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Let's find out.
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Hmmmm.....



"What if the vendor just leaves the backdoor open?"

Demo 1



What other interfaces are out there?
• UART/ USART: Serial Console (usually root shell for free) 

• JTAG/ SWD: Dump firmware, debug CPU, write your own firmware 

• I2C/ SPI/ eMMC buses: Can sniff packets between flash and CPU to learn what 
the CPU is executing, even inject your own data!



The HW Security Iceberg
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in this class.

4 Attacks



Fault Injection Power Analysis
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Fault Injection
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Yes, Really



Notable Examples



What is "Firmware"?
• It's just software running on an embedded device. 

• Can be bare metal, real-time OS, or even Linux.



    while(chksum == CORRECT_CHECKSUM) { 
        chksum = compute_checksum(); 
        print("Locked! %d %d", chksum, iter); 
        iter++; 
    } 
    print("MIT{flag}"); 

Pseudocode



    while(chksum == CORRECT_CHECKSUM) { 
        chksum = compute_checksum(); 
        print("Locked! %d %d", chksum, iter); 
        iter++; 
    } 
    print("MIT{flag}"); 

Pseudocode

Inject Fault here
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Image: Arduino Uno R3 Reference Design

Crystal Oscillator



Crystal Oscillator

Inject Fault Here

Image: Arduino Uno R3 Reference Design





Oscillator Pins
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    while(chksum == CORRECT_CHECKSUM) { 
        chksum = compute_checksum(); 
        print("Locked! %d %d", chksum, iter); 
        iter++; 
    } 
    print("MIT{flag}"); 

Pseudocode



"What if we intentionally violate the chip's expected operating conditions?"

Demo 2



Demystify  
Fault Injection Attacks



The Digital Abstraction

44
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Using Voltages “Digitally”
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Attempt #1:

volts

VTHV < VTH 
interpreted as “0”

V ≥ VTH 
interpreted as “1”✗

V ≤ VL 
interpreted as “0”

V ≥ VH 
interpreted as “1”

VL VH
Attempt #2:

volts

VL< V < VH 
“Undefined”

✓

Not quite correct. Why? Hard to distinguish VTH-ε from VTH+ε



Combinational Circuit Timing
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D Flip-Flop Timing (CLK Edge Trigger)
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• Flip-flop input D should not change around the rising edge of the clock to avoid metastability 
• Formally, D should be a stable and valid digital value: 

• For at least tSETUP before the rising edge of the clock 
• For at least tHOLD after the rising edge of the clock 

• Violating the timing constraints leaves the circuit in a metastability state. A contaminated value 
will be loaded into the register.
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Sequential Circuit Timing (Setup Time)
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Fault Injection Attacks 

• What will happen if switch to a faster clock?
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Fault Injection Attacks 

• What if when you decrease the voltage, the propagation delay becomes longer?
50
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Sequential Circuit Timing (Hold Time)
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Voltage Glitching Attacks
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• What if when increasing voltage, contamination time becomes shorter?



Other Variations
• Faults can also be triggered by EM and photonic signals.

53Lim et al. Novel Fault Injection Attack without Artificial Trigger. Applied Science



Real-world Example and Challenges

• attack Xbox 360 with Reset Glitch attack  
• Goal: load our own kernel/hypervisor 
• Problem: the bootloader checks the hash of the kernel.  
• How: On Xbox360, a pin labeled as CPU_PLL_BYPASS to make CPU runs at a 

slower speed: 520kHz. When cpu runs at a slower speed, insert a short spike on 
the reset line of the CPU can cause fault to bypass the check. 

• Challenge: Need to know when to trigger the fault 
• Side channel 
• Reverse engineering the code 

• Keep trying
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Mitigations?
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Mitigations

• Reliability issues, so redundancy can rescue 
• Redundancy: detect a fault or recover from the fault -> two cores running the 

same thing 
• Example: Google OpenTitan, some automotive but for different reasons...  
• Problem: Expensive 

• The attack requires precise timing, so make it even more difficult 
• Non-deterministic: add randomization, so it becomes difficult for the attacker to 

know when to trigger the fault 
• Benefit: increase the time cost, also reduce the scalability of the attack.
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bool memcmp (char *buf1, char *buf2, size_t len) { 
    for (int i = 0; i < len; i++) { 
        if (buf1[i] != buf2[i]) { 
             return false; 
        } 
    } 
    return true; 
}

Spot the Bug



bool memcmp (char *buf1, char *buf2, size_t len) { 
    for (int i = 0; i < len; i++) { 
        if (buf1[i] != buf2[i]) { 
             return false; 
        } 
    } 
    return true; 
}

Fatal Flaw

Spot the Bug



"What if we closely inspect the timing of a memcmp?"

Demo 3



No Demo: 
You will do this in recitation next week!
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How can you measure current on 
an oscilloscope?



Apply Ohm's Law

Voltage (V) = Current (I) * Resistance (R) 

Or in other words, 

I = V / R





Shunt (50Ω) 



RSA Modular Exponentiation

Low-Pass 
Filter

int rsa_modExp(int b, int e, int m) { 
  int product = 1; 
  b = b % m; 
  while ( e > 0){ 
    if (e & 1){ 
      product = modmult(product, b, m); 
    } 
    b = modmult(b, b, m); 

    e >>= 1; 
  } 
  return product; 
}



int rsa_modExp(int b, int e, int m) { 
  int product = 1; 
  b = b % m; 
  while ( e > 0){ 
    if (e & 1){ 
      product = modmult(product, b, m); 
    } 
    b = modmult(b, b, m); 

    e >>= 1; 
  } 
  return product; 
}

RSA Modular Exponentiation



RSA Modular Exponentiation

Loop 
Overhead

int rsa_modExp(int b, int e, int m) { 
  int product = 1; 
  b = b % m; 
  while ( e > 0){ 
    if (e & 1){ 
      product = modmult(product, b, m); 
    } 
    b = modmult(b, b, m); 

    e >>= 1; 
  } 
  return product; 
}



RSA Modular Exponentiation

1 call 
to modmult

int rsa_modExp(int b, int e, int m) { 
  int product = 1; 
  b = b % m; 
  while ( e > 0){ 
    if (e & 1){ 
      product = modmult(product, b, m); 
    } 
    b = modmult(b, b, m); 

    e >>= 1; 
  } 
  return product; 
}



RSA Modular Exponentiation

2 calls 
to modmult

int rsa_modExp(int b, int e, int m) { 
  int product = 1; 
  b = b % m; 
  while ( e > 0){ 
    if (e & 1){ 
      product = modmult(product, b, m); 
    } 
    b = modmult(b, b, m); 

    e >>= 1; 
  } 
  return product; 
}



int rsa_modExp(int b, int e, int m) { 
  int product = 1; 
  b = b % m; 
  while ( e > 0){ 
    if (e & 1){ 
      product = modmult(product, b, m); 
    } 
    b = modmult(b, b, m); 

    e >>= 1; 
  } 
  return product; 
}

RSA Modular Exponentiation

0 0 0 0 1 1 1 1

e = 0xf0



"What if we watch the chip's current draw?"

Demo 4



Physical Attack Mitigation Case Study

• IBM 4758 
• Satisfy FIPS 140-1 Level 4
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Photo of IBM 4758 Cryptographic Coprocessor (courtesy of Steve Weingart) 
from https://www.cl.cam.ac.uk/~rnc1/descrack/ibm4758.html



Physical Tamper Resistance

• Make it difficult for the attackers to get access to PCB

Robust metal enclosures.   
Open the lid  disconnect power 

supply

Drill through the lid

Photocells and tilt devices

Tampering Detection Tampering Evident

“potting" the device in a block of epoxy resin

Patience: Scrape away the epoxy

tamper-sensing barriers: 
nichrome wire wound around the device
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IBM 4758 Secure Co-Processor

• Clock glitching:  
• use phase locked loops and independently 

generated internal clocks 

• Voltage glitching: 
• Add detection and monitor circuits to watch 

voltage changes 

• X-ray fault injection 
• a radiation sensor 

• Power side channels 
•  Solid aluminium shielding and a low-pass 

filter (a Faraday cage)

Photo of IBM 4758 Cryptographic Coprocessor (courtesy of Steve Weingart) 
from https://www.cl.cam.ac.uk/~rnc1/descrack/ibm4758.html

Expensive. Other secure processors only 
focus on a limited set of physical attacks.
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Summary

• TODO: show the trade-off space for different physical attacks again.
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Next:  
Physical Attacks CTF


