
Hardware-supported Trusted
Execution Environment (TEE)

Mengjia Yan
Spring 2023

Trusted Computing Base (TCB)

Guest OS

App

Hypervisor

SMM (firmware)

Guest OS

Ring 3

Ring 0
Guest OS

App

Guest OS

Trusted

Hardware

Guest OS

App

OS

Ring 3

Ring 0

Hardware

SMM

Ring -1

Ring -2

2

Ring -2

Shrink TCB. Why?

• Software bugs
• SMM-based rootkits
• Xen 150K LOC, 40+ vulnerabilities per year
• Monolithic kernel, e.g., Linux, 17M LOC, 100+

vulnerabilities per year

• Remote Computing
• Remote computer and software stack owned by an

untrusted party

Guest OS

App

Hypervisor

SMM

Guest OS

Ring 3

Ring 0

Ring -1

Ring -2

Hardware

3

Secure Remote Computing

• Example: DNA Analysis
Remote Computer

managed by untrusted
infrastructure provider

Software Provider
Data Owner

Private data

Private result

How to keep my data private without trusting the host OS/hypervisor/SMM?

4

Potential Solutions
• Homomorphic Encryption
• 4 to 5 orders of magnitude slower than

computing on unencrypted data.

Remote Computer
managed by untrusted
infrastructure provider

Software Provider
Data Owner

Enc(x); Function f

Enc(f(x))

F’(Enc(x))
= Enc(f(x))

5

• Performance? Accelerators?
e.g., F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption; Axel Feldmann, Nikola Samardzic et al. MICRO’21

Potential Solutions

• Move TCB to Hardware …
Remote Computer

managed by untrusted
infrastructure provider

Software Provider
Data Owner

Enc(x); Function f

Enc(f(x))

Container runs
trusted software

1. Decrypt to get x
2. Compute f(x)
3. Encrypt f(x)

6

Outline

• Understand the threat model: privilege SW attacks

• Understand how to mitigate these threats

7

Privilege Software Attacks

8

Operating Systems

9

process1

OS Kernel

processNprocess2

Hardware

Processor Memory Disk Network card Display

…

Keyboard

ISA

Application Binary
Interface (ABI)

Launch Time

./helloworld

• Operations at launch time:
• Create a process (PID, status, etc.)
• Create a virtual address space: allocate memory for stack, heap,

code region, set up the page tables
• Setup file descriptor for input and output
• Load the binary into the code region, and linked library if needed
• Transfer the control to user space

10

CPU Abstraction

• Expose to users thread, rather than physical cores
• Achieve via context switch and interrupt handling

• Switch from user space to kernel space
• Remember the current PC
• Jump to kernel code: perform a sequence of save operations

• Save general purpose registers content into an object associated with the current thread
• Save system registers, including page table root address (CR3 in X86)

• Based on the interrupt type, decide what to do
• Switch back to user space

• Restore all the registers: general-purpose + system registers
• Jump back to the saved PC

11

Virtual Memory Abstraction

12

Virtual Address Space
(Programmer's View)

Physical Address Space
(limited by DRAM size)

4KB

4KB

VA

PA

Page Table per process
Process 1

Process 2

4KB

4KB

Disk

What can a privilege software attacker do?

• A non-comprehensive list
• Modify the code to be executed
• Monitor the whole execution process and data in register and in memory
• Modify data in register and memory
• Intercept IO, eavesdrop and tamper with the communication
• ……

13

TEE Examples

14

20232000

IBM 4765

XOM
(Stanford)

TPM

Aegis
(MIT)

2005 2010 2015 2020

Bastion
(Princeton)

Intel SGX

ARM TrustZone

Sanctum
(MIT)

Phantom
(Berkeley)

Ascend
(MIT)

Intel TDX

AMD SEV ARM CCA

Keystone
(Berkeley) Penglai

(SJTU)

CURE
(TU Darmstadt)

Protection Granularity & TCB Size

Guest OS

App

Hypervisor

SMM

Guest OS

Ring 3

Ring 0

Ring -1

Ring -2

Hardware

Guest OS

App

Hypervisor

SMM

Guest OS

Ring 3

Ring 0

Ring -1

Ring -2

Hardware

AMD SEV

Guest OS

App

Hypervisor

SMM

Guest OS

Ring 3

Ring 0

Ring -1

Ring -2

Hardware

Intel SGX

enclave
Trusted

Guest OS

App

Guest OS

Ring 3

Ring 0

Hardware

Arm TrustZone

SMM

15

SGX Enclave Programming Model

• Examples from: https://github.com/intel/linux-sgx

16

create_enclave

initialize_enclave

…….

destroy_enclave

App Enclave

ecall

ocall

Security Tasks

• How do we ensure the runtime execution follows our expectation
(confidentiality and integrity of the execution)?

• How do we ensure the enclave code is the code that we want to
execute? (code integrity during initialization)

• DRAM security? How to deal with Rowhammer and Coldboot attacks?
(physical attacks. Will cover if time permitted)

17

Intel SGX Overview

• Enclave code/data map to PRM; Different enclaves access their own
memory region

18

Guest OS

App

Hypervisor

SMM

Guest OS

Ring 3

Ring 0

Ring -1

Ring -2

Hardware

Enclave

Processor Reserved
Memory (PRM)

Intel SGX Address Translation Overview
Virtual Address Space (Programmer's View)

Physical Address Space
(limited by DRAM size)

4KB
4KB

VA PA

Enclave Range Processor Reserved
Memory (PRM)

4KB 4KB

Page Table per process

19

Malicious Address Translation #1
Virtual Address Space (Programmer's View)

Physical Address Space
(limited by DRAM size)

4KB
4KB

VA PA

Enclave Range Processor Reserved
Memory (PRM)

4KB 4KB

Page Table per process

20

Malicious Address Translation #2
Virtual Address Space (Programmer's View)

Physical Address Space
(limited by DRAM size)

4KB
4KB

VA PA

Enclave Range Processor Reserved
Memory (PRM)

4KB 4KB

4KB

Page Table per process

21

Malicious Address Translation #3
Virtual Address Space (Programmer's View)

Physical Address Space
(limited by DRAM size)

4KB
4KB

VA PA

Enclave Range Processor Reserved
Memory (PRM)

4KB 4KB

4KB (belong to a
different enclave)

Page Table per process

22

How to deal with all these attacks?

Malicious Address Translation #4

23

Need to keep track of
the page table for

enclaves by trusted
hardware/software.

Solution: Inverted Page Table

• Check for security invariant:
• Enclave VA, enclave mode à PRM
• Non-enclave mode is not allowed access PRM using whitherever address

• For each page in the PRM, remember the mapping from
<PPN> à <VPN, Enclave ID>
Keep the reversed page table in PRM, so privilege software cannot modify

• When to perform the check? (Review address translation process)
• After each address translation

24

Malicious Address Translation #5

25

A memory mapping attack that does not require modifying the page tables.

Need to bind the
virtual address

mapping with the
page content.

Solution: Page Encryption and Authentication

26

Physical Address Space
(limited by DRAM size)

Processor Reserved
Memory (PRM)

4KB

page = encrypt(page data, key)

MAC = (nounce, enclave ID,
VPN, key, page data)

4KB

MAC
…

Malicious Address Translation #6

27

A memory mapping attack that exploits stable TLB entries.

Need to make
sure TLB is

never obsolete.

Solution: Keep TLB up-to-date

28

• Keep an extra state in the inverted page table
• <PPN> à <VPN, Enclave ID>
• <PPN, state> à <VPN, Enclave ID>
• Mark “blocked”
• Unset only until all the VPNs (can mapped by multiple enclaves) exist and

flush TLBs

• If the TLB has stale data, post address translation check will see the
physical address is “blocked”

Summary: SGX Memory Management

• #1: Maintain a inverted page table and check after every address
translation

Physical page in PRM -> (enclave ID, virtual page number)

• #2: Encrypt/decrypt upon page swap to non-PRM region
(nounce, enclave ID, virtual page number, key, page content) à MAC

• #3: Keep TLB state up-to-date
Upon page swap, block the page in the inverted page table and unblock only
until all the corresponding TLB entries are flushed

29

Alternative Solutions

• Naïve idea:
• Let the trusted component handle page management
• Problem: Large TLB

• Keystone’s approach: leverage RISC-V’s PMP registers
• Enforce coarse-grained isolation and let the application to manage their page

mappings

• AMD SEV:
• Rely on encryption. But symmetric key vulnerability
• Recent version introduces reverse page table

30

Keystone’s Solution

31

• PMP check after every page translation to avoid cross-domain access
• Enclave application uses a runtime to support self-managed mapping.

Review: SGX Enclave Programming Model

32

create_enclave

initialize_enclave

…….

destroy_enclave

App Enclave

ecall

ocall

• How to ensure the enclave is initialized correctly?

Enclave Measurement
• Hardware generates a cryptographic log of the build process

• Code, data, stack, and heap contents
• Location of each page within the enclave
• Security attributes (e.g., page permissions) and enclave capabilities

• Enclave identity (MRENCLAVE) is a 256-bit digest of the log that represents the enclave

33

Enclave Attestation and Sealing

• HW based attestation provides evidence that “this is the right
application executing on an authentic platform” (approach similar to
secure boot attestation)

HW-signed blob that includes
enclave identity information

trusted communication channel

EREPORT

34

Additional Security Threats

• DRAM attacks: Rowhammer, Coldboot attacks

35

Processor Chip (socket)

core
L1/L2

core
L1/L2

LLC

…

System Bus (logically)

Processor Chip (socket)

core
L1/L2

core
L1/L2

LLC

…

Memory (DRAM) other I/O DevicesNon-volatile
storage device

Integrated
Memory
Controller

Memory Encryption Engine (MEE)

• Confidentiality:
• DATA written to the DRAM cannot be distinguished from random data.

• Integrity + freshness:
• DATA read back from DRAM to LLC is the same DATA that was most recently

written from LLC to DRAM.

36

What attacks can be mitigated?
Rowhammer? Bus tapping? Side channels on address access?

Confidentiality

• AES 128-CTR mode

37

Message Authentication Code (MAC)

• Hash(plaintext)

• Keyed Hash
• hash = SHA(message)
• HMAC = enc(hash, key)

• Freshness
• hash = SHA(message || nounce)
• HMAC = enc(hash, key)

38

Integrity Storage Problem

• For each cache line: {ciphertext + CTR + MAC}
• MAC 56 bits
• CTR 56 bits

• Can we store all the three components off-chip?
• Problem: if store CTR on-chip à high on-chip storage requirement

39

Operations on Merkle Tree

• Only need to store the root node on chip
• How to verify block B1?
• Write to block B3?

40

Bonsai-style Counter Integrity Tree

41

Summary

• What can privilege software attackers do?

• Design tradeoffs between TCB size, flexibility, perf overhead, cost, etc.
• Intel SGX, AMD SEV, ARM CCA
• Keystone, Sanctum, Penglai, etc

42

