password); size = len(password);
dontmatch = false;

for i in range(0@,size):
for i in range(@,size):

if (input [i] != password[i]):
dontmatch |= (input [i] != password[i])

dontmatch = true;

dontmatch = false;

return dontmatch; return dontmatch;

16

I Real-world Crypto Code

from libsodium cryptographic library:

What do we assume about
the hardware here?

for(i=0;i<n;i++)
d |=x[i] ~ y[il;
return (1 & ((d - 1) >> 8)) - 1;

Compare two buffers x and y, if match, return 0, otherwise, return -1.

Examples from Cauligi et al. FaCT: A DSL for Timing-Sensitive Computation. PLDI’19

17

Eliminate Secret-dependent Branches

* Be a master of bitmask operations

* An instruction: cmov__

* Check the state of one or more of the status flags in the EFLAGS
register (cmovz: moves when ZF=1)

* Perform a move operation if the flags are in a specified state

* Otherwise, a move is not performed and execution continues with
the instruction following the cmov instruction

18

Conditional Branches

if (secret) x = e

X = (-secret & e) | (secret - 1) & x

test secret, secret // set ZF=1 if zerc
cmovz r2, rl // r2 for x, rl for e

What do we assume
about the hardware here?

19

More Conditional Branches

if (secret)
res = f1();
else
res = f2();

4

rl « f1();
r2 « f2();
mov r3, rl
test secret,
cmovz r3, r2
// res in r3

secret

Potential problems:
e What if we have nested branches?

 What if when secret==0, f1 is not executable, e.g.,
causing page fault or divide by zero?

 What if f1 or £2 needs to write to memory, perform 10,
make system calls?

e Hardware assumption: what if cmovz will be executed
as soon as the flag is known (e.g., speculative
execution)?

What do we assume
about the hardware here?

20

I Memory Accesses

a = buffer[secret]

4

for (i=0; i<size; i++)

{

tmp = buffer[i];
Xor secret, i
cmovz a, tmp

* Performance overhead.

* Techniques such as ORAM can reduce
the overhead when the buffer is large

21

An Optimization

* We can reduce the redundant accesses by only Baccessing one byte in

each cache line.

for (1=0; i<size; i++)

{
tmp = buffer[i];
xor secret, i
cmovz a, tmp

offset = secret 7% 64;
for (i=0; i<size; i+=64)
{
index = i+offset;
tmp = buffer[index];
Xxor secret, index
cmovz a, tmp
}

What do we assume

about the hardware here?

22

I OpenSSL Patches Against Timing Channel

offset 0 1 offset 0

2 63 1 2
Line 0 w2 T Line 0 M, [0] m ... RO
i ine 1 [ENRIEIRETE - CacheBleed, an attack leaks SSL
Line 2 une 2 [EENIEENEEN --- EEE keys via L1 cache bank conflict.
Line 3 e M, [63] Line 3 m s Mg|3]
Line 4 I M, [127] Line 2 N0 m ... [N
Line 5 ... [N Lines NG m ... [IBXB
e 6 [EXONIEERIEED --- tine 6 [EXCHIEGHERCEE .- EXE
une 7 [ECIEEIE] --- Line 7 [- BN
[Ma[191]

e
s (<)}
= w

L]
L] L] L] L] . .
Line 191 BRI EN -« T Line 191 ERCIIENN m RPN M[191]

Fig. 1. Conventional (left) vs. scatter-gather (right) memory layout.

Yarom et al. CacheBleed: A Timing Attack on OpenSSL Constant Time RSA.
https.//faculty.cc.gatech.edu/~genkin/cachebleed/index.html

23

Arithmetic Operations

Latency of Square Root Instruction

Subnormal floating point numbers for Different Types of Inputs

160 153
sign exponent (8 bits) fraction (23 bits)
|| |
O|Oof1{1)1}1]1|0(0OJ0|1|{0O|0OJO|O]|0O|0O|0O|0O|O|0OfO|O|O|OJ0O|0O|0 120
31 30 23 22 (bit index)
ks - > 20x
S slower
40
11 7 7 7
0

Normal NaN Zero Infinity Subnormal

Measured on an Intel Sandy Bridge processor.

24

The Problem and A Solution

A*B A*B
C¥D (&8
(intended After (intended P*Q
operation) (intended transformation operation) (intended
w , cu operation) | 7 (dummy @ operation)
£ [next instr.] £ > E operation) E
[next instr.]
[next instr.] [next instr.]
(a) Original (b) Transformed
(non-secure) code (secure) code

Rane et al. Secure, Precise, and Fast Floating-Point Operations on x86 Processors. USENIX’16

P*Q

(dummy

operation)

25

I Single Instruction Multiple Data (SIMD)

C code
for (i=0; i<64; i++)
C[i] = A[i] + B[i];

Scalar code
LI R4, 64

loop:
L.D Fo, O(R1)
L.D F2, O(R2)
ADD.D F4, F2, FO
S.D F4, 0(R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop

Vector code

LI VLR, 64

LV V1, R1

LV V2, R2

ADDV.D V3, V1, V2
SV V3, R3

26

SIMD Hardware Implementation

Vector code

LI VLR, 64

LV V1, R1

LV V2, R2

ADDV.D V3, V1, V2
SV V3, R3

Example: 4 pipelined functional units

A[24] B[24]
A[20] B[20]
A[16] B[16]
A[12] B[12]

vy
/

CI8] f

cr41 |

<

I

v

C[O0]

A[25]
A[21]
A[17]
A[13]

v

B[25] A[26]
B[21] A[22]
B[17] A[18]
B[13] A[14]

B[26] A[27]
B[22] A[23]
B[18] A[19]
B[14] A[15]

B[27]
B[23]
B[19]
B[15]

v v
/

v v
/

v
/

CI9] f

CHO]T

cu1]f

<

cw]/¢

Qﬁ]/G

C[7] /

<

<

<

C[1]

v

I

v

C[2]

I

v

I

C[3]

27

What do we assume
about the hardware here?

Hardware Assumption:

1. The selected subnormal number
takes the maximum length

2. SIMD returns only if the slowest
lane finishes

double escort mul dp(double x, double y)
{

const double k _normal dp = 1.4;

const double k_subnormal dp = 2.225e-322;

double result;

__asm__ volatile(
"movdqga %1, %%kxmml4;"
"movdga %2, %%xmml5;" // save x and y
"pslldg $8, %1;"
"pslldq $8, %2;" // put x, y in lane 2
"por %3, %1;"
"por %4, %2;" // put dummy in lane 1
"movdqga %2, %0;" // adjust destination reg
"mulpd %1, %0;" // Perform an SIMD multiply
"psrldq $8, %0;" // remove lane 1 result
"movdqga %%xmml4, %1;"
"movdga %%xmml5, %2;" // restore x and y
: "=x" (result), "+x" (x), "+x" (y)
: "x" (k_subnormal dp), "x" (k_normal dp)
: "xmml5", "xmml4");

return result;

}

2o

Why not Constant-time ISA?

* The key problem:
* No explicitly SW-HW contract for timing

* SW developers derive hardware assumptions from existing attacks and
impose implicit assumptions on the hardware.

* Some incoming efforts:
 ARM Data Independent Timing (DIT)
* Intel Data Operand Independent Timing (DOIT)

ARM DIT: https.//developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/DIT--Data-Independent-Timing
Intel DOIT: https.//www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
operand-independent-timing-isa-quidance.html|

29

Speculation Causes More Problems

Vulnerable snippet from _ 1ibc_ message().

Compiler inserts code in the function epilogue to check for stack smashing and
print error message by calling this function.

for (int cnt = nlist - 1; cnt >= 0; --cnt)
{
iov[cnt].iov _base = (char *) list->str;
/] ...
list = list->next;
}

Cauligi et al. Constant-Time Foundations for the New Spectre Era. PLDI’20

The Usage of Fences

Meltdown

Ldl: uint8 t secret = *kernel address;

Ld2: unit8 t dummy = probe array[secret*64];

What do we assume
about the hardware here?

Spectre vl

Br: if (x < size arrayl) {
Ldl: secret = arrayl[x]
Ld2: y = array2[secret*64]

Spectre v2

Br: jmp target // indirect jump
// target = Ldl

Ldl: secret = arrayl[x]

Ld2: y = array2[secret*4096]

Software Fix for Spectre v2

Spectre V2 Vulnerability (Branch Target Injection) Software fix: retpoline

Indirect Branch Predictor RSB
Indirect Branch Predictor is RSB can be controlled
invisible to software by software
Predicted Target Address |«—— Poisoned by Attacker ADDR Ifence/pause <«— Inserted by Compiler

https.//www.intel.com/content/www/us/en/developer/articles/technical/software-security-quidance/technical-
documentation/retpoline-branch-target-injection-mitigation. html/ 32

- Speculative Path

ADDR Ifence/pause g

Discard

RSB can be controlled
by software

What do we assume
about the hardware here?

Before jmp *%rax
retpoline
1. call load label
2.capture_ret_spec:
3. pause ; LFENCE
After 4. jmp capture_ret spec
retpoline

5.load label:
6. mov %rax, (%rsp)

7. RET

Adopted in Linux

33

Intel elBRS

elBRS: Enhanced Indirect Branch Restricted Speculation
Isolate BTB entries across privilege levels.
Advertised as a mitigation against Spectre v2.

branch
Source
address

BTB
tag target
A Y
IR Predicted
g target

Listing 3 Linux implementation for the Spectre v2 mitigation
before version 5.14 on Intel processors depending on eIBRS
hardware support. The shown example is taken from the
indirect jump in charge to execute the correct syscall handler

stored in the sys_call_table.
1 do_syscall_64:

2 e
3 mov rax, [sys_call_table + rax*8]
4 call _x86_1indirect_thunk_rax

th eTBRS suonbport

—

__x86_indirect;£hunk_rax:
jmp rax

W

without eIBRS support (retpoline)

__x86_indirect_thunk_rax:
call B
A: pause
lfence
jmp A
B: mov [rsp], rax
ret

00 ~N N W B W N -

Barberis et al. Branch History Injection: On the Effectiveness of Hardware Mitigations Against
Cross-Privilege Spectre-v2 Attacks. USENIX’22 https.//www.vusec.net/projects/bhi-spectre-bhb/

34

I Vulnerabilities of Intel eIBRS

Branch source
address

l

Y

|

<« BHB

F1

Branch

sIrc dst

Y

F2

BTB

tag

target

Y

Predicted
target

What security property does elBRS
provide exactly? What does the so-called
“isolation” mean? Non-interference?

Lesson: should not communication
security properties based on gadget
patterns.

35

An Attempted SW-HW Contract

» Leakage/observation model: ct and arch
* Execution model: seqg and spec (or with more details)

* The goal:

* SW can check against the contract, whether my program can leak or not.
* HW can also check against the contract to see which contract | support.

Guarnieri et al. Hardware-Software Contracts for Secure Speculation. SP’19

36

I Two Programming Contexts

Execution Model

Sequential (committed)

Speculative

(can mispredict/transient)

Observation
Model

Program Counter
+ Memory Address

The traditional
constant-time

programming model

Program Counter
+ Memory Address
+ Register Content

Sandboxing and
process isolation

1

Programing Contexts

37

I Analyze existing work

Execution Model

Speculative

Sequential (committed) (can mispredict/transient)

Program Counter U SpEEURINYE Speculative Baseline
+ Memory Address execution Hardware P
Observation
Model
Program Counter STT and NDA

+ Memory Address
+ Register Content

related defenses

Software people want to only look at this column

Paper Discussion

I

secret-dependent

execution L,III:

Kiriansky et al. DAWG: a defense against cache timing attacks in speculative execution processors. MICRO’18

O01072%70,7010 A Channel
900111010 . :
(a micro-architecture structure)

S

Attacker

39

Next:
Side Channel Paper Discussion

i csATL

