Hardware Support for Memory Safety

Mengjia Yan
Spring 2023

compute. collabo

I Overview

* What attacker can do with software bugs?
* Demos, variations, real-world examples

 Hardware mitigations: what are the design tradeoffs?

The Problem: Software Bugs

* Low-level Language Basics
(C/C++/Assembly)
+ Efficient, programmers have more control
- Bugs
- Programming productivity

* Widely used in production systems and
legacy systems
* Operating systems, web browsers, etc.
* Large CVE numbers every year

The Problems of Using Pointers

e Pointer = Address of variables:

* An 64-bit integer to indicate the index of memory location where variable is
stored

* It is programmers’ responsibility to do pointer check, e.g. NULL, out-

of-bound, use-after-free
DEMO
[oerel

* Why Python (and other high-level programming language) does not
have these problems?

e out-of-bound access => emit runtime checks
* use-after-free => garbage collection

I Memory Corruption Vulnerabilities

e Spatial safety:
» out-of-bound (inter-object, intra-object)
* Can happen on heap and stack

* Temporal safety:
* Use-after-free

e Use before initialization
From software

bugs to attacks?

Stack and Stack Smash

int hello() {

int a = 100;
return a;
}
int main() {
int a;
int b = -3;
int ¢ = 12345;
int *p = &b;
int d = hello();
ra = return 9;

}

How will the stack
look like during the
execution?

TEXT (code)

stack

I Stack Smash

ra

int func (char *str) {
char buffer[12];
strncpy(buffer, str, len(str));
return 1;

int main() {

func (input);

Shell code:

PUSH “/bin/sh”
CALL system

Input str:

Shell code
. Some padding..
Address of buffer

I Stack Smash / Code Injection Attack

—>| TEXT (code) TEXT (code)
stack stack
-
blffer Shell code

Return addr Return addr

I Attack Variations

L. Szekeres, M. Payer, T. Wei and D. Song, "SoK:
Eternal War in Memory,” S&P’2013

Make a pointer
go out of bounds

X

v

Use pointer to
write (or free)

7

Modify a
code pointer ...

\4
... to the address of
shellcode/gadget

é v

Use pointer by
return instruction

$;

Execute injected
shellcode

Control flow
hijack attack

I Mitigations

TEXT (code)

stack

Shell code

Return addr

Make a pointer
go out of bounds

X

v

Use pointer to
write (or free)

T 7

Modify a
code pointer ...

... to the address of

ASLR

shellcode/gadget

Use pointer by
return instruction

Execute injected
shellcode

Control flow
hijack attack

Stack canary,
Shadow stack

Non-executable
Data (WEX)

10

DEMO
—

Attack Variations

Make a pointer
go out of bounds

Make a pointer
become dangling

P

\ 4

v

Use pointer to
write (or free)

)

Modify a

code pointer ...

\ 4

... to the address of
shellcode/gadget

&

v

V

Use pointer by
indirect call/jump

v

Use pointer by
return instruction

v

Execute available
gadgets/functions

v

Execute injected
shellcode

Control flow
hijack attack

11

I Return-Oriented Programming (ROP)

TEXT (code) TEXT (code)
Gadget example:
pop rdi
stack stack
ret
—>
Shell code

Return addr i el ” DEMO'I Jump-oriented programming
—
return addr 2.. I

12

Make a pointer
go out of bounds

Make a pointer
become dangling

Attack Variations

Use pointer by
indirect call/jump

Execute available
gadgets/functions

:(r\:
v
Use pointer to Use pointer to
write (or free) read
[e |
De
J v
Modify a Output data
code pointer ... variable
VL \ 4
... to the address of Interpret the
shellcode/gadget output data
v Vv v
Use pointer by
return instruction
l)\ |
v AV ¥
Execute injected
shellcode
» e
Y A\ 4
Control flow Information
hijack attack leak

HeartBleed Vulnerability

@ Heartbeat - Normal usage

* Publicly disclosed in April 2014 cerven send me Server
. . if you are there: bird
* Missing a bound check Client "bird"
g ———

* Bug in the OpenSSL cryptographic
software library heartbeat extension

W Heartbeat — Malicious usage

Server, send me _ Server
this 500 letter bird. Server.
word if you are master key is

: there: "bird" 31431498531054.
Client = User Carol wants

to change
password to
"password 123"...

° W,

https://heartbleed.com/

https://github.com/microsoft/MSRC-Security-

Tre n d re p O rte d by M i c ro S Oft Research/tree/master/presentations/2019_02_BlueHatIL

Drilling down into root causes

e atsc of CVES Ly parsieiad Stack corruptions are essentially
dead

100%
90%
- Use after free spiked in 2013-2015
due to web browser UAF, but was
mitigated by Mem GC

70%
60%
50%
Heap out-of-bounds read, type

confusion, & uninitialized use
have generally increased

40%
30%
20%
E* Spatial safety remains the most

common vulnerability category

2006 2007 2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018 (heap OUt‘Of‘bOUﬂdS read/write)
m Stack Corruption ™ Heap Corruption B Use After Free ® Type Confusion ® Uninitialized Use ™ Heap OOB Read ® Other

1

Note: CVEs mav have multiple root causes. so thev can be counted in multinle cateaories

0%

16

Hardware Supported
Mitigations

Make a pointer
go out of bounds

Make a pointer
become dangling

:’Y\:
v v
Use pointer to Use pointer to
write (or free) read
| e |
v v) v v
Modify a Modify code ... Modify a Modify a Output data
data pointer code pointer ... data variable ... variable
\ 4 ‘L \4 \ 4
... to the attacker __to the address of ... to the attacker Interpret the
specified code shellcode/gadget specified value output data
v 4 ¥ :
Use pointer by Use pointer by Use corrgpted data
indirect call/jump return instruction variable
1 |
‘ S ,
Execute available Execute injected
adgets/functions
L. Szekeres, M. Payer, T. Wei and gadgets/ chell eoes
D. Song, "SoK: Eternal War in AL
Memory,” S&P’2013 ! Y ! !
Code corruption Control flow Data-only Information
attack hijack attack attack leak

I Memory Safety

* Strongest security property that tries to address the problem at the root.

* |dea: include metadata and perform security checks at runtime
 Spatial safety (bound information)
* Temporal safety (allocation/de-allocation information)

 Software solutions
* Problem #1: performance overhead, extra instructions to perform the check
* Problem #2: where to store metadata? -> in shadow memory

SoftBound: Highly Compatible and Complete Spatial Memory Safety for C; Nagarakatte et al; PLDI’09
19

I SoftBound

Creating a pointer:

int array[100];

ptr = &array;

ptr_base = &array[0];
ptr_bound = &array[100];
table[ptr]={base, bound};

shadow memory

table[ptr]

base, bound

ptr

array

newptt)

array[0]

array[100]

20

I SoftBound

Creating a pointer:

int array[100];

ptr = &array;

ptr_base = &array[0];
ptr_bound = &array[100];
table[ptr]={base, bound};

Pointer arithmetic:

Compare number of
memory accesses?

shadow memory

table[ptr]

base, bound

|

table[new_ptr]

base, bound

int* array p2 = &array[10];
newptr base = table[ptr].base;
newptr bound = table[ptr].bound;
table[newptr]={base, bound};

ptr array
|
newptt) array_p2
L
array[0] v

array[100]

21

I SoftBound

Creating a pointer:

int array[100];
ptr = &array;

ptr_base = &array[0];
ptr_bound = &array[100];
table[ptr]={base, bound};

Check a pointer:

shadow memory

table[ptr]

base, bound

|

table[new_ptr]

base, bound

go to err;

int* array p2 =

newptr = &array_

p2;

{base, bound} = table[newptr];
if (base > array p2 || bound ..)

OXFF;

ptr array
|
newptt) array_p2
L
array[0] v

array[100]

22

HW Support for Memory Safety

A lot of work. The key is to understand the design trade-offs.

Intel MPX ARM MET
(Memory Protection Extension) (Memory Tagging Extension)

Announced in 2013, produced in Introduced in ARM-8.5 in 2018. In 2019, Google

[hat it i ing Arm’s MTE in A id.
History OIS, (e (GR SUIB96I) ETEE. announc_ed t. atc it is adopting Arm’s in Android
Apple will ship it soon.
Security
Performance

Compatibility

23

Intel MPX (Memory Protection Extension)

Any
problem?

4 bound registers (bnd0- 3) ° 0 O
* Bndmk: create base and bound metadata

e Bndldx/bndstx:load/store metadata from/to bound tables
 Bndcl/bndcu: check pointer with lower and upper bounds

Original Program bndstx (Ptr Addr., PtrVal.,, [Base, Bound));
p=malloc(16); bndstx’g &p, 0x1000, [0x1000, 0x1010));
.. ITp=p+4
*p='a; Store the metadata in AT
a two-level table
Instrumented Program in hardware 28 4
p=malloc(16); > @%
bnd0 = bndmk(p, 16): —— Bound Table Entry (32B)
bndstx (&p,p,bnd0); O Base |Bound PtrVal |Unused
L p=p+4 Wh 0x1000 0x1010 0x1000Unused
bnd1 = bndldx(&p,p); y >
bndcl (&p, bnd1); two-level? BDE (88) =5 und Table (4MB)
bndcu (&p, bnd1); 3NDCEGx
*p ="a; — 5ound Directory (2GB)

BOGO: Buy Spatial Memory Safety, Get Temporal Memory Safety (Almost) Free; Zhang et al;: ASPLOS’19

24

Analysis of Intel MPX

Performance and cost: / //Q

+ Reduce number of instructions, and reduce register pressure

+ No branch instructions, so not pollute the branch predictor

- High overhead: Check is sequential

+ Two-level page table organization should be more area-efficient

- High overhead: loading/storing bounds registers involves two-level table lookup
Compatibility:

- Not straightforward about how to extend the scheme to support temporal safety, etc.

- Does not support multithreading transparently

- All the code need to be rewritten, otherwise either security breaks or correct code broken

o_—y

Intel MPX Explained: A Cross-layer Analysis of the Intel MPX System Stack; OLEKSENKO et al; SIGMETRICS’18

25

I ARM MTE (Memory Tagging Extension)
@

1: char *ptr = new char[16];

* The concept of keys and locks

- * Memory locations are tagged by adding four
bits of metadata to each 16 bytes of physical
memory

@ Color mismatch

2: ptr[17] = 42;

3: delete [] ptr;<:3;>

Armv8.5-A Memory Tagging Extension White paper

https.//security.googleblog.com/2019/08/adopting-arm-memory-tagging-extension.html o6

I ARM MTE (Memory Tagging Extension)
@

1: char *ptr = new char[16];

* The concept of keys and locks

-_ - * Memory locations are tagged by adding four

@ Re-color bits of metadata to each 16 bytes of physical

memory
2: ptr[17] = 42;

3: delete [] ptr;<:3;>

Armv8.5-A Memory Tagging Extension White paper

https.//security.googleblog.com/2019/08/adopting-arm-memory-tagging-extension.html 57

I Analysis of ARM MTE
@

1: char *ptr = new char[16];
 Where to store tags (key and lock)?

* Pointer tag is stored in top unused bits inside the
pointer (no extra register needed)

-_ - * Physical memory tag is stored in hardware (new
hardware needed for both DRAM and cache)
a Re-color * Limited tag bits

e Cannot ensure two allocations have different

2: ptr[17] = 42; colors
* But can ensure that the tags of sequential
3: delete [] ptr;@ allocations are always different

Armv8.5-A Memory Tagging Extension White paper

https.//security.googleblog.com/2019/08/adopting-arm-memory-tagging-extension.html)8

Analysis of ARM MTE

Security:

- Coarse-grained spatial safety. Non-sequential violation is detected probabilistically
+ Can support temporal safety similar to spatial safety
+ Other extensions (see HAKC paper)

Performance and other overhead:
+ Storage overhead is ok 4 bits per 64 bytes

+ Performance overhead is low, mostly lies in the allocation and free time, since need
to modify tags in bulk

Compatibility:

+ To protect heap, modify libraries to do malloc and free; modify OS to trap on invalid
pointer. No extensive code rewritten needed.

29

Make a pointer
go out of bounds

Make a pointer
become dangling

:(r\:
v v
Use pointer to Use pointer to
write (or free) read
[> e |
p
v v J v v
Modify a Modify code ... Modify a Modify a Output data
data pointer code pointer ... data variable ... variable
\ 4 ‘L \4 \ 4
... to the attacker __to the address of ... to the attacker Interpret the
specified code shellcode/gadget specified value output data
¥ v ¥ .
Use pointer by Use pointer by Use corrgpted data
indirect call/jump return instruction variable
l |
v z/\ v
Execute available Execute injected
gadgets/functions shellcode
» e
Y \ 4 \4
Code corruption Control flow Data-only Information
attack hijack attack attack leak

Control-flow Integrity

* To maintain code pointer integrity
* Naive idea:
* Make pointer immutable (read-only)
* Only work for global offset table and virtual function tables

* How about other pointers?
* Return address?
* Programmer-defined function pointers
* Change function pointers after changing vtable pointer

31

Control Flow Integrity (CFl)

bool 1t(int x, int y) {

}

return x < y;

bool gt(int x, int y) {

}

return x > y;

sort2(int al[], int b[], int len)

{

}

sort(a, len, 1t);
sort(b, len, gt);

sort(int x[], int len, fun ptr)

{

for(int i=0; ...)
for (int j=i; ...)
if (fun ptr(x[i], x[j]))
.. //swap x[i] and x[j]

sort2():

§

call sort™

ot .'
......... b §

label 55 W

§

call sort”

SR

label 55%

§

ret ..

sort():

call 17,R_]

label 23 &1

. ret 55

1tdl):

Ly label 17

§

- ret 23

gt():

label 17

&

ret 23

Control-Flow Integrity Principles, Implementations, and Applications;

Mart'in Abadi, et al. CCS'05

a

Intel® Control-Flow Enforcement Technology (Intel CET)

INDIRECT BRANCH
TRACKING (IBT)

+

SHADOW
STACK (SS)

INTEL —
CET —

INDIRECT BRANCH
TRACKING (IBT)

IBT delivers indirect branch protection to defend against
jump/call oriented programming (JOP/COP) attack methods.

PROGRAM
IN MEMORY

endbranch

<main>:

BT X

Intel CET will help prevent
attackers from jumping to
arbitrary addresses

movqg $0x4004fb, -8(%rbp)
mov__-8(%rbp), Y%rdx
call *%rdx

retq

SHADOW STACK (SS)

SS delivers return address protection to defend against
return-oriented programming (ROP) attack methods.

STACK

Return 1
Return 2

Intel CET will help block call if return
addresses on both stacks don't match

33

N

I ARM PA (Pointer Authentication)

Widely used in Apple processors

(a) Signing (b) Verifying
* Motivation: (Pointer) (PAC Pointer)
. Ssatgg pointer, but 48-bit virtual address Coomtar) (T (Flash Y —(Gontert)
) —
e Unused high bits (_PAC Pointer)) l .
17 Bits 47 Bits Valid Pointer
* Hash: W
* A tweakable message authentication code
(MAC) _ _ o Before function call Before function return
* ARM calls it PAC (pointer authentication
code) 1| pacia 1r, sp 1|1dr 1r, [sp, #0x30]
2| sub sp, sp, #0x40 2|add sp, sp, #0x40
* Context: 3| str 1r, [sp, #0x30] 3| autia 1r, sp
* secret key 4l ... 4+ ret

 salt (could be the stack pointer)

34

I Summary

* Memory corruption problems: An eternal war

‘ Make a pointer Make a pointer
‘ go out of bounds become dangling

* Attack variations and mitigations .

Use pointer to Use pointer to
write (or free) read

3] 3 ¥
Modify a ‘ Output data ‘

data variable ... variable

I I

Modify a Modify code ...
data pointer

... to the attacker Interpret the
specified value output data

* Trade-off in hardware support S

variable

Use pointer by Use pointer by Use corrupted data
indirect call/jump return instruction

attack leak

35

