Opening Pandora’s Box

A Systematic Study of New Ways
Microarchitecture Can Leak Private Data

Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka Nayak, Caroline Trippelt, Adam Morrisont, David
Kohlbrenner§, Christopher W. Fletcher

University of lllinois at Urbana-Champaign, tStanford University, $Tel Aviv University, §University of Washington

Presenters: Mindy Long, Joseph Zhang

Questions to keep in mind

The authors continuously mention the slowing of Moore's law as one of the reasons for
the increase in micro-architecture optimizations. Should performance be of
paramount concern if each new optimization introduces new vulnerabilities in the
system?

The paper says "An MLD for a given microarchitectural optimization is a stateless
function that specifies 1) the inputs needed to describe the optimization’s functional
behavior." How are these inputs defined? Doesn’t this depend on the specific
implementation of the optimization? In question 1, for example, could we figure out
what the input would be, or do we need more information?

Overview

Moore’s Law: The number of transistors on microchips doubles every two years
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count

ur World
in Data

50,000,000,000 6C2 Ry
core eqn p Cnria 2 0
10,000,000,000
5,000,000,000
1,000,000,000 s bl
500,000,000
100,000,000
50,000,000 persom 4 Wilnere & 0, O @aom
Pentium If Mol M Dixor Commmine. PARM Cortexcas
o AOKTB gpertunil Coppermi
10,000,000 AVOKigy gmertin it
5,000,000 Pentium Prog, ?n?rw mil Deschites
Pentimg 4
& 10
1,000,000 Inel80stlg, &
500,000 Ve
el 80386g, Inicla DARM 3
Mo«mm:;so:r,ooo ;égg 0, N
100,000 e DEHES °
VelBse i A
50,000 ® @aeniss -
ntel 8086@p @ Intel 8088 o, A,?W)
ah o’\"
10,000 1.6 0 o508 By,
5,000 R
Intel 6005, §
<
el o
1,000
O LA (S . A s . SN L TR LN SO NS G L R O SO
N N N e T A S S SHG S S SU M S S S

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the rmcroch\p was first introduced
OurWorldinData.org - Research and data to make progress against the world's largest problems. Licen

inder CC-BY by the authors Hannah Ritchie and Max Roser.

As Moore’s law slows,
microarchitects will introduce even
more processor optimizations.

This leads to more opportunities
to take advantage of
microarchitectural vulnerabilities
(think Spectre)

Some previously un-analyzed microarchitectural optimizations

Stateless Memory-Centric Stateful
Instruction-Centric . . Instruction-Centric
1. Register-file
1. Computation compression 1. Silent Stores
Simplification 2. Data 2. Computation Reuse
2. Pipeline Compression memory-dependent 3. Value Prediction

prefetchers

Tools for analysis

Microarchitectural leakage
descriptors (MLDs)

e Simplified pseudocode to
describe microarchitectural
vulnerabilities

Tools for analysis

Microarchitectural leakage
descriptors (MLDs)

e Simplified pseudocode to
describe microarchitectural
vulnerabilities

// Example 1: single-cycle addition.
mld single_cycle_alu(Inst i1): return 0

Tools for analysis

Microarchitectural leakage
descriptors (MLDs)

e Simplified pseudocode to
describe microarchitectural
vulnerabilities

/l Example 1: single-cycle addition.
mld single_cycle_alu(Inst i1): return 0

TABLE II: Optimization classification based on MLD signature.

Instruction (Inst) Memory
Stateless - | Stateful - IV-C | (Arch) -
IV-B Uarch | Arch IV-D

Comp. simplification Vv
Pipeline compression o
Silent stores Vv
Computation reuse Vv
Value prediction Vv
Reg. file compression Vv
D-memory prefetching Vv

Memory-Centric Optimizations

Why are memory optimizations particularly scary?

They leak data regardless of how it is computed.

This falls outside the model for writing constant-time programs and
indiscriminately risks all registers and data memory.

Register-File Compression

Register-file compression seeks to increase the number of available registers by
checking if a register already stores a computation value.

Implementation: Check if result of instruction is already in a register file

a. Yes: return register originally supposed to hold the result to the “free pool”
b. No: Allocate register to store result

Data Memory-Dependent Prefetchers

Data memory-dependent
prefetchers take into account
contents of data memory directly,
rather than just addresses to data
memory.

This most directly affects pointer
chasing (applications in tensor
algebra and graphs).

Data Memory-Dependent Prefetchers

Data memory-dependent
prefetchers take into account
contents of data memory directly,
rather than just addresses to data
memory.

This most directly affects pointer
chasing (applications in tensor
algebra and graphs).

Pointer Chasing: X[Y[Z[i]l]

Z|i]

Data Memory-Dependent Prefetchers

Data memory-dependent
prefetchers take into account
contents of data memory directly,
rather than just addresses to data
memory.

This most directly affects pointer
chasing (applications in tensor
algebra and graphs).

Pointer Chasing: X[Y[Z[i]l]

Z|i]

Yiz[ill

Data Memory-Dependent Prefetchers

Data memory-dependent Pointer Chasing: X[Y[Z[i]l]
prefetchers take into account Z[il
contents of data memory directly,
rather than just addresses to data
memory.

This most directly affects pointer
chasing (applications in tensor
algebra and graphs).

Data Memory-Dependent Prefetchers

What if | want an entire row of a matrix?

Data Memory-Dependent Prefetchers

What if | want an entire row of a matrix?

Z[i + Al

Data Memory-Dependent Prefetchers

What if | want an entire row of a matrix?

Z[i + Al

!I Y[Z[i+Al]

Data Memory-Dependent Prefetchers

What if | want an entire row of a matrix?

Z[i + Al

Y[Z[i+Al]

X[Y[Z[i+A]l]

Data Memory-Dependent Prefetchers

What would happen if @ controlled some portion of memory outside of
Z7?

Z[i + A]

Data Memory-Dependent Prefetching

Protected m.
u Sandbox space -

———p
Z Y X .
Prefetch: :
Z Streaming, @ Z[i+Al= Prefetch:
Z[i] - target secret=
\\ Y[target]
Y[Z[i]]
b/ Prefetch:

@ \\ X[secret]
X[Y[Z[i]]1]

X 4
Leak secret over H

cache covert channel

Fig. 1: Indirect-memory prefetcher leaking all of program memory (forming
a universal read gadget [17]) in the sandbox setting. The attacker can choose
which word of private data it wants to leak by setting the value target relative
to the base address of array Y. The victim’s sunglasses represent the sandbox’s
software-level memory-safety checks.

Stateless Instruction-Centric

Computation Simplification

Computation simplifications are techniques (e.g. skip zero-multiply, replace
divide with a right shift by 2) to simplify or eliminate operations when operand
values satisfy certain conditions

// Example 2: zero-skip multiply.
mld zero_skip_mul(Inst il): return V; il.arg.v; ==

Pipeline Compression

Pipeline compression compresses data as it
moves through the processor pipeline.

Principle: Data is only as “wide” as its most
significant non-zero bit

Implementations:

e packing multiple “narrow” operands to
move between processor stages

e breaking data into words/bytes/bits
before moving

Pipeline Compression

Pipeline compression compresses data as it
moves through the processor pipeline.

Principle: Data is only as “wide” as its most
significant non-zero bit

Implementations:

e packing multiple “narrow” operands to
move between processor stages

e breaking data into words/bytes/bits
before moving

/l Example 4 (Section IV-B): arithmetic unit operand
packing [24]. il and i2 must share the same execution unit
type.
mld operand_packing(Inst il, Inst i2):
return msb(il.arg.vo) < 16 A msb(il.arg.vi) < 16 A
msb(i2.arg.vo) < 16 A msb(i2.arg.v1) < 16

Security Concerns

Threat to constant-time
programming

Even bitwise operations won't be
constant-time.

Optimizations depend on multiple
instructions.

In pipeline compression, an attacker
can choose its i2 instruction so
packing optimization occurs as a
function of the i1 instruction

Proof of Concept — Data Memory-Dependent Prefetching

Attacker designed to trigger IMP
1 BPF_ARRAY(Z, int, N); imov 0x0(%rsi),%eax # eax = Z[i]

IMP prefetches “assuming” everything . BPF_ARRAY(Y, int, N); # bounds check Z[i] < len(Y):
:BPF_ARRAY(X, int, N); scmp $0x40,%rax

(&)

will be within a_rray bOl_'mdS’ attacker + int attacker () { 4 jae 0x000000000000007f
may instead violate this assumption . int j = 0; int *v; sshl $0x3,%rax
_ . ¢ for (j=0;j<N—1;j++) { sadd %rdi,%rax # rax = &Y[Z[i]]
- IMP detects indirect access 7 it i =j; 7jmp 0x0000000000000081
: . : 8 v = Z.lookup(&i); s XOr Yoeax,%oeax
patterns by mqnltprlng Z[i]s anq o if (Iv) temmm O eomp $0%0%mx
addresses for indirections Y[Z]i]]s o v = Y.ookup(v); wje 0x00000000000000db
- It uses thls Informatlon to Solve for 11 if (‘V) return O; 11 movabs $0x,%rd1 #rdi =X object
12 v = X.lookup(v); 2mov %rax,%rsi
&X[0], &Y[0] to prefetch, s if (v) return 0; sadd $0xd0,%rdi # rdi = &X array
assuming Z[i]s will be in bounds w o if (kv) return 0; } o # eax = Y[Z[i]]:
s return 0; } ismov 0x0(%rsi), %eax
Prefetch buffer — some prefetCherS do (a) Attacker eBPF source. (b) Attacker eBPF JITed assembly snippet.
not fill cache unless prefetched data Fig. 7: Attacker program to break out of the eBPF sandbox using the 3-level

read, not applied to every cache level indirect-memory prefetcher.

Stateful-Instruction Optimizations

Computation Reuse

Detect redundant computations in hardware (non-speculative)

1) Identify computation

2) Table lookup (e.g. by operand value/register)
3) Use result on hit (skip computation)

// Example 6 (Section IV-C): dynamic instruction reuse, S,
variant [74]. reuse_buffer is the PC-indexed memoization
table that records each memoized instruction’s operand
values.
mld instruction_reuse(Inst i1, Uarch reuse_buffer):

return A; il.arg.vi == reuse_buffer[il.pc]|[i]

Computation Reuse

Potentially leaked information depends on the choice of lookup key

- Values: may leak operand values (typically achieves higher reuse)
- Operand register IDs: only info about what instruction is executing

How would this change the MLD?

// Example 6 (Section IV-C): dynamic instruction reuse, S,
variant [74]. reuse_buffer is the PC-indexed memoization
table that records each memoized instruction’s operand
values.
mld instruction_reuse(Inst i1, Uarch reuse_buffer):

return A; il.arg.vi == reuse_buffer[il.pc]|[i]

Value Prediction

Increase instruction-level parallelism by breaking instruction dependencies
(predicts the result of instructions before they are computed — speculative)

Nearly all proposals are threshold based (do not make predictions unless
predictions are sufficiently high confidence)

// Example 7 (Section IV-C): value prediction [75].
prediction_table is the PC-indexed predictor table where
each entry contains a confidence conf (an unsigned
number) and a predicted value prediction.
mld v_prediction(Inst il, Uarch prediction_table) :
return prediction_table[il.pc|.conf ||
prediction_table[il.pc].prediction == il.dst.v

Silent Stores

Skip “silent stores” that do not change contents of memory

Improves memory throughput by freeing up memory write port, but this resource
usage difference is not immediately useful as a measurable timing difference

(Out-of-order pipelines are very good at preventing stalls from stores to memory)

// Example 5 (Section IV-C): silent stores [25]. i1 must be
a store.
mld silent_stores(Inst i1, Arch data_memory):

return il.data.v == data_memory[il.addr.v]

Silent Stores

Example: check for silent store at store retirement

- Inputs: in-flight store data, data stored at address
- Distinct behaviours: skip performing store, perform store as usual

In this case, attacker only needs to control one of the inputs to learn the other

// Example 5 (Section IV-C): silent stores [25]. i1 must be
a store.
mld silent_stores(Inst i1, Arch data_memory):

return il.data.v == data_memory[il.addr.v]

Proof of Concept — Silent Stores

Read-port stealing scheme:

Issue a Silent-Store-Load, as soon as

the store address resolves and there is a
free load port, that reads the contents of

memory at the store address

A.

C.

D.

D-Cache

A o

" _-Hit A
Read Port - ", :
Avoilc:ble?:é Silents ~ »: Store

Fetch

Decode/
Rename

Dispatch

EX/
Agen

WB Commit

FIGURE 3. Read port stealing performs a load and
compare only if a cache port is idle.

Store Value == Loaded | Address
(Silent Store) Resolves

Store Value != Loaded | Address
(Non-Silent Store) Resolves

*
Increased by
amplification gadget

No Free Load Port Address
(Non-Silent Store) Resolves

SS-Load Returns Late | Address
(Non-Silent Store) Resolves

SS-Load |_,| SS-Load Reaches | | Store SQ |Observable Timing Difference|
Issues Returns SQ Head Dequeues |
SS-Load SS-Load Reaches Store Sent Response Store SQ
Issues | | Returns SQHead [| to Cache | [from Mem*| | Dequeues
Reaches | | Store Sent Response Store SQ
SQ Head to Cache from Mem Dequeues
SS-Load Reaches | |Store Sent| | Response Store SQ
Issues SQ Head to Cache from Mem Dequeues

Fig. 4: The different possible sequences of actions taken by a store given the read-port stealing scheme from [86].

Proof of Concept — Silent Stores (Amplification Gadget)

Goal: create a large timing
difference depending on
whether an attacker-chosen
store is silent or not

Example implementation:
Here, the gadget is part of the
victim program

// Preconditions:
// - A, S have resolved

// - line(A) not present in cache
// - line(S) present in cache
// - set(S) != set(A), set(S) == set(A’)

load A’ <- (A) // delay sub-gadget
load _ <- (A’) // flush sub-gadget
store D -> (S) // target store

Fig. 5: A single-threaded (i.e., inline with the victim program) amplification
gadget for a release-consistency memory model and a direct-mapped cache.
line (X) refers to the cache line associated with address X. set (X) refers
to the cache set occupied by 1ine (X).

Proof of Concept — Silent Stores (Amplification Gadget)

Example implementation:
Delay/flush sub-gadgets
using cache contention

Delay gadget takes a long
time to execute

Flush gadget depends on
delay gadget (to execute after
SS-load) and removes target
line from cache

// Preconditions:
// - A, S have resolved

// - line(A) not present in cache
// - line(S) present in cache
// - set(S) != set(A), set(S) == set(A’)

load A’ <- (A) // delay sub-gadget
load _ <- (A’) // flush sub-gadget
store D -> (S) // target store

Fig. 5: A single-threaded (i.e., inline with the victim program) amplification
gadget for a release-consistency memory model and a direct-mapped cache.
line (X) refers to the cache line associated with address X. set (X) refers
to the cache set occupied by 1ine (X).

Proof of Concept — Silent Stores (Amplification Gadget)

Step 1 // Preconditions:
// - A, S have resolved

// - line(A) not present in cache
Delay gadget makes sure // - line(S) present in cache
SS-load completes before /] - set(S) != set(A), set(S) == set(A’)
target store performed load A’ «- (A) Il delay sub-gadget

load _ <- (A’) // flush sub-gadget

t D -> (S target st
SS-load done concurrently, store (S) // target store

returns first, so silent store ,
. Fig. 5: A single-threaded (i.e., inline with the victim program) amplification
Candldacy checked before gadget for a release-consistency memory model and a direct-mapped cache.
line (X) refers to the cache line associated with address X. set (X) refers

target Store performed to the cache set occupied by 1ine (X).

Proof of Concept — Silent Stores (Amplification Gadget)

Step 2 // Preconditions:
// - A, S have resolved

_ // - line(A) not present in cache
Delay sub-gadget returns V) - 5% 5y srecens i e
after SS-load completes, the // - set(S) != set(A), set(S) == set(A’)
flush sub-gadget may now load A’ <- (A) // delay sub-gadget
load _ <- (A’) // flush sub-gadget
execute store D -> (S) // target store

Target line removed from ,
Fig. 5: A single-threaded (i.e., inline with the victim program) amplification

cache after SS-load gadget for a release-consistency memory model and a direct-mapped cache.
line (X) refers to the cache line associated with address X. set (X) refers
completes, before target to the cache set occupied by 1ine (X).

store performed

Proof of Concept — Silent Stores (Amplification Gadget)

Step 3

For non-silent store, dequeue
happens only when target
line filled in cache, so timing
difference between case A
and B is amplified!

Creates a delay proportional
to cache miss latency

// Preconditions:
// - A, S have resolved

// - line(A) not present in cache
// - line(S) present in cache
// - set(S) != set(A), set(S) == set(A’)

load A’ <- (A) // delay sub-gadget
load _ <- (A’) // flush sub-gadget
store D -> (S) // target store

Fig. 5: A single-threaded (i.e., inline with the victim program) amplification
gadget for a release-consistency memory model and a direct-mapped cache.
line (X) refers to the cache line associated with address X. set (X) refers
to the cache set occupied by 1ine (X).

A Store Value == Loaded | Address | | SS-Load
(Silent Store) Resolves Issues

|| SS-Load Reaches | | Store SQ |Observable Timing Difference|

Returns | | SQ Head Dequeues |

B Store Value != Loaded | Address | | SS-Load
(Non-Silent Store) Resolves Issues

SS-Load Reaches Store Sent| | Response

Store SQ |*Increased by
Returns || SQ Head

to Cache from Mem* Dequeues | amplification gadget

Proof of Concept — Silent Stores (Bitslice AES128)

Cloud threat model:

Attacker and victim trigger encryption calls
with known plaintexts in worker thread

Victim is repeatedly encrypting the same
public data (e.g., a packet header)

Encryption worker leaves temporary
variables on the stack

It turns out there are eight locations storing
these intermediate values that are enough
to reconstruct victim key

251
0 Guess Type
20 — Incorrect |
=== Correct

—
w

—_
(=]
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

S W
] i
|

Frequency (Percentage)
|

Bl i - 7

i T : P T T T i T '
14000 14200 14400 14600 14800
Cycles

Fig. 6: Histogram of runtimes for BSAES when the amplification gadget is
applied to one of the eight stores that overwrites AES state. That is, timing
differences reflect whether a single dynamic store instruction was silent or
not.

Proof of Concept — Silent Stores (Bitslice AES128)

Victim encrypts data, leaving behind 25
intermediate values on the stack gl Cuesspe B
mmm Correct

—
w

Attacker encrypts data, to see if the
writes to the intermediate value
locations trigger silent stores

—
(=)

Frequency (Percentage)

W
T T T

Attacker knows its own key and can e
o _ _ 14000 14200 14403es 14600 14800
modify its own plaintext, so it can try i
. Fig. 6: Histogram of runtimes for BSAES when the amplification gadget is
trlggel’lng silent stores with different applied to one of the eight stores that overwrites AES state. That is, timing

differences reflect whether a single dynamic store instruction was silent or

values until one matches not.

Things to consider going forward

Possible defense strategies

- Attempts to block all microarchitectural attacks
- Retrofitting constant-time programming
- Architecting security-conscious microarchitecture

Additional optimizations with novel security implications
- The analysis in this paper may be incomplete
Processor attack landscape going forward

- Power/energy microarchitecture-related attacks

Discussion Questions
The authors continuously mention the slowing of Moore's law as one of the
reasons for the increase in microarchitecture optimizations.

Should performance be of paramount concern if each new optimization
introduces new vulnerabilities in the system?

Discussion Questions

"An MLD for a given microarchitectural optimization is a stateless function that
specifies the inputs needed to describe the optimization’s functional behavior."

- How are these inputs defined?

- Doesn’t this depend on the specific implementation of the optimization?

- In question 1, for example, could we figure out what the input would be, or do
we need more information?

(From question 1: In conventional caches, the size of a physical entry in the data
array generally matches the size of the cache line. In compressed caches,
however, a single data entry can contain the data of multiple lines.)

Discussion Questions

From some preliminary searching, Gem5 seems to be a software based emulator.

- How valid are software based emulation strategies for computer architecture
for determining the scope and severity of uarch attacks?

- Are there major differences that must be taken into account when going to
real hardware?

