RowHammer

Mengjia Yan Spring 2023

RowHammer In One Sentence

RowHammer In One Sentence

Observation: Repeatedly accessing a row enough times can cause disturbance errors in nearby rows

Why Care About RowHammer?

- One can predictably induce bit flips in commodity DRAM chips
- An example of how a simple hardware failure mechanism can create a widespread system security vulnerability

WIRED	Forget Software—Now Hackers Are Exploiting Physics					
USINESS	CULTURE	DESIGN	GEAR	SCIENCE		
SHARE f ^{Share} 18276		T SOFTW	ARE—NO XPLOITIN			
Y TWEET		JD				

Outline

- Why does RowHammer happen? What is its working mechanism?
- How to perform the attack in practice? Challenges?
- Attack consequences? Mitigations?

DRAM Basics

- Each bit in DRAM is stored in a "cell" using a *capacitor*
- Read is destructive
- DRAM cells lose their state over time (hence *Dynamic* RAM)
- Data stored in DRAM cells needs to be "refreshed" at a regular interval

DRAM Basics

- Each bit in DRAM is stored in a "cell" using a *capacitor*
- Read is destructive
- DRAM cells lose their state over time (hence *Dynamic* RAM)
- Data stored in DRAM cells needs to be "refreshed" at a regular interval

Why we widely use DRAM given some of its unappealing properties?

- Speed (2-10x slower than SRAM)
 - Density (20x denser than SRAM)
- Cost
- (~100x cheaper per MB)

DRAM Architecture

- Bits stored in 2-dimensional arrays on chip
- Question: why read the entire row?

DRAM Refresh

- How to do refresh?
- Performance penalty of refresh
 - In an 8Gb memory, upwards of 10% of time is spent in refresh!
- The common refresh interval: 64ms

Aside: Cold Boot Attacks

	Seconds	Error % at	Error %
	w/o power	operating temp.	at -50°C
SDRAM (1999)	60	41	(no errors)
	300	50	0.000095
DDR (2001)	360	50	(no errors)
	600	50	0.000036
DDR (2003)	120	41	0.00105
	360	42	0.00144
DDR2 (2007)	40	50	0.025
	80	50	0.18

Halderman et al.; Lest We Remember: Cold Boot Attacks on Encryption Keys; USENIX Security'08

See RowHammer Again

Observation: Repeatedly accessing a row enough times **between refreshes** can cause disturbance errors in nearby rows

Infrastructures to Understand Rowhammer

Kim et al; Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors; ISCA'14

Most DRAM Modules Are Vulnerable

A company B company C company

Up to Up to Up to 3.3×10⁵ 2.7×10^{6} 1.0×10^{7} errors errors errors

Study RowHammer Characteristics

- Highly local nature of the bit-flipping capability
- The probability of bitflips are data-dependent

Study RowHammer Characteristics

- Highly local nature of the bit-flipping capability
- The probability of bitflips are data-dependent
- More advanced DRAM technologies suffer more from this disturb

Refresh + Hammering Interval Effects

Examining error rates for different refresh and hammering rates on DDR2 modules from 2011-2012

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Apple's Patch for RowHammer

<u>https://support.apple.com/en-gb/HT204934</u>

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5

Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could have led to memory corruption. This issue was mitigated by increasing memory refresh rates.

CVE-ID

CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by Yoongu Kim et al (2014)

HP, Lenovo, and many other vendors released similar patches

Refresh + Hammering Interval Effects

Examining error rates for different refresh and hammering rates on DDR2 modules from 2011-2012

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Density Trends

- As DRAM gets physically denser, it becomes even more vulnerable!
- Only a few thousand hammer iterations are required on modern DRAM to cause a bit-flip

Density Trends

Technology Scaling

- Capacitor must be large enough for reliable sensing
- The access transistor should be large enough for low leakage and high retention time
- Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009

Why Is RowHammer Happening?

- DRAM cells are too close to each other
 - They are not electrically isolated from each other

- Access to one cell affects the value in nearby cells
 - Due to electrical interference between the cells and wires used for accessing the cells
 - Also called cell-to-cell coupling/interference
- Example: When we activate (apply high voltage) to a row, an adjacent row gets slightly activated as well
 - Vulnerable cells in that slightly-activated row lose a little bit of charge
 - If row hammer happens enough times, charge in such cells gets drained

RowHammer Attacks in Practice

• Aggressor Row = Hammered Row

Challenges:

- 1. How to hammer? Need to access aggressor row enough times between refreshes.
- 2. Address mapping. How to find addresses map to neighboring rows?
- 3. How to map victim's data to vulnerable cells?

Hammer Attempt #1: repeat accesses

No. Because we will hit the cache.

Hammer Attempt #2: use clflush

Hammer Attempt #3: force row open/close

<u>loop:</u>				
mov (A), %eax				
<mark>mov (A_dummy), %ecx</mark>				
clflush (A)				
<mark>clflush (A_dummy)</mark>				
mfence				
jmp loop				
2				

"Single-Sided" Rowhammer

<u>loop:</u>
mov (A), %eax
<mark>mov (A_dummy), %ecx</mark>
clflush (A) <mark>clflush (A_dummy)</mark>
CITIUSII (A_dummy)
mfence jmp loop

"Double-Sided" Rowhammer

Increase the stress:

Repeatedly accessing both adjacent rows *significantly* increases the error rate of the victim row

Challenge #2: DRAM Addressing

DRAM Organization: Top-down View

DRAM Organization: Top-down View

Channel -> DIMM -> Rank -> Chip -> Bank -> Row/Column

Reverse Engineer the Mapping

- Approach #1: Physical Probe
- Approach #2: Timing Side Channel via Row Buffer

Address Mapping Examples

Pessl et al. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. USENIX'16

Native Client (NaCl) Sandbox Escape

- NaCl is a sandbox for running native code (C/C++)
- Runs a "safe" subset of x86, statically verifying an executable
- Use bit flips to make an instruction sequence unsafe!

Example "Safe" Code:

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn and Dullien)

Native Client (NaCl) Sandbox Escape

We can flip bits to allow for (unsafe) non 32-byte-aligned jumps!

Exploited "Safe" Code:

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn and Dullien)

Kernel Privilege Escalation

What could happen if a user could gain direct write access to a page table?

Figure 5-21. 4-Kbyte PTE—Long Mode

Other Attacks

- Virtual machine takeover
 - Use page de-duplication to corrupt host machine
- OpenSSH attacks
 - Overwrite internal public key with attacker controlled one
- Drammer
 - Rowhammer privilege escalation on ARM
 - Utilizes determinism in page allocation to target vulnerable DRAM rows
- Rowhammer.js
 - Remote takeover of a server vulnerable to rowhammer

Without memory integrity, *any* software-based security mechanism is insecure!

Rowhammer Mitigations?

- Manufacturing "better" chips
- Increasing refresh rate
- Error Correcting Codes
- Targeted row refresh (TRR) Used in DDR4!
- Retiring vulnerable cells
- Static binary analysis
- User/kernel space isolation in physical memory

Rowhammer Solutions?

Error Correcting Codes (ECC)

- **Basic Idea:** Store extra *redundant* bits to be used in case of a flip!
- Naive Implementation: Store multiple copies and compare
- Actual Implementation: Hamming codes

Hamming codes allow for *single-error* correction, double error detection (aka **SECDED**)

How about more than 2-bit flips?

Reliability $\leftarrow \rightarrow$ Security Implications

Robust Physical-World Attacks on Deep Learning Visual Classification - Eykholt et al.

Next: Paper Discussions

