HertzBleed

Andrew Jiang, Leo Wang

Key observation

* Dynamic Voltage and Frequency
Scaling (DVFS) changes CPU

WhrAARARSL
OCOoONWRAWL

frequency according to the
power consumption (and other

factor). | | , | |
0 5 10 15
 When the workload is high, Tme () Time (9
increase the CPU frequency for (a) Run of the int32-float test (b) Run of the int 32 test
efficiency until the CPU is too
hot.

* Power side channel = Timing
side channel

Importance

* Power side channel attacks are powerful, but it’s also not hard to
block attackers’ access to those information.

* The constant-time programming does not take CPU frequency into
account.

Power side channel

* Two common models: Hamming Weight, Hamming distance

* Consider the instructiona < aop b
* Hamming weight: number of 1sin a
* Hamming distance: number of bits differed between old a and new a

rax = COUNT rax = LEFT rax = rcx = rdx = rsi = rdi = FIRST
rbx = 0x0000FFFFFFFF0000 rcx = .. = rll = RIGHT rbx = r8 = r9 = rl0 = rll = SECOND
loop: loop: loop:
shlx %rax, %$rbx, $rcx // rcx = rbx << rax or %$rax,%rcx // rex = rax | rcx or %$rax,%rcx // rcx = rax | rcx
shlx %rax, $rbx, $rdx // rdx = rbx << rax or %rax, %rdx // rdx = rax | rdx or %rax, %$rdx // rdx = rax | rdx
shrx $rax, $rbx, $rsi // rsi = rbx >> rax or %rax,%rsi // rsi = rax | rsi or %rax,%rsi // rsi = rax | rsi
shrx $rax, $rbx, $rdi // rdi = rbx >> rax or %rax,%rdi // rdi = rax | rdi or %rax,%rdi // rdi = rax | rdi
shlx %rax, $rbx, %r8 // r8 = rbx << rax or %rax,%r8 // r8 = rax | r8 or %rbx, %r8 // r8 = rbx | r8
shlx %$rax, $rbx, %r9 // r9 = rbx << rax or %rax,%r9 // r9 = rax | r9 or %rbx,%r9 // r9 = rbx | r9
shrx %rax, %$rbx,%$rl0 // rl0 = rbx >> rax or %rax,%rl0 // rl0 = rax | rl0 or %rbx,%rl0 // rl0 = rbx | rl0
shrx %rax, %$rbx, $rll // rll = rbx >> rax or %rax,%rll // rll = rax | rll or %rbx,%rll // rll = rbx | rll
jmp loop jmp loop jmp loop

(a) Sender for our HD experiments. (b) Sender for our HW experiments. (c) Sender for our HW+HD experiments.

Frequency (GHz)

HD effect

o
N N N N

(o)) ~ o] O
1 L 1 L

-
e

0 5 10
COUNT

15

(a) Frequency vs COUNT

Input:
rax = 0 <= COUNT <= 16

rcx = OXOOOOFFFFFFFFOO0O

Power (W)

rax = COUNT
rbx = 0x0000FFFFFFFF0000
loop:

shlx %rax, ¥rbx, ¥rcx
shlx %rax, ¥rbx, ¥rdx
shrx %rax, $rbx, ¥rsi
shrx %rax, ¥rbx, ¥rdi
shlx %rax, ¥rbx, %r8

shlx %rax, %¥rbx, %r9

shrx %rax, %rbx, %rl0
shrx %rax, $rbx, %rll

jmp loop

1/
1/
1/
1/
1/
1/
//
//

rex
rdx
rsi
rdi
r8

r9

rl0
rll

rbx
rbx
rbx
rbx
rbx
rbx
rbx

rbx

<<
<<
>>
>>
<<
<<
>>
>>

rax

rax

rax

rax

rax

rax

rax

rax

23.8 - i
23.6 1 "
23.4 - * "
23.2 -
0 5 10 15
COUNT

(b) Power vs COUNT

Frequency (GHz)

rax = LEFT
rcx = .. = rll = RIGHT
loop:

HW Effect or %rax, %rcx // rcx = rax | rcx
or %rax, $rdx // rdx = rax | rdx
or %rax,%rsi // rsi = rax | rsi
or %$rax, %rdi // rdi = rax | rdi

_ or %$rax, %r8 // r8 = rax | r8
., « From LSB 27.25 9 romuss el '
4164 ™= o or %rax,%r9 // r9 = rax | r9
::""-.. From MSB » From MSB o
S, o 27.00 - ol or %rax,%rl0 // rl0 = rax | rl0
e'. ™™ Q
4 \"\ E & .."' or %$rax,%rll [/ rIl.="rax | rll
S N = 26.75 - - .
4.14 - " %,] ,..-"' jmp loop
e .."o ; - ".‘..
e .,.. o 26.50 .-:;,...-/
e, . -’
=0, % o
W 26.25 - coun"
4.12 A ", “"b
1 ' I 1 I I 1 1
0 20 40 60 0 20 40 60
Hamming weight Hamming weight

(a) Frequency vs HW (b) Power vs HW

Input:
. LSB: LEFT = RIGHT = 0b00000111111
- MSB: LEFT=RIGHT =0b11111000000

rax = LEFT
rcx = .. = rll = RIGHT
loop:

HW effect or %rax,%rcx // rcx = rax | rcx
or %$rax, $rdx // rdx = rax | rdx
or %rax, %rsi // rsi = rax | rsi
or %$rax, %rdi // rdi = rax | rdi
or %$rax, %r8 // r8 = rax | r8

< —0.004 A ¢ 4 ¢ or %$rax,%r9 // r9 = rax | r9
I '} 0.20 A
o %‘ or %rax,%rl0 // rl0 = rax | rl0
Q—0.00G‘ { { :‘; 6.4 } | or %rax,%rll Ll Fll.='rax | rll
v 2 jmp loop
= &
8—0008‘ 4010‘{ *
s . } *
< } t

0O 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Byte index Byte index

(a) Effect of OxFF to frequency (b) Effect of OxFF to power
Note: this effect (0.12W/byte)

is small compared to HW
Input: (1.11W/byte)

+ LEFT = RIGHT = 0x????00?7???
+ LEFT = RIGHT = Ox????FF????

Frequency (GHz)

rax = LEFT
rcx = .. = rll = RIGHT
loop:

HW effect or %rax, %rcx // rcx = rax | rcx
or %$rax, $rdx // rdx = rax | rdx
or %$rax, %rsi // rsi = rax | rsi
or %$rax, %rdi // rdi = rax | rdi

= = or %$rax, %r8 // r8 = rax | r8
4.16 1 . 27.25 - or %rax,%r9 // r9 = rax | r9
= E or $rax,%rl0 // rl0 = rax | rl0
EE 27001 or %rax,%rll // rll = rax | rll
4.14 E 26.75 - s jmp loop
E
26.50 -
4.12 +
l l ' . : 26.25 A $; . . '
0 2 4 6 8 0 2 4 6 8
Hamming weight Hamming weight

(a) Frequency vs HW (b) Power vs HW

Input:
- LEFT =RIGHT = 0x01010101
- LEFT = RIGHT = 0x03030303 ...

Frequency (GHz)

Additivity of HW and HD

4.04 A

4.02 A

4.00 -

3.98 A

OO0 >

(a) Frequency vs HW

Input:

A: FIRST = 0xO00000000000FFFF
B: FIRST = OxFFFFOO0000000000
C: FIRST = 0xOOO00000FFFFFFFF
D: FIRST = OxFFFFFFFFOO0O00000

HW of SECOND

Power (W)

29.5 o "o

rax

rbx

loop:

rcx = rdx

r8 = r9

$rax, $rcx
$rax, $rdx
$rax, $rsi
$rax, $rdi
%rbx, %r8

$rbx, $r9

%$rbx, %rl0
$rbx, $rll

jmp loop

rsi
rl0

//
//
//
//
//
//
//
//

o B

rcx
rdx
rsi
rdi
r8

r9

rl0

rll

non

rdi = FIRST

= SECOND
rax rcx
rax rdx
rax rsi
rax rdi
rox r8
rbx r9
rbx rl0
rbx rll

HW of SECOND

(b) Power vs HW

Summary

In our model, three things can change the power consumption and the
CPU frequency:

Hamming Distance
Hamming Weight
Position of 1 (not that significant)

Attacks

Chosen Ciphertext Attack on SIKE

- recover server’s secret key through triggering and observing anomalous
Os

- Attacker provides malicious P, Q

- Server calculates P + [m]Q using Montgomery ladder

- Server performs a few more steps, and then sanity check

« Insome case, P + [m]Q will results in (0, 0) (because of attacker’s invalid
input) which lowers the power consumption.

Kernel ASLR break

Using the power consumption difference when prefetching
mapped/unmapped address

Mitigations

Disable DVFS
Turbo Boost, SpeedStep or Hardware Controlled Performance
States(HWP) from BIOS

Modify Cryptosystem

masking/blinding to limit individual operad leakage

Discussion

What other cryptographic algorithms are at risk to this kind of attack besides SIKE?

What is SIKE? Can the encryption scheme be explained again? How do we recover the secret
key?

Why do bits demonstrate a position dependency on power? For example, why does the MSB
use more power than the LSB?

How did the researchers select an algorithm for the attack model? Is there a general
"repertoire” of common algorithms to expose data among secure hardware
researchers/engineers or does this step require a lot of background research?

Does performing the attack remotely vs. on a shared device affect how the SIKE
decapsulation process works / how successful or efficient it is?

Just like there is constant-time programming, would it be possible to implement programs that
use a fixed amount of power so they'd be able to defend against HertzBleed?

Can the same methodology be applied to other cryptographic algorithms in addition to SIKE?
Besides simply turning off DVFS / Turbo Boost / etc, are there any other possible workload-
independent defenses to this attack? Would it be possible to restrict access to the current
CPU frequency (i.e. via the scaling_cur_freq interface from the cpufreq driver), or would that
cause other problems? What about injecting noise into the CPU'’s steady-state frequency, so
that the exact P-state is unknown?

How exactly were their experiments able to test HD and HW effects independently? | didn't
really get why/how they're experimental setups testing only one of these effects while leaving
the other effect constant.

Section 4 of this paper describes the scope of the CPU frequency leakage model to be limited
to instructions involving the ALU. Could this approach be applied to / what experiments might
be conducted to find if there is a frequency side channel for instructions involving main
memory?

| don't really understand the part where they group operations into 2 or 4. They claim that it's
related to "port" and | don't know what that is.

How do the masking/blinding techniques in the discussion of possible mitigations for the
leakage in ciphers work?

