
Opening Pandora’s Box
 A Systematic Study of New Ways 

Microarchitecture Can Leak Private Data
Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka Nayak, Caroline Trippel†, Adam Morrison‡, David 

Kohlbrenner§, Christopher W. Fletcher

University of Illinois at Urbana-Champaign, †Stanford University, ‡Tel Aviv University, §University of Washington

Presenters: Mindy Long, Joseph Zhang



Questions to keep in mind

The authors continuously mention the slowing of Moore's law as one of the reasons for 
the increase in micro-architecture optimizations. Should performance be of 
paramount concern if each new optimization introduces new vulnerabilities in the 
system?

The paper says "An MLD for a given microarchitectural optimization is a stateless 
function that specifies 1) the inputs needed to describe the optimization’s functional 
behavior." How are these inputs defined? Doesn’t this depend on the specific 
implementation of the optimization? In question 1, for example, could we figure out 
what the input would be, or do we need more information?



Overview

As Moore’s law slows, 
microarchitects will introduce even 
more processor optimizations.

This leads to more opportunities 
to take advantage of 
microarchitectural vulnerabilities 
(think Spectre)



Some previously un-analyzed microarchitectural optimizations

Stateless 
Instruction-Centric

1. Computation 
Simplification

2. Pipeline Compression

Memory-Centric

1. Register-file 
compression

2. Data 
memory-dependent 
prefetchers

Stateful 
Instruction-Centric

1. Silent Stores
2. Computation Reuse
3. Value Prediction



Tools for analysis

Microarchitectural leakage 
descriptors (MLDs)

● Simplified pseudocode to 
describe microarchitectural 
vulnerabilities



Tools for analysis

Microarchitectural leakage 
descriptors (MLDs)

● Simplified pseudocode to 
describe microarchitectural 
vulnerabilities



Tools for analysis

Microarchitectural leakage 
descriptors (MLDs)

● Simplified pseudocode to 
describe microarchitectural 
vulnerabilities



Memory-Centric Optimizations



Why are memory optimizations particularly scary?

They leak data regardless of how it is computed. 

This falls outside the model for writing constant-time programs and 
indiscriminately risks all registers and data memory.



Register-File Compression

Register-file compression seeks to increase the number of available registers by 
checking if a register already stores a computation value.

Implementation: Check if result of instruction is already in a register file

a. Yes: return register originally supposed to hold the result to the “free pool”
b. No: Allocate register to store result



Data Memory-Dependent Prefetchers

Data memory-dependent 
prefetchers take into account 
contents of data memory directly, 
rather than just addresses to data 
memory.

This most directly affects pointer 
chasing (applications in tensor 
algebra and graphs).



Data Memory-Dependent Prefetchers

Data memory-dependent 
prefetchers take into account 
contents of data memory directly, 
rather than just addresses to data 
memory.

This most directly affects pointer 
chasing (applications in tensor 
algebra and graphs).

Pointer Chasing: X[Y[Z[i]]]

Z[i]



Data Memory-Dependent Prefetchers

Data memory-dependent 
prefetchers take into account 
contents of data memory directly, 
rather than just addresses to data 
memory.

This most directly affects pointer 
chasing (applications in tensor 
algebra and graphs).

Pointer Chasing: X[Y[Z[i]]]

Z[i]

Y[Z[i]]



Data Memory-Dependent Prefetchers

Data memory-dependent 
prefetchers take into account 
contents of data memory directly, 
rather than just addresses to data 
memory.

This most directly affects pointer 
chasing (applications in tensor 
algebra and graphs).

Pointer Chasing: X[Y[Z[i]]]

Z[i]

Y[Z[i]]X[Y[Z[i]]]



Data Memory-Dependent Prefetchers

What if I want an entire row of a matrix?



Data Memory-Dependent Prefetchers

What if I want an entire row of a matrix?

Z[i + Δ]



Data Memory-Dependent Prefetchers

What if I want an entire row of a matrix?

Z[i + Δ]

Y[Z[i+Δ]]



Data Memory-Dependent Prefetchers

What if I want an entire row of a matrix?

Z[i + Δ]

Y[Z[i+Δ]]

X[Y[Z[i+Δ]]]



Data Memory-Dependent Prefetchers

What would happen if 😈 controlled some portion of memory outside of 
Z?

Z[i + Δ] ��



Data Memory-Dependent Prefetching



Stateless Instruction-Centric



Computation Simplification

Computation simplifications are techniques (e.g. skip zero-multiply, replace 
divide with a right shift by 2) to simplify or eliminate operations when operand 
values satisfy certain conditions 



Pipeline Compression

Pipeline compression compresses data as it 
moves through the processor pipeline.

Principle: Data is only as “wide” as its most 
significant non-zero bit

Implementations: 

● packing multiple “narrow” operands to 
move between processor stages

● breaking data into words/bytes/bits 
before moving



Pipeline Compression

Pipeline compression compresses data as it 
moves through the processor pipeline.

Principle: Data is only as “wide” as its most 
significant non-zero bit

Implementations: 

● packing multiple “narrow” operands to 
move between processor stages

● breaking data into words/bytes/bits 
before moving



Security Concerns

Threat to constant-time 
programming

Even bitwise operations won’t be 
constant-time.

Optimizations depend on multiple 
instructions.

In pipeline compression, an attacker 
can choose its i2 instruction so 
packing optimization occurs as a 
function of the i1 instruction



Proof of Concept – Data Memory-Dependent Prefetching

Attacker designed to trigger IMP

IMP prefetches “assuming” everything 
will be within array bounds, attacker 
may instead violate this assumption

- IMP detects indirect access 
patterns by monitoring Z[i]s and 
addresses for indirections Y[Z[i]]s

- It uses this information to solve for 
&X[0], &Y[0] to prefetch, 
assuming Z[i]s will be in bounds

Prefetch buffer – some prefetchers do 
not fill cache unless prefetched data 
read, not applied to every cache level



Stateful-Instruction Optimizations



Computation Reuse

Detect redundant computations in hardware (non-speculative)

1) Identify computation
2) Table lookup (e.g. by operand value/register)
3) Use result on hit (skip computation)



Computation Reuse

Potentially leaked information depends on the choice of lookup key

- Values: may leak operand values (typically achieves higher reuse)
- Operand register IDs: only info about what instruction is executing

How would this change the MLD?



Value Prediction

Increase instruction-level parallelism by breaking instruction dependencies 
(predicts the result of instructions before they are computed – speculative)

Nearly all proposals are threshold based (do not make predictions unless 
predictions are sufficiently high confidence)



Silent Stores

Skip “silent stores” that do not change contents of memory

Improves memory throughput by freeing up memory write port, but this resource 
usage difference is not immediately useful as a measurable timing difference

(Out-of-order pipelines are very good at preventing stalls from stores to memory)



Silent Stores

Example: check for silent store at store retirement

- Inputs: in-flight store data, data stored at address
- Distinct behaviours: skip performing store, perform store as usual

In this case, attacker only needs to control one of the inputs to learn the other



Proof of Concept – Silent Stores

Read-port stealing scheme:

Issue a Silent-Store-Load, as soon as 
the store address resolves and there is a 
free load port, that reads the contents of 
memory at the store address



Proof of Concept – Silent Stores (Amplification Gadget)

Goal: create a large timing 
difference depending on 
whether an attacker-chosen 
store is silent or not

Example implementation: 
Here, the gadget is part of the 
victim program



Proof of Concept – Silent Stores (Amplification Gadget)

Example implementation: 
Delay/flush sub-gadgets 
using cache contention

Delay gadget takes a long 
time to execute

Flush gadget depends on 
delay gadget (to execute after 
SS-load) and removes target 
line from cache



Proof of Concept – Silent Stores (Amplification Gadget)

Step 1

Delay gadget makes sure 
SS-load completes before 
target store performed

SS-load done concurrently, 
returns first, so silent store 
candidacy checked before 
target store performed



Proof of Concept – Silent Stores (Amplification Gadget)

Step 2

Delay sub-gadget returns 
after SS-load completes, the 
flush sub-gadget may now 
execute

Target line removed from 
cache after SS-load 
completes, before target 
store performed



Proof of Concept – Silent Stores (Amplification Gadget)

Step 3

For non-silent store, dequeue 
happens only when target 
line filled in cache, so timing 
difference between case A 
and B is amplified!

Creates a delay proportional 
to cache miss latency 



Proof of Concept – Silent Stores (Bitslice AES128)

Cloud threat model:

Attacker and victim trigger encryption calls 
with known plaintexts in worker thread

Victim is repeatedly encrypting the same 
public data (e.g., a packet header)

Encryption worker leaves temporary 
variables on the stack

It turns out there are eight locations storing 
these intermediate values that are enough 
to reconstruct victim key



Proof of Concept – Silent Stores (Bitslice AES128)

Victim encrypts data, leaving behind 
intermediate values on the stack

Attacker encrypts data, to see if the 
writes to the intermediate value 
locations trigger silent stores

Attacker knows its own key and can 
modify its own plaintext, so it can try 
triggering silent stores with different 
values until one matches



Things to consider going forward

Possible defense strategies

- Attempts to block all microarchitectural attacks
- Retrofitting constant-time programming
- Architecting security-conscious microarchitecture

Additional optimizations with novel security implications

- The analysis in this paper may be incomplete

Processor attack landscape going forward

- Power/energy microarchitecture-related attacks



Discussion Questions

The authors continuously mention the slowing of Moore's law as one of the 
reasons for the increase in microarchitecture optimizations. 

Should performance be of paramount concern if each new optimization 
introduces new vulnerabilities in the system?



Discussion Questions

"An MLD for a given microarchitectural optimization is a stateless function that 
specifies the inputs needed to describe the optimization’s functional behavior." 

- How are these inputs defined? 
- Doesn’t this depend on the specific implementation of the optimization? 
- In question 1, for example, could we figure out what the input would be, or do 

we need more information? 

(From question 1: In conventional caches, the size of a physical entry in the data 
array generally matches the size of the cache line. In compressed caches, 
however, a single data entry can contain the data of multiple lines.)



Discussion Questions

From some preliminary searching, Gem5 seems to be a software based emulator. 

- How valid are software based emulation strategies for computer architecture 
for determining the scope and severity of uarch attacks? 

- Are there major differences that must be taken into account when going to 
real hardware?


