# Port Contention for Fun and Profit 2019 IEEE Symposium on Security and Privacy

## Natalie Muradyan

6.s983 - Spring 2023

#### PortSmash

is a novel **side-channel** analysis technique that targets the **shared execution units** in **Simultaneous Multithreading (SMT)** architectures by monitoring the **port usage footprint** of the secret data dependent execution flows.

### Side-Channel Attacks

Side-Channel attacks attempt measuring or exploiting indirect effects of the system or its hardware.



## Simultaneous Multithreading (SMT)

- Each physical core is divided into multiple logical cores, allowing multiple threads to execute simultaneously on the same physical core.
- Logical cores share various hardware resources, including ports to the execution units.

## Hyper-Threading (HT)

• Intel's proprietary simultaneous multithreading (SMT) implementation used to improve parallelization of computations performed on x86 microprocessors.

### Hyper-Threading

| Logical<br>Core        | Logical<br>Core | Logical<br>Core | Logical<br>Core  | Logical<br>Core | Logical<br>Core | Logical<br>Core  | Logical<br>Core |  |
|------------------------|-----------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|--|
| L1 ar                  | L1 and L2       |                 | nd L2            | L1 ar           | nd L2           | L1 and L2        |                 |  |
| Execution Engine       |                 | Executio        | Execution Engine |                 | n Engine        | Execution Engine |                 |  |
| Last Level Cache (LLC) |                 |                 |                  |                 |                 |                  |                 |  |

"Researchers knew that **resource sharing leads to resource contention**, and it took *a remarkably short time* to notice that contention introduces timing variations during execution, which can be used as a covert channel, and as a side-channel."

- A.C. Aldaya et al.

CACHE MISSING FOR FUN AND PROFIT

**Cheap Hardware Parallelism Implies Cheap Security** 



Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks

## **Covert Shotgun**

An automated framework to find SMT covert channels.

- 1. Enumerate all instruction pairs in the ISA.
- 2. Duplicate each instruction a few times.
- 3. Run each instruction block **in parallel on the same physical core but separate logical cores**.
- 4. Measure the **clock-cycle performance**.
- 5. Analyze the resulting table for timing discrepancies.
- 6. Identify potential **covert channels** based on timing discrepancies.

#### **Covert Shotgun Open Questions**

"Another interesting project would be **identifying [subsystems]** which are being congested by specific instructions"

"it would be interesting to investigate to what extent these **covert channels extend to spying**"



#### TABLE I

#### SELECTIVE INSTRUCTIONS. ALL OPERANDS ARE REGISTERS, WITH NO MEMORY OPS. THROUGHPUT IS RECIPROCAL.

| Instruction  | Ports | Latency | Throughput |
|--------------|-------|---------|------------|
| add          | 0156  | 1       | 0.25       |
| crc32        | 1     | 3       | 1          |
| popcnt       | 1     | 3       | 1          |
| vpermd       | 5     | 3       | 1          |
| vpbroadcastd | 5     | 3       | 1          |

#### TABLE II

### RESULTS OVER A THOUSAND TRIALS. AVERAGE CYCLES ARE IN THOUSANDS, RELATIVE STANDARD DEVIATION IN PERCENTAGE.

|        |        | Diff. Ph | ys. Core | Same Phys. Core |         |  |  |  |
|--------|--------|----------|----------|-----------------|---------|--|--|--|
| Alice  | Bob    | Cycles   | Rel. SD  | Cycles          | Rel. SD |  |  |  |
| Port 1 | Port 1 | 203331   | 0.32%    | 408322          | 0.05%   |  |  |  |
| Port 1 | Port 5 | 203322   | 0.25%    | 203820          | 0.07%   |  |  |  |
| Port 5 | Port 1 | 203334   | 0.31%    | 203487          | 0.07%   |  |  |  |
| Port 5 | Port 5 | 203328   | 0.26%    | <b>404941</b>   | 0.05%   |  |  |  |

| A G G T T T G                |                                 |
|------------------------------|---------------------------------|
| mov \$COUNT, %rcx            | <pre>#elif defined(P0156)</pre> |
|                              | .rept 64                        |
| 1:                           | add %r8, %r8                    |
| lfence                       | add %r9, %r9                    |
| rdtsc                        | add %r10, %r10                  |
| lfence                       | add %r11, %r11                  |
| mov %rax, %rsi               | .endr                           |
|                              | #else                           |
| #ifdef P1                    | #error No ports defin           |
| .rept 48                     | #endif                          |
| crc32 %r8, %r8               |                                 |
|                              | lforco                          |
| crc32 %r9, %r9               | lfence                          |
| crc32 %r10, %r10             | rdtsc                           |
| .endr                        | shl \$32, %rax                  |
| <pre>#elif defined(P5)</pre> | or %rsi, %rax                   |
| .rept 48                     | mov %rax, (%rdi)                |
| vpermd %ymm0, %ymm1, %ymm0   | add \$8, %rdi                   |
| vpermd %ymm2, %ymm3, %ymm2   | dec %rcx                        |
| vpermd %ymm4, %ymm5, %ymm4   |                                 |
| .endr                        |                                 |
|                              |                                 |

| Instruction  | Ports |
|--------------|-------|
| add          | 0156  |
| crc32        | 1     |
| popent       | 1     |
| vpermd       | 5     |
| vpbroadcastd | 5     |

defined

Fig. 3. The PORTSMASH technique with multiple build-time port configurations P1, P5, and P0156.

| mov \$COUNT, %rcx                   | <pre>#elif defined(P0156) .rept 64</pre> |
|-------------------------------------|------------------------------------------|
| 1:                                  | add %r8, %r8                             |
| lfence                              | add %r9, %r9                             |
| rdtsc                               | add %r10, %r10                           |
| lfence                              | add %r11, %r11                           |
| mov %rax, %rsi                      | .endr                                    |
|                                     | #else                                    |
| #ifdef P1                           | #error No ports defined                  |
| .rept 48                            | #endif                                   |
| crc32 %r8, %r8                      |                                          |
| crc32 %r9, %r9                      | lfence                                   |
| crc32 %r10, %r10                    | rdtsc                                    |
| .endr                               | shl \$32, %rax                           |
| <pre>#elif defined(P5)</pre>        | or %rsi, %rax                            |
| .rept 48                            | mov %rax, (%rdi)                         |
| vpermd %ymm0, %ymm1, %ymm0          | add \$8, %rdi                            |
| vpermd %ymm2, %ymm3, %ymm2          |                                          |
| vpermd %ymm4, %ymm5, %ymm4<br>.endr |                                          |



| 30f0    | <x64_fc< th=""><th>&gt;:</th></x64_fc<> | >:                                     |
|---------|-----------------------------------------|----------------------------------------|
| 30f0    | test                                    | %rdi,%rdi                              |
| 30f3    | je                                      | 4100 <x64_foo+0x1010></x64_foo+0x1010> |
| 30f9    | jmpq                                    | 4120 <x64_foo+0x1030></x64_foo+0x1030> |
| • • • • |                                         |                                        |
| 4100    | popcnt                                  | %r8,%r8                                |
| 4105    | popcnt                                  | %r9,%r9                                |
| 410a    | popcnt                                  | %r10,%r10                              |
| 410f    | popcnt                                  | %r8,%r8                                |
| 4114    | popcnt                                  | %r9,%r9                                |
| 4119    | popcnt                                  | %r10,%r10                              |
| 411e    | jmp                                     | 4100 <x64_foo+0x1010></x64_foo+0x1010> |
| 4120    | vpbroad                                 | lcastd %xmm0,%ymm0                     |
| 4125    | vpbroad                                 | lcastd %xmm1,%ymm1                     |
| 412a    | vpbroad                                 | lcastd %xmm2,%ymm2                     |
| 412f    | vpbroad                                 | lcastd %xmm0,%ymm0                     |
| 4134    | vpbroad                                 | lcastd %xmm1,%ymm1                     |
| 4139    | vpbroad                                 | lcastd %xmm2,%ymm2                     |
| 413e    | jmp                                     | 4120 <x64_foo+0x1030></x64_foo+0x1030> |
| 4140    | retq                                    |                                        |



| mov \$COUNT, %rcx            | <pre>#elif defined(P0156) .rept 64</pre> |
|------------------------------|------------------------------------------|
| 1:                           | add %r8, %r8                             |
| lfence                       | add %r9, %r9                             |
| rdtsc                        | add %r10, %r10                           |
| lfence                       | add %r11, %r11                           |
| mov %rax, %rsi               | .endr                                    |
|                              | #else                                    |
| #ifdef P1                    | #error No ports defined                  |
| .rept 48                     | #endif                                   |
| crc32 %r8, %r8               |                                          |
| crc32 %r9, %r9               | lfence                                   |
| crc32 %r10, %r10             | rdtsc                                    |
| .endr                        | shl \$32, %rax                           |
| <pre>#elif defined(P5)</pre> | or %rsi, %rax                            |
| .rept 48                     | mov %rax, (%rdi)                         |
| vpermd %ymm0, %ymm1, %ymm0   |                                          |
| vpermd %ymm2, %ymm3, %ymm2   |                                          |
| vpermd %ymm4, %ymm5, %ymm4   | jnz 1b                                   |
| .endr                        |                                          |

| 30f0 | <x64_foo>:</x64_foo>                        |
|------|---------------------------------------------|
| 30f0 | test %rdi,%rdi                              |
| 30f3 | je 4100 <x64_foo+0x1010></x64_foo+0x1010>   |
| 30f9 | jmpq 4120 <x64_foo+0x1030></x64_foo+0x1030> |
|      |                                             |
| 4100 | popcnt %r8,%r8                              |
| 4105 | popcnt %r9,%r9                              |
| 410a | popcnt %r10,%r10                            |
| 410f | popcnt %r8,%r8                              |
| 4114 | popcnt %r9,%r9                              |
| 4119 | popcnt %r10,%r10                            |
| 411e | jmp 4100 <x64_foo+0x1010></x64_foo+0x1010>  |
| 4120 | vpbroadcastd %xmm0,%ymm0                    |
| 4125 | vpbroadcastd %xmm1,%ymm1                    |
| 412a | vpbroadcastd %xmm2,%ymm2                    |
| 412f | vpbroadcastd %xmm0,%ymm0                    |
| 4134 | vpbroadcastd %xmm1,%ymm1                    |
| 4139 | vpbroadcastd %xmm2,%ymm2                    |
| 413e | jmp 4120 <x64_foo+0x1030></x64_foo+0x1030>  |
| 4140 | retq                                        |

|     | 400 - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400         | ) +      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                    | 1                      |                                           |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|-------------------------------------------|
| cy  | 300 - | a shekara da waxaa waxaa waxaa da aha da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300 Sup 200 |          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | litan komutan ita          | n an thuad                                                                                                       | Antanta.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a. a. b. Januar                      | INCLUSION (CO          | alentinar-                                |
| ten | 200 - | they are a base and a base of the second of th | 5 200       | ) -      | والمسيرة فالبروب أحطا والمحوج وعور ومحافظته | with the second states of the second s | and a second shared as the | spectron and a second | and a state of the | distance of the second second second | here and have a second | hanna an |
| La  | 100 - | Spy: P1 / Victim: 0         Spy: P1 / Victim: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 001 Fat     | ) -      | landrathinn igh ean raffain fin fin thainn  | Spy: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P5 / Victim:               | 0                                                                                                                | 10000-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spy: P5 / N                          | /ictim: 1 —            |                                           |
|     | 0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0           | )  <br>( | 0 1000                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 30                       | 00                                                                                                               | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5000                                 | 6000                   | 7000                                      |

| mov \$COUNT, %rcx            | <pre>#elif defined(P0156) .rept 64</pre> |  |  |  |  |
|------------------------------|------------------------------------------|--|--|--|--|
| 1:                           | add %r8, %r8                             |  |  |  |  |
| lfence                       | add %r9, %r9                             |  |  |  |  |
| rdtsc                        | add %r10, %r10                           |  |  |  |  |
| lfence                       | add %r11, %r11                           |  |  |  |  |
| mov %rax, %rsi               | .endr                                    |  |  |  |  |
|                              | #else                                    |  |  |  |  |
| #ifdef P1                    | #error No ports defined                  |  |  |  |  |
| .rept 48                     | #endif                                   |  |  |  |  |
| crc32 %r8, %r8               |                                          |  |  |  |  |
| crc32 %r9, %r9               | lfence                                   |  |  |  |  |
| crc32 %r10, %r10             | rdtsc                                    |  |  |  |  |
| .endr                        | shl \$32, %rax                           |  |  |  |  |
| <pre>#elif defined(P5)</pre> | or %rsi, %rax                            |  |  |  |  |
| .rept 48                     | mov %rax, (%rdi)                         |  |  |  |  |
| vpermd %ymm0, %ymm1, %ymm0   |                                          |  |  |  |  |
| vpermd %ymm2, %ymm3, %ymm2   |                                          |  |  |  |  |
| vpermd %ymm4, %ymm5, %ymm4   | jnz 1b                                   |  |  |  |  |
| .endr                        |                                          |  |  |  |  |

|        | 400 - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400            | +           | 1                                                | 1                                                       |                                                                                                                | 1                                      | 1                        | 1                          |           |
|--------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|--------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|----------------------------|-----------|
| Itency | 300 - | والمحالية المراجعة المحالية المحالية والمحالية و | > 300          | - Mille     | a a tha tha that the state of the                | addina daalaada                                         | manalisa hashin                                                                                                | Latthe attack                          | A. A. D. LAND            |                            | ALCONNUT- |
|        | 200 - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>ق</u> 200 - | - Inflation | محربية والمرجوعة أنشا مستحو وحدر محا             | a la chairt de san ann an | a de la contra ten faction de la contra de la | a na mangang pang pang kana sina bagai | والمريح والمتحج والمتالي | house of the Annual States |           |
| Ľ      | 100 - | Spy: P1 / Victim: 0 Spy: P1 / Victim: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E 100          | -           | aliyesigh <del>dar a hiya Perdenti Ba</del> yare | Spy: P5 / V                                             | /ictim: 0 —                                                                                                    |                                        | Spy: P5 / V              | /ictim: 1 —                |           |
|        | 0 -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 -            | +           | 1                                                |                                                         | 1                                                                                                              | L.                                     | 1                        |                            |           |
|        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0           | 1000                                             | 2000                                                    | 3000                                                                                                           | 4000                                   | 5000                     | 6000                       | 7000      |

| 30f0 | <x64_fc< th=""><th>&gt;:</th></x64_fc<> | >:                                     |
|------|-----------------------------------------|----------------------------------------|
| 30f0 | test                                    | %rdi,%rdi                              |
| 30f3 | je                                      | 4100 <x64_foo+0x1010></x64_foo+0x1010> |
| 30f9 | jmpq                                    | 4120 <x64_foo+0x1030></x64_foo+0x1030> |
|      |                                         |                                        |
| 4100 | popcnt                                  | %r8,%r8                                |
| 4105 | popcnt                                  | %r9,%r9                                |
| 410a | popcnt                                  | %r10,%r10                              |
| 410f | popcnt                                  | %r8,%r8                                |
| 4114 | popcnt                                  | %r9,%r9                                |
| 4119 | popcnt                                  | %r10,%r10                              |
| 411e | jmp                                     | 4100 <x64_foo+0x1010></x64_foo+0x1010> |
| 4120 | vpbroad                                 | dcastd %xmm0,%ymm0                     |
| 4125 | vpbroad                                 | dcastd %xmm1,%ymm1                     |
| 412a | vpbroad                                 | dcastd %xmm2,%ymm2                     |
| 412f | vpbroad                                 | dcastd %xmm0,%ymm0                     |
| 4134 | vpbroad                                 | dcastd %xmm1,%ymm1                     |
| 4139 | vpbroad                                 | dcastd %xmm2,%ymm2                     |
| 413e | jmp                                     | 4120 <x64_foo+0x1030></x64_foo+0x1030> |
| 4140 | retq                                    |                                        |

| mov \$COUNT, %rcx            | <pre>#elif defined(P0156) .rept 64</pre> |  |  |  |  |
|------------------------------|------------------------------------------|--|--|--|--|
| 1:                           | add %r8, %r8                             |  |  |  |  |
| lfence                       | add %r9, %r9                             |  |  |  |  |
| rdtsc                        | add %r10, %r10                           |  |  |  |  |
| lfence                       | add %r11, %r11                           |  |  |  |  |
| mov %rax, %rsi               | .endr                                    |  |  |  |  |
|                              | #else                                    |  |  |  |  |
| #ifdef P1                    | #error No ports defined                  |  |  |  |  |
| .rept 48                     | #endif                                   |  |  |  |  |
| crc32 %r8, %r8               |                                          |  |  |  |  |
| crc32 %r9, %r9               | lfence                                   |  |  |  |  |
| crc32 %r10, %r10             | rdtsc                                    |  |  |  |  |
| .endr                        | shl \$32, %rax                           |  |  |  |  |
| <pre>#elif defined(P5)</pre> | or %rsi, %rax                            |  |  |  |  |
| .rept 48                     | mov %rax, (%rdi)                         |  |  |  |  |
| vpermd %ymm0, %ymm1, %ymm0   | add \$8, %rdi                            |  |  |  |  |
| vpermd %ymm2, %ymm3, %ymm2   | dec %rcx                                 |  |  |  |  |
| vpermd %ymm4, %ymm5, %ymm4   | jnz 1b                                   |  |  |  |  |
| .endr                        |                                          |  |  |  |  |

| <u>کن</u> 30 |             |                     |                     | tency | 400<br>300 -<br>200 - | o – and a canonical constrained and an and an an and a strained and a strained and an and the strained and strained and an and a strained and strained an |      |                   |                  |      |                     |                   |      |
|--------------|-------------|---------------------|---------------------|-------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|------------------|------|---------------------|-------------------|------|
| Ĩ 1(         | - 00<br>0 - | Spy: P1 / Victim: 0 | Spy: P1 / Victim: 1 | La    | 100 -<br>0 -          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000 | Spy: P5 /<br>2000 | Victim: 0 — 3000 | 4000 | Spy: P5 / V<br>5000 | Victim: 1<br>6000 | 7000 |

| 30f0    | <x64_fc< th=""><th>oo&gt;:</th></x64_fc<> | oo>:                                   |
|---------|-------------------------------------------|----------------------------------------|
| 30f0    | test                                      | %rdi,%rdi                              |
| 30f3    | je                                        | 4100 <x64_foo+0x1010></x64_foo+0x1010> |
| 30f9    | jmpq                                      | 4120 <x64_foo+0x1030></x64_foo+0x1030> |
| • • • • |                                           |                                        |
| 4100    | popcnt                                    | %r8,%r8                                |
| 4105    | popcnt                                    | %r9,%r9                                |
| 410a    | popcnt                                    | %r10,%r10                              |
| 410f    | popcnt                                    | %r8,%r8                                |
| 4114    | popcnt                                    | %r9,%r9                                |
| 4119    | popcnt                                    | %r10,%r10                              |
| 411e    | jmp                                       | 4100 <x64_foo+0x1010></x64_foo+0x1010> |
| 4120    | vpbroad                                   | dcastd %xmm0,%ymm0                     |
| 4125    | vpbroad                                   | dcastd %xmm1,%ymm1                     |
| 412a    | vpbroad                                   | dcastd %xmm2,%ymm2                     |
| 412f    | vpbroad                                   | dcastd %xmm0,%ymm0                     |
| 4134    | vpbroad                                   | dcastd %xmm1,%ymm1                     |
| 4139    | vpbroad                                   | <pre>dcastd %xmm2,%ymm2</pre>          |
| 413e    | Jmp                                       | 4120 <x64_foo+0x1030></x64_foo+0x1030> |
| 4140    | retq                                      |                                        |

| <pre>mov \$COUNT, %rcx 1: 1fence rdtsc 1fence mov %rax, %rsi</pre>                                                           | <pre>#elif defined(P0156) .rept 64 add %r8, %r8 add %r9, %r9 add %r10, %r10 add %r11, %r11 .endr</pre> |  |  |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| <pre>#ifdef P1 .rept 48 crc32 %r8, %r8 crc32 %r9, %r9 crc32 %r10, %r10 .endr</pre>                                           | <pre>#else #error No ports defined #endif lfence rdtsc shl \$32, %rax</pre>                            |  |  |
| <pre>#elif defined(P5) .rept 48 vpermd %ymm0, %ymm1, %ymm0 vpermd %ymm2, %ymm3, %ymm2 vpermd %ymm4, %ymm5, %ymm4 .endr</pre> | dec %rcx                                                                                               |  |  |



| 30f0 | <x64_foo>:</x64_foo>                        |
|------|---------------------------------------------|
| 30f0 | test %rdi,%rdi                              |
| 30f3 | je 4100 <x64_foo+0x1010></x64_foo+0x1010>   |
| 30f9 | jmpq 4120 <x64_foo+0x1030></x64_foo+0x1030> |
|      | epsil Aps Stad                              |
| 4100 | popcnt %r8,%r8                              |
| 4105 | popcnt %r9,%r9                              |
| 410a | popcnt %r10,%r10                            |
| 410f | popcnt %r8,%r8                              |
| 4114 | popcnt %r9,%r9                              |
| 4119 | popcnt %r10,%r10                            |
| 411e | jmp 4100 <x64_foo+0x1010></x64_foo+0x1010>  |
| 4120 | vpbroadcastd %xmm0,%ymm0                    |
| 4125 | vpbroadcastd %xmm1,%ymm1                    |
| 412a | vpbroadcastd %xmm2,%ymm2                    |
| 412f | vpbroadcastd %xmm0,%ymm0                    |
| 4134 | vpbroadcastd %xmm1,%ymm1                    |
| 4139 | vpbroadcastd %xmm2,%ymm2                    |
| 413e | jmp 4120 <x64_foo+0x1030></x64_foo+0x1030>  |
| 4140 | retq                                        |
|      |                                             |

#### P-384

is a type of **elliptic curve cryptography** that uses a prime field of size 384 bits. At the time of writing the paper, P-384 was **the only compliant ECC option** for **Secret and Top Secret levels** as approved by the NSA.

During **OpenSSL P-384 ECDSA signature generation**, PortSmash can measure the **timing variations** due to **port contention**.

## Real World Example

PortSmash allows to implement an **end-to-end P-384 private key recovery attack**. The attack has three phases:

- Procurement phase: the attack targets a stunnel TLS server with a P-384 certificate, measuring port contention with a Spy while the server produces ECDSA signatures.
- 2. **Signal processing phase**: the collected traces are filtered to obtain partial ECDSA nonce information for each digital signature.
- 3. **Key recovery phase**: the partial nonce information is used in a lattice attack to fully recover the server's P-384 private key.

#### **CVE-2018-5407:** new side-channel vulnerability on SMT/Hyper-Threading architectures

*From*: Billy Brumley <br/>bbrumley () gmail com> *Date*: Fri, 2 Nov 2018 00:12:27 +0200

## Fix

Disable SMT/Hyper-Threading in the bios

Upgrade to OpenSSL 1.1.1 (or >= 1.1.0i if you are looking for patches)

Published: 11/02/2018

After careful assessment, Intel determined that this method was similar to previously disclosed execution timing side channels and not a variation of speculative execution side channels such as Spectre, Meltdown, and L1TF. Existing programming best practices, such as employing constant execution timing and/or avoiding control flows that vary depending on secret data, can mitigate against PortSmash.

Intel does not recommend turning off Intel HT Technology as a mitigation technique because other programming methods are effective and higher-performing.

#### **CVE-2018-5407:** new side-channel vulnerability on SMT/Hyper-Threading architectures

*From*: Billy Brumley <br/>bbrumley () gmail com> *Date*: Fri, 2 Nov 2018 00:12:27 +0200

#### ## Fix

#### Disable SMT/Hyper-Threading in the bios

Upgrade to OpenSSL 1.1.1 (or >= 1.1.0i if you are looking for patches)



github.com/openssl/openssl/pull/7593

## Conclusion

- **SMT architectures** create vulnerabilities via **port contention**, allowing attackers to extract sensitive information from victims.
- The PortSmash technique features properties like **high adaptability** through **various configurations**, very **fine spatial granularity**, **high portability**, and **minimal prerequisites**.
- It is a **practical attack vector** with a **real-world end-to-end attack** against a TLS server, successfully recovering an ECDSA P-384 secret key.

Labs / Cache Attacks

#### Cache Side Channel Lab

#### Similarity:

How does instruction block X affects the latency of instruction block Y.

#### Difference:

Operation X and the access to line Y do not need to happen sequentially.

### **Covert Shotgun**

Anders Fogh / September 27, 2016 / meta

#### Similarity:

How does some eviction operation that change s the cache state, X, affect the cache line Y.

#### Difference:

Instruction block X and Y should happen in parallel.

Assume cores  $C_0$  and  $C_1$  are two logical cores of the same physical core. To make efficient and fair use of the shared EE, a simple strategy for port allocation is as follows. Denote *i* the clock cycle number,  $j = i \mod 2$ , and  $\mathcal{P}$  the set of ports.

C<sub>j</sub> is allotted P<sub>j</sub> ⊆ P such that |P \ P<sub>j</sub>| is minimal.
 C<sub>1-j</sub> is allotted P<sub>1-j</sub> = P \ P<sub>j</sub>.

There are two extremes in this strategy. For instance, if  $C_0$  and  $C_1$  are executing fully pipelined code with no hazards, yet make use of disjoint ports, then both  $C_0$  and  $C_1$  can issue in every clock cycle since there is no port contention. On the other hand, if  $C_0$  and  $C_1$  are utilizing the same ports, then  $C_0$  and  $C_1$  alternate, issuing every other clock cycle, realizing only half the throughput performance-wise.

- crc32: Performs a cyclic redundancy check (CRC) on a specified data stream. Useful in error detection and correction, and data verification applications.
- **popcnt**: Counts the number of 1 bits in a data stream. Used in algorithms involving bit manipulation or searching, in optimization of programs that require counting or accumulation of data.
- **vpermd**: Performs a vector permute operation on the source and destination operands. Useful in applications that require reordering of data, such as multimedia processing or data compression.
- **vpbroadcastb**: Broadcasts a byte-sized value to all elements of a vector. Used in applications that require initialization of vector data or constant propagation.

| Instruction  | Ports |
|--------------|-------|
| add          | 0156  |
| crc32        | 1     |
| popcnt       | 1     |
| vpermd       | 5     |
| vpbroadcastd | 5     |

30f0 30f0 30f3

30f9 . . . . 4100 4105 410a 410f 4114 4119 411e 4120 4125 412a 412f 4134 4139 413e 4140

| <x64_f< th=""><th>00&gt;:</th><th>4150</th><th><x64_b< th=""><th>ar&gt;:</th></x64_b<></th></x64_f<> | 00>:                                   | 4150 | <x64_b< th=""><th>ar&gt;:</th></x64_b<> | ar>:                                 |
|------------------------------------------------------------------------------------------------------|----------------------------------------|------|-----------------------------------------|--------------------------------------|
| test                                                                                                 | %rdi,%rdi                              | 4150 | test                                    | %rdi,%rdi                            |
| je                                                                                                   | 4100 <x64_foo+0x1010></x64_foo+0x1010> | 4153 | je                                      | 5100 <x64_bar+0xfb0></x64_bar+0xfb0> |
| jmpq                                                                                                 | 4120 <x64_foo+0x1030></x64_foo+0x1030> | 4159 | jmpq                                    | 5140 <x64_bar+0xff0></x64_bar+0xff0> |
|                                                                                                      |                                        |      |                                         |                                      |
| popent                                                                                               | %r8,%r8                                | 5100 | popent                                  | %r8,%r8                              |
| popent                                                                                               | %r9,%r9                                | 5105 | popent                                  | %r9,%r9                              |
| popent                                                                                               | %r10,%r10                              | 510a | popent                                  | %r10,%r10                            |
| popent                                                                                               | %r8,%r8                                | 510f | popent                                  | %r8,%r8                              |
| popent                                                                                               | %r9,%r9                                | 5114 | popent                                  | %r9,%r9                              |
| popent                                                                                               | %r10,%r10                              | 5119 | popent                                  | %r10,%r10                            |
| jmp                                                                                                  | 4100 <x64_foo+0x1010></x64_foo+0x1010> | 511e | popent                                  | %r8,%r8                              |
| vpbroa                                                                                               | dcastd %xmm0,%ymm0                     | 5123 | popent                                  | %r9,%r9                              |
| vpbroa                                                                                               | dcastd %xmm1,%ymm1                     | 5128 | popent                                  | %r10,%r10                            |
| vpbroa                                                                                               | dcastd %xmm2,%ymm2                     | 512d | popent                                  | %r8,%r8                              |
| vpbroa                                                                                               | dcastd %xmm0,%ymm0                     | 5132 | popent                                  | %r9,%r9                              |
| vpbroa                                                                                               | dcastd %xmm1, %ymm1                    | 5137 | popent                                  | %r10,%r10                            |
| vpbroa                                                                                               | dcastd %xmm2, %ymm2                    | 513c | jmp                                     | 5100 <x64_bar+0xfb0></x64_bar+0xfb0> |
| jmp                                                                                                  | 4120 <x64_foo+0x1030></x64_foo+0x1030> | 513e | xchg                                    | %ax,%ax                              |
| retq                                                                                                 |                                        | 5140 | vpbroa                                  | dcastd %xmm0, %ymm0                  |
|                                                                                                      |                                        | 5145 | vpbroa                                  | dcastd %xmm1, %ymm1                  |
|                                                                                                      |                                        | 514a | vpbroa                                  | dcastd %xmm2, %ymm2                  |
|                                                                                                      |                                        | 514f | vpbroa                                  | dcastd %xmm0, %ymm0                  |
|                                                                                                      |                                        | 5154 | vpbroa                                  | dcastd %xmm1, %ymm1                  |
|                                                                                                      |                                        | 5159 | vpbroa                                  | dcastd %xmm2, %ymm2                  |
|                                                                                                      |                                        | 515e | vpbroa                                  | dcastd %xmm0, %ymm0                  |
|                                                                                                      |                                        | 5163 | -                                       | dcastd %xmm1, %ymm1                  |
|                                                                                                      |                                        | 5168 | vpbroa                                  | dcastd %xmm2, %ymm2                  |
|                                                                                                      |                                        | 516d | -                                       | dcastd %xmm0, %ymm0                  |
|                                                                                                      |                                        | 5172 | vpbroa                                  | dcastd %xmm1, %ymm1                  |
|                                                                                                      |                                        | 5177 | -                                       | dcastd %xmm2, %ymm2                  |
|                                                                                                      |                                        | 517c | jmp                                     | 5140 <x64 bar+0xff0=""></x64>        |
|                                                                                                      |                                        | 517e | retq                                    |                                      |
|                                                                                                      |                                        |      | 1                                       |                                      |

Fig. 4. Two Victims with similar port footprint, i.e., port 1 and port 5, but different cache footprint. Left: Instructions span a single cache-line. Right: Instructions span multiple cache-lines.



### Citations

[1] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida García and N. Tuveri, "Port Contention for Fun and Profit," 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2019, pp. 870-887, doi: 10.1109/SP.2019.00066.

[2] C. Percival, "Cache missing for fun and profit," in BSDCan 2005, Ottawa, Canada, May 13-14, 2005, Proceedings, 2005. [Online]. Available: <u>http://www.daemonology.net/papers/cachemissing.pdf</u>

[3] O. Acıiçmez and J. Seifert, "Cheap hardware parallelism implies cheap security," in Fourth International Workshop on Fault Diagnosis and Tolerance in Cryptography, 2007, FDTC 2007: Vienna, Austria, 10 September 2007, L. Breveglieri, S. Gueron, I. Koren, D. Naccache, and J. Seifert, Eds. IEEE Computer Society, 2007, pp. 80–91. [Online]. Available: <u>https://doi.org/10.1109/FDTC.2007.4318988</u>

[4] Z. Wang and R. B. Lee, "Covert and side channels due to processor architecture," in Proceedings of the 22nd Annual Conference on Computer Security Applications, ACSAC 2006, Miami Beach, FL, USA, December 11-15, 2006. IEEE Computer Society, 2006, pp. 473–482. [Online]. Available: https://doi.org/10.1109/ACSAC.2006.20

### Citations

[5] O. Acıiçmez, B. B. Brumley, and P. Grabher, "New results on instruction cache attacks," in Cryptographic Hardware and Embedded Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, ser. Lecture Notes in Computer Science, S. Mangard and F. Standaert, Eds., vol. 6225. Springer, 2010, pp. 110–124. [Online]. Available: <u>https://doi.org/10.1007/978-3-642-15031-9\_8</u>

[6] Y. Yarom, D. Genkin, and N. Heninger, "CacheBleed: A timing attack on OpenSSL constant time RSA," in Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, ser. Lecture Notes in Computer Science, B. Gierlichs and A. Y. Poschmann, Eds., vol. 9813. Springer, 2016, pp. 346–367. [Online]. Available: <u>https://doi.org/10.1007/978-3-662-53140-2\_17</u>

[7] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, "Translation leakaside buffer: Defeating cache side-channel protections with TLB attacks," in 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, W. Enck and A. P. Felt, Eds. USENIX Association, 2018, pp. 955–972. [Online]. Available: https://www.usenix.org/conference/usenixsecurity18/presentation/gras

## Citations

[8] Fogh, Author Anders. "Covert Shotgun." cyber.wtf, 27 Sept. 2016, cyber.wtf/2016/09/27/covert-shotgun.

[9] "More Information on PortSmash." Intel, <u>www.intel.com/content/www/us/en/developer/articles/news/more-information-portsmash.html</u>.

[10] Openssl. "CVE-2018-5407 Fix: ECC Ladder by Bbbrumley · Pull Request #7593 · Openssl/Openssl." GitHub, github.com/openssl/openssl/pull/7593.

[11] Oss-sec: CVE-2018-5407: New Side-channel Vulnerability on SMT/Hyper-Threading Architectures. seclists.org/oss-sec/2018/q4/123.

[12] IEEE Symposium on Security and Privacy. "Port Contention for Fun and Profit." YouTube, 28 May 2019, <u>www.youtube.com/watch?v=ELs8U8zTk5o</u>.

[13] Computerphile. "What's Behind Port Smash? - Computerphile." YouTube, 13 Nov. 2018, www.youtube.com/watch?v=k6PzjGwyKuY.