
Fuzzing and Formal Verification
to Find Hardware Bugs

Mengjia Yan
Spring 2023

What is Errata?

https://www.intel.com/content/www/us/en/products/docs/processors/core/8th-gen-core-spec-update.html

It is a compilation of device and document errata and
specification clarifications and changes, which is intended for
hardware system manufacturers and for software developers
of applications, operating system, and tools.

Errata are design defects or errors. Errata may cause the
processor’s behavior to deviate from published specifications.
Hardware and software designed to be used with any given
stepping must assume that all errata documented for that
stepping are present on all devices.

2

Errata Table Example

3

More Errata

4

Occasionally, AMD identifies product errata that cause the processor to
deviate from published specifications. Descriptions of identified product
errata are designed to assist system and software designers in using the
processors described in this revision guide. This revision guide may be
updated periodically.

https://www.amd.com/system/files/TechDocs/41322_10h_Rev_Gd.pdf

5

10
,0

00
 x

Errata Statistics

6

SPECS: A Lightweight Runtime Mechanism for Protecting Software
from Security-Critical Processor Bugs; Hicks et al; ASPLOS’15
https://github.com/impedimentToProgress/specs

4 years; 136 errata; 3 bugs/month

The Core-i7 processor with integrated graphics card
in 2012 with 1,400M Transistors

A 4-fold increase in bugs in Intel processor designs
per generation. Approximately 8000 bugs
designed into the Pentium 4 (‘Willamette’)

from https://www.cl.cam.ac.uk/~jrh13/slides/nijmegen-
21jun02/slides.pdf

Outline

• Hardware Bug Examples
• How do they look like? The discovery process? Impact?
• #1: The famous Pentium FDIV bug
• #2: SYSRET 64-bit OS privilege escalation vulnerability on Intel CPU
• #3: Branch history injection attack

• How to discover hardware bugs?
• Manual efforts
• Fuzzing
• Formal verification

7

Bug #1: Pentium FDIV Bug

• What is the specification for floating-point computation?
• Floating is encoded as 1 + 𝑓 × 2! , 0 ≤ 𝑓 < 1, 𝑒 ∈ 𝑍
• Example: 1/10 = 1.9999…9𝑎 × 2"# (in hexadecimal)
• We always have errors when doing floating-point computation, because we

have limited number of bits for each floating number

• The specification allows error to occur after bit 𝑥

8The computational aspects of the Pentium affairs. Coe et al. IEEE 1995 https://people.cs.vt.edu/~naren/Courses/CS3414/assignments/pentium.pdf

The Pentium FDIV
bug: see errors much

earlier than the
expected 𝑥 bits

The Discovery Process #1: Nicely’s Prime
• Thomas Nicely, a mathematics professor, tried to compute reciprocal

of prime numbers: 𝑝 = 824, 633, 702, 441
• The correct result:

1/𝑝 = 1.212659629408667 × 10−12

• But the new Pentium processor gives:
1/𝑝 = 1.212659624891158 × 10−12

• Took him four months to confirm the problem was not in his program
-> math libraries -> compilers -> operating system, but in the
hardware

9

Any other
numbers …?

Differ after
the 9th digit

The Discovery Process #2: Kaiser’s List

• Andreas Kaiser, a computer consultant
• Generate 25 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 random integers and checked the accuracy of the

computed reciprocals. 23 are incorrect.

10

Patterns?

• Many are started with 1.7𝑓𝑓𝑓𝑓
• In another word, the first 20 bits after the

leading bit have to be a single zero,
followed by at least 19 ones

Pentium computed the reciprocals of these numbers inaccurately

The Discovery Process #3: Coe’s Ratio

• Tim Coe, electrical engineer, has designed floating-point chips
• #,&'(,)*(*,&#(,+,+ = 1.33382044… (correct) 1.33373906… (Pentium)

11

The erorrs involve 𝑦/𝑥 where 𝑥 and 𝑦’s bit
patterns conspire to excite the bug at an
early stage in the division.

Differ after
the 4th digit

Bug Explanation: FDIV

• Shift-and-subtract • Old processors: choose quotient from 0, 1

• Faster Sweeney, Robertson, and Tocher (SRT)
algorithm Radix-4:
• Choose quotient from 0,+1,− 1,+2,−2;
• If the current quotient is incorrectly

chosen, we can recover it from the next
iteration
• Guess the quotient based on the first few

digits => use a 2D table to lookup

How to choose
quotient as a

human being?

A combination of trial and error,
experience, pattern matching and luck.

12

https://en.wikipedia.org/wiki/Division_algorithm

Bug Explanation: SRT Table

13

first 5 bits of the divisor

first 7 bits of
the remainder

• 2048 cells in total
• 1066 cells in use
• 5 cells are not initialized
• When the bug will be

triggered?

How Frequently the bug can be triggered?

• Intel: an average spreadsheet user could encounter this flaw once in
every 27,000 years, assuming 1,000 divisions per day.
• IBM: suspended sales of Pentium-based models and said it is as many

as 20 mistakes per day.
• Who actually got affected?
• Normal users?
• Wall street? Financial pre-diction programs? Did the Pentium bug flip a

trading decision from buy to hold to sell?
• Difficult to calibrate

14

Consequences/Impacts
• Intel’s bad responses

• Conditional replacement (customers
need to claim they do get influenced by
the bug) à disastrous press
• No-questions-asked replacement à

$475M cost in 1994, 10% replacements

• Potential long-term impact:
• Random test is not be a good idea.

Exhaustive test has scalability problem.
• A marked increase in the use of formal

verification and number theory in
hardware design

15
http://davefaq.com/Opinions/Stupid/Pentium.html#glitch

http://davefaq.com/Opinions/Stupid/Pentium.html

Bug #2: A SYSRET Bug

64-bit x86 instruction set: AMD64, Intel 64

16
A Stitch In Time Saves Nine: A Stitch In Time Saves Nine: A Case Of Multiple OS Vulnerability; Rafal Wojtczuk; BlackHat, 2012
Model Checking to Find Vulnerabilities in an Instruction Set Architecture; Bradfield et al; HOST’16

User
Space

Kernel
Space

SYSCALL

SYSCALL
• HW transits from user mode to kernel mode
• Save the userspace next-PC to the RCX register
• Jump to a kernel syscall entry point

SYSRET

SYSRET
• HW transits from kernel mode to user mode
• Restore the userspace next-PC from the RCX register

Two Different Specifications for SYSRET

Intel
SYSRET

17

Order is
flipped

HW transits from kernel mode
to user mode

HW transits from kernel mode
to user mode

Restore the userspace next-PC
from the RCX register

Restore the userspace next-PC
from the RCX registerAMD

SYSRET

SYSRET Vulnerability

Intel
SYSRET

18

HW transits from kernel mode
to user mode

HW transits from kernel mode
to user mode

Restore the userspace next-PC
from the RCX register

Restore the userspace next-PC
from the RCX registerAMD

SYSRET

If RCX holds a non-canonical address, the SYSRET will generates a #GP (general protection fault)
Canonical means that given 48-bit virtual address space, the high 16 bits (bits 63-48) of a virtual
address have same value as bit 47.

#GP in
user mode

#GP in kernel
mode

SYSRET Attack on Intel Processors

19

usermode
stack

rip

rsp
…
rcx

Registers

Before executing SYSRET, all registers have
been restored using usermode context

RCX holds
a non-canonical
address

Need to handle #GP
in kernel mode

usermode
stack

rip

rsp
…
rcx

Registers

#GP handler

IDT
#GP handler stack

Ring0 Ring0

Assume rip points to kernel stack and start
using it --> can overwrite kernel data

#GP handler

IDT
#GP handler stack

Who to blame?

• Intel claims it is not an errata
• Errata are design defects or errors that may cause ... behavior to

deviate from published specifications.
• This behavior is consistent with Intel’s specification
• So the problem is the specification is incorrect

• Intel SDM (software development manual) 3400 pages. We cannot
assume the specification is always correct.
• Some research efforts to verify ISA specification

20

Bug #3: eIBRS Vulnerability

21

branch
Source
address

• Recap Spectre v2
• eIBRS: Enhanced Indirect Branch Restricted Speculation. Advertised as a

mitigation against Spectre v2.

What does this mean?
Non-interference?

A vague specification.
Barberis et al. Branch History Injection: On the Effectiveness of Hardware Mitigations Against
Cross-Privilege Spectre-v2 Attacks. USENIX’22 https://www.vusec.net/projects/bhi-spectre-bhb/

Specification:
Do not let lower-privileged code to interfere the branch
prediction target of the high-privilege code.
OR
Isolate BTB entries across privilege levels.

The Problem

• #1: Userspace code can trigger different system calls and let kernel
• #2: Userspace prediction history can affect kernel space btb

prediction

22

Problem: Security
definition in human
language and can be

vague and interpreted
in various ways.

Summary

• Hardware bugs
• Errata that deviate from the functional and security specification
• Incorrect specification
• Vague specification

• How to find hardware bugs?
• Get ideas from the software

23

Software Bugs Hunting/Fixing

• Approach 1: Hire a lot of experts and stare at the code
• Basically Intel was on it in the last few years without showing

the code
• Black-box hacking

• Approach 2: Test suite, but need to be updated. And how
to generate test cases?
• Fuzzing

• Approach 3: Formal verification

24

Fuzzing

25

Fuzzing In A Nutshell

• Automatic generate test examples
• 1999, Alan Cox at University of Wales discovered a vulnerability in Linux kernel by

simply running a proram generating random input and feed into the kernel
• Crash is generated by assertions/specifications

• Simple yet effective
• Industry standard

From Riding the Fuzzing Hype Train (RAID'21 Keynote) 26

Fuzzing Components

• Random seeds
• Sometimes need formatted inputs, e.g.,

PDF reader, the demo from last lecture

• A criteria to check whether the
outcome is as expected or not.
• Specification
• Security invariant (paper discussion

SPECS)
• Assertions (address sanitizer)

• Heuristics for generating new tests =>
feedback loop for better efficiency

27

Types of Fuzzing

• Blackbox

• Greybox

• Whitebox

From Blackbox Fuzzing to Whitebox Fuzzing towards Verification; Patrice Godefroid; Microsoft Research
28

Example: Hidden Instructions

• Hidden instructions: secret instructions that give backdoor or
powerful access to processor internals

• Secret processor functionality: Appendix H

• An example:
• Pentium F00F bug, an invalid instruction freezes the cpu, discovered in 1997
• A Ring 3 process can DOS (denial of service) a process
• The invalid instruction encoding is: F0 0F C7 [C8-CF]

29
Breaking the x86 ISA, Christopher Domas; Blackhat’17

Search for Hidden Instructions

30

Instructions:

0F 6A 60 6A 79 6D C6 02 …

ISA specification:

Valid instructions (in spec)

Invalid instructions
(#UD exception, invalid opcode)

Hidden instructions (not in spec,
but can execute, no #UD exception)

Challenges #1: Large Space

• CISC: Variable length instructions
• One-byte instruction: 0x40 -> inc eax
• 15-byte instruction: 2e67f048 818480 23df067e 89abcdef ->
lock add qword cs:[eax + 4 * eax + 07e06df23h], 0efcdab89h
• Worst-case exhaustive search: 256^15

• Observation: the meaningful bytes of an x86 instruction impact either
its length or its exception behavior
• A potential solution: depth-first search

31

0F 6A 60 6A 79 6D C6 02 …

Challenges #2: Measure Instruction Length

• Trap flag
• Execute an instruction, set PC to the next instruction, and go to trap handler
• Inside the trap hander, observe instruction length

• How to deal with privilege instructions?
• Trap in user space. Will not advance the PC

• A potential solution: page fault analysis

32

0F 6A 60 6A 79 6D C6 02 …

Executable page Non-executable page

A page fault means the
instruction length is
longer than guessed

Engineering Efforts to Survive

• Hack the kernel to hook page fault handler to catch the instruction

• Hack various fault handler inside the kernel in case the the hidden
instruction traps

• A lot more…
• watch the talk, learn in recitation #4 and lab 6

33

https://www.youtube.com/watch?v=KrksBdWcZgQ

SandSifter and Findings

• Hidden instructions across
Intel and AMD processors

• Software bugs in
disassemblers, such as IDA,
objdump, VS, etc.

• Hardware errata, something
like FOOF

34Breaking the x86 ISA, Christopher Domas; Blackhat’17 https://www.youtube.com/watch?v=KrksBdWcZgQ

https://www.youtube.com/watch?v=KrksBdWcZgQ

Formal Verification

• Limitations of fuzzing:
• Heuristics coverage, no guarantee of

comprehensiveness
• Not good at certain types of bugs, waste

computation powers

• Many formal verification techniques,
requiring formal-methods expertise (6.512)
• We cover some automatic technique: symbolic

execution

35

int obscure(int x, int y)
{

if (x==hash(y))
error();

return 0;
}

Fuzzing and Concrete Execution

36

Concrete instructions:

0F 6A 60 6A 79 6D C6 02 …

ISA specification:

Valid instructions (in spec)

Invalid instructions
(#UD exception, invalid opcode)

Hidden instructions (not in spec,
but can execute, no #UD exception)

Blackbox

Symbolic Execution

37

Symbolic execution
engine

ISA specification:

Ve
ril

og
 S

ou
rc

e
Co

de

Pass (Implementation
matches specification)

Counter example (e.g.,
hidden instructions)

A Simple Example #1

38

int hash(int z){
return (z+10)*2;

}

int obscure(int x, int y)
{

if (x==hash(y))
error();

return 0;
}

(define (hash z)
(* (+ z 10) 2)
)

(define (obscure x y)
(if (= x (hash y))

(assert #f)
0)

)

C code: Rosette code:

A Simple Example #2

• Build execution tree with all the
execution paths

• Each execution path has logical
formula to describe path conditions

39

int obscure(int x, int y)
{

if (x==hash(y))
error();

return 0;
}

int hash(int z){
if (z>10)

z = z-10;
return z;

}

Symbolic Execution

• Convert the program into a large math formula and ask solvers to
solve it.
• The usual pitfall: scalability issues

• Recitation #5:
• Tool to lift Verilog code to Rosette code -> automatic hardware bug finding

40

Summary

• Hardware bugs
• Deviate from specification (errata)
• Incorrect and vague specification

• Potential approaches to find hardware bugs
• Manual analysis, testing
• Fuzzing
• Symbolic execution

41

