
Speculative Interference
Attacks: Breaking Invisible
Speculation Schemes

Written by Mohammad Behnia et al.
Presented by Travis Ziegler

Guiding Questions

If the order in which instructions get executed is secret

dependent, how can the secret be leaked?

Is speculative execution inevitably insecure?

Problem and Motivation

Initial Problem

Spectre v1 – branch misprediction leaks data through cache accesses

if (i < N) { // speculative misprediction
secret = A[i];
k = B[secret*64]; // causes cachline eviction that can be noticed by attacker

}

Problem and Motivation

One proposed hardware solution to Spectre v1: Delay on Miss (DOM)

Make speculative cache accesses “invisible”

if (i < N) { // speculative misprediction
secret = A[i];
k = B[secret*64]; // On cache hit, fetch B[secret*64] and continue

 // On cache miss, wait for speculation to resolve
}

Problem and Motivation

Benefits of DOM

- Allegedly fixes spectre v1 style attacks

- Does not compromise performance that much
- Common case = contents inside speculated branch are in cache

Challenge:
How to get around DOM?

Proposal

Despite delaying cache misses during speculation, the claim is

that cache states can still get changed!

… Which can leak secrets!

Proposal - Big Picture Idea

Pseudo-code

load(X)

load(Y)

If (i < N) { //mispeculation }

Execution Order influenced by secret:

load(X), load(Y) // if secret = 0

load(Y), load(X) // if secret = 1

General Idea

Attack Framework to cause interference_target to get delayed

Proposal

Resource contention causes

→ difference in timing during mis-speculation

→ difference in non-speculative instruction execution order

→ difference in cache state,

→ a cache side channel

Types of Interference

Interference in MSHR

Interference Target

A = long computation (takes Z cycles)

X = load(A)

Interference Gadget

load(&S[secret*64])

load(&S[secret*64*1])

…

load(&S[secret*64*(M-1)])

MSHR = registers needed for ongoing loads

Interference in Execution Units

Interference Target

z = long computation (takes Z cycles)

A = f(z)

X = load(A)

Interference Gadget

x = load(&S[secret*64])

f’(x)

f(k) and f’(k) are a set of instructions that depend on k and run on the
same execution unit

Types of Gadgets

Secret = 1

Secret = 0

interference

Attack Framework

Interference Gadget

If secret = 1, interference_target gets delayed (delayed)
If secret = 0, interference_target executes immediately

C executes

Secret = 1

Secret = 0

interference

Attack Framework

Interference Gadget

If secret = 1, interference_target gets delayed a long time
If secret = 0, interference_target gets delayed a short time

Secret = 1

Secret = 0

interference

Attack Framework

Interference Gadget

If secret = 1, interference_target gets delayed a short time
If secret = 0, interference_target gets delayed a long time

Depending on the secret,
interference_target can get
delayed

How is this useful?

Delays change instruction order

Interference_target:

load(X)

load(Y)

Interference Gadget:

If secret = 1, does NOT delay load(X)

If secret = 0, delays load(X)

Conclusion:

If secret = 1, load(X) runs before load(Y)

If secret = 0, load(Y) runs before load(X)

Concrete example:

1. Prime cache so that secret=1 -> hit, secret = 0 -> miss
2. Observe:

a. If secret = 1, load(B) happens before load(A)
b. If secret = 0, load(A) happens before load(B)

3. From cache state, infer secret.
a. Ensure, A and B are in the same cache set. Then start triggering evictions.

LRU gets evicted first. If A = LRU → secret = 0. If B = LRU → secret = 1

Evaluation

They evaluated on real machines despite invisible

speculation schemes not being available

- By artificially making “invisible” loads secret dependent

Had to reverse the Kaby Lake D-Cache replacement policy

Worked on LLC, so cross core attack

Results - Sender and Receiver

Potential Impacts and Limitations

Gadgets have to be very specific. More useful in sandbox environments.

Cache protection systems don’t exist yet, so this attack is mainly

theoretical.

Brings up good points for future invisible speculation scheme designs

- Calls for the necessity of timing independent invisible speculation

schemes (that don’t change cache state)

Defense

Basic Defense Design:

- Execute speculative instructions but queue them up in the ROB and

don’t finish them until the oldest speculative instruction gets

resolved

To fix Spectre, only do this for branches

Discussion Question

Is hardware / program vulnerability an inevitable byproduct of

speculative fetches or is the overhead of performance that

would come with an ideal invisible speculation scheme worth

the security flaw?

Discussion Question

The paper evaluates its methods by sending secret zeros and

ones after making many simplifying assumptions. Could this be

used to actually leak meaningful data in the wild?

