
Mengjia Yan & Joseph Ravichandran

Image: Proto G Engineering, "Oscilloscope Art"

Physical Attacks
MIT Secure HW Design Spring 2023

What's a Computer?

Core

L1/L2
Cache

Memory

Non-Voltaile
Storage

What's a Computer?

What's Inside?

Let's find out.

TP-Link WR841N

DRAM
MIPS
CPU

SPI Flash

TP-Link WR841N

DRAM MIPS
CPU

SPI Flash

Core

L1/L2
Cache

Memory

Non-Voltaile
Storage

DRAM MIPS
CPU

SPI Flash

Core

SPI Flash

Memory

TP-Link WR841N

Hmmmm.....

"What if the vendor just leaves the backdoor open?"

Demo 1

What other interfaces are out there?
• UART/ USART: Serial Console (usually root shell for free)

• JTAG/ SWD: Dump firmware, debug CPU, write your own firmware

• I2C/ SPI/ eMMC buses: Can sniff packets between flash and CPU to learn what
the CPU is executing, even inject your own data!

The HW Security Iceberg

Operating
System

ISA

Voltages
as 1s and 0s

Userspace
(Clueless)

Kernel

Microarchitecture

Analog

PassiveActive

No modification of signals

Only observe regular
operation

Inject new signals

Modify existing signals in
new ways

InvasiveNon-Invasive

Expensive

Cheap

Focused
Ion

Beam

Laser
Etching

IC
Decapping

Fault
Injection

Power
Tracing

Optical
Imaging

Logical
Interfaces

Image: Hackaday

in this class.

4 Attacks

Fault Injection Power Analysis

UART Timing Analysis

Active Passive

Fault Injection

Expected
Input

Device
Under Test

Ground

Malicious Input

Mux

Voltage Glitching

Cut the power at the exact
right time to make

something go wrong

Vcc+5V

GND

Cheap Crazy ExpensiveAffordable

Tools

Yes, Really

Notable Examples

What is "Firmware"?
• It's just software running on an embedded device.

• Can be bare metal, real-time OS, or even Linux.

 while(chksum == CORRECT_CHECKSUM) {
 chksum = compute_checksum();
 print("Locked! %d %d", chksum, iter);
 iter++;
 }
 print("MIT{flag}");

Pseudocode

 while(chksum == CORRECT_CHECKSUM) {
 chksum = compute_checksum();
 print("Locked! %d %d", chksum, iter);
 iter++;
 }
 print("MIT{flag}");

Pseudocode

Inject Fault here

Crystal
Oscillator

Oscillator

Cap Cap

Ground

Clock Glitching

Image: Arduino Uno R3 Reference Design

Crystal Oscillator

Crystal Oscillator

Inject Fault Here

Image: Arduino Uno R3 Reference Design

Oscillator Pins

Attacker

NPN Transistor

Vcc Crystal Oscillator

 while(chksum == CORRECT_CHECKSUM) {
 chksum = compute_checksum();
 print("Locked! %d %d", chksum, iter);
 iter++;
 }
 print("MIT{flag}");

Pseudocode

"What if we intentionally violate the chip's expected operating conditions?"

Demo 2

Demystify
Fault Injection Attacks

The Digital Abstraction

44

“Ideal”
Abstract World

Bits0/1
Real World

Volts or
Amperes
or Lumens

Noise

Manufacturing
variations

Using Voltages “Digitally”

45

Attempt #1:

volts

VTHV < VTH
interpreted as “0”

V ≥ VTH
interpreted as “1”✗

V ≤ VL
interpreted as “0”

V ≥ VH
interpreted as “1”

VL VH
Attempt #2:

volts

VL< V < VH
“Undefined”

✓

Not quite correct. Why? Hard to distinguish VTH-ε from VTH+ε

Combinational Circuit Timing

A B

A B
0 1
1 0

tPD propagation delay

tCD contamination delay

A

B

No Promises during

tPD

tCD

tPD

tCD

D Flip-Flop Timing (CLK Edge Trigger)

47

• Flip-flop input D should not change around the rising edge of the clock to avoid metastability
• Formally, D should be a stable and valid digital value:

• For at least tSETUP before the rising edge of the clock
• For at least tHOLD after the rising edge of the clock

• Violating the timing constraints leaves the circuit in a metastability state. A contaminated value
will be loaded into the register.

D
D

CLK

Q
CLK

D

Q
≤tPD

≥tSETUP ≥tHOLD

Sequential Circuit Timing (Setup Time)

48

CLK

Q1

≥tSETUP,FF2

D2

tCLK

CLD Q D Q

CLK

FF1 FF2

Q1 D2D1

tPD,FF1

tPD,CL

Fault Injection Attacks

• What will happen if switch to a faster clock?
49

CLK

Q1

≥tSETUP,FF2

D2

CLD Q D Q

CLK

FF1 FF2

Q1 D2D1

tPD,FF1

tPD,CL

Fault Injection Attacks

• What if when you decrease the voltage, the propagation delay becomes longer?
50

CLK

Q1

D2

CLD Q D Q

CLK

FF1 FF2

Q1 D2D1

tPD,FF1

tPD,CL

≥tSETUP,FF2

Sequential Circuit Timing (Hold Time)

51

CLK

Q1

≥tHOLD,FF2

D2

CLD Q D Q

CLK

FF1 FF2

Q1 D2D1

tCD,FF1

tCD,CL

Voltage Glitching Attacks

52

CLK

Q1

≥tHOLD,FF2

D2

CLD Q D Q

CLK

FF1 FF2

Q1 D2D1

tCD,FF1

tCD,CL

• What if when increasing voltage, contamination time becomes shorter?

Other Variations
• Faults can also be triggered by EM and photonic signals.

53Lim et al. Novel Fault Injection Attack without Artificial Trigger. Applied Science

Real-world Example and Challenges

• attack Xbox 360 with Reset Glitch attack
• Goal: load our own kernel/hypervisor
• Problem: the bootloader checks the hash of the kernel.
• How: On Xbox360, a pin labeled as CPU_PLL_BYPASS to make CPU runs at a

slower speed: 520kHz. When cpu runs at a slower speed, insert a short spike on
the reset line of the CPU can cause fault to bypass the check.

• Challenge: Need to know when to trigger the fault
• Side channel
• Reverse engineering the code

• Keep trying

54

Mitigations?

55

Mitigations

• Reliability issues, so redundancy can rescue
• Redundancy: detect a fault or recover from the fault -> two cores running the

same thing
• Example: Google OpenTitan, some automotive but for different reasons...
• Problem: Expensive

• The attack requires precise timing, so make it even more difficult
• Non-deterministic: add randomization, so it becomes difficult for the attacker to

know when to trigger the fault
• Benefit: increase the time cost, also reduce the scalability of the attack.

56

bool memcmp (char *buf1, char *buf2, size_t len) {
 for (int i = 0; i < len; i++) {
 if (buf1[i] != buf2[i]) {
 return false;
 }
 }
 return true;
}

Spot the Bug

bool memcmp (char *buf1, char *buf2, size_t len) {
 for (int i = 0; i < len; i++) {
 if (buf1[i] != buf2[i]) {
 return false;
 }
 }
 return true;
}

Fatal Flaw

Spot the Bug

"What if we closely inspect the timing of a memcmp?"

Demo 3

No Demo:
You will do this in recitation next week!

AnalysisPower

 = Voltage x CurrentPower

Power
Supply

Shunt Resistor

Device
Under Test

Ground

Power
Supply

Shunt Resistor

Device
Under Test

Current

+ -Voltage Drop
V=IR

Ground

How can you measure current on
an oscilloscope?

Apply Ohm's Law

Voltage (V) = Current (I) * Resistance (R)

Or in other words,

I = V / R

Shunt (50Ω)

RSA Modular Exponentiation

Low-Pass
Filter

int rsa_modExp(int b, int e, int m) {
 int product = 1;
 b = b % m;
 while (e > 0){
 if (e & 1){
 product = modmult(product, b, m);
 }
 b = modmult(b, b, m);

 e >>= 1;
 }
 return product;
}

int rsa_modExp(int b, int e, int m) {
 int product = 1;
 b = b % m;
 while (e > 0){
 if (e & 1){
 product = modmult(product, b, m);
 }
 b = modmult(b, b, m);

 e >>= 1;
 }
 return product;
}

RSA Modular Exponentiation

RSA Modular Exponentiation

Loop
Overhead

int rsa_modExp(int b, int e, int m) {
 int product = 1;
 b = b % m;
 while (e > 0){
 if (e & 1){
 product = modmult(product, b, m);
 }
 b = modmult(b, b, m);

 e >>= 1;
 }
 return product;
}

RSA Modular Exponentiation

1 call
to modmult

int rsa_modExp(int b, int e, int m) {
 int product = 1;
 b = b % m;
 while (e > 0){
 if (e & 1){
 product = modmult(product, b, m);
 }
 b = modmult(b, b, m);

 e >>= 1;
 }
 return product;
}

RSA Modular Exponentiation

2 calls
to modmult

int rsa_modExp(int b, int e, int m) {
 int product = 1;
 b = b % m;
 while (e > 0){
 if (e & 1){
 product = modmult(product, b, m);
 }
 b = modmult(b, b, m);

 e >>= 1;
 }
 return product;
}

int rsa_modExp(int b, int e, int m) {
 int product = 1;
 b = b % m;
 while (e > 0){
 if (e & 1){
 product = modmult(product, b, m);
 }
 b = modmult(b, b, m);

 e >>= 1;
 }
 return product;
}

RSA Modular Exponentiation

0 0 0 0 1 1 1 1

e = 0xf0

"What if we watch the chip's current draw?"

Demo 4

Physical Attack Mitigation Case Study

• IBM 4758
• Satisfy FIPS 140-1 Level 4

76

Photo of IBM 4758 Cryptographic Coprocessor (courtesy of Steve Weingart)
from https://www.cl.cam.ac.uk/~rnc1/descrack/ibm4758.html

Physical Tamper Resistance

• Make it difficult for the attackers to get access to PCB

Robust metal enclosures.
Open the lid  disconnect power

supply

Drill through the lid

Photocells and tilt devices

Tampering Detection Tampering Evident

“potting" the device in a block of epoxy resin

Patience: Scrape away the epoxy

tamper-sensing barriers:
nichrome wire wound around the device

77

IBM 4758 Secure Co-Processor

• Clock glitching:
• use phase locked loops and independently

generated internal clocks

• Voltage glitching:
• Add detection and monitor circuits to watch

voltage changes

• X-ray fault injection
• a radiation sensor

• Power side channels
• Solid aluminium shielding and a low-pass

filter (a Faraday cage)

Photo of IBM 4758 Cryptographic Coprocessor (courtesy of Steve Weingart)
from https://www.cl.cam.ac.uk/~rnc1/descrack/ibm4758.html

Expensive. Other secure processors only
focus on a limited set of physical attacks.

78

Summary

• TODO: show the trade-off space for different physical attacks again.

79

Next:
Physical Attacks CTF

