
An Analysis of Speculative Type

Confusion Vulnerabilities in the Wild

Authors: Ofek Kirzner and Adam Morrison

William Mitchell

Outline

● Discussion Questions

● Problem and Motivation

● Challenges

● Proposal

● Evaluation

● Potential Impacts and Limitations

● Discussion

Discussion Questions

What is a speculative type confusion attack? How is it categorized in relation to

Spectre V1?

Is speculative type confusion a reliable method for reading arbitrary memory?

How can we defend against speculative type confusion attacks?

Problem and Motivation

Spectre Variant 1: Bounds Check Bypass

Goal: Leak data from the victim address space

void foo(long x) {

// ...

if (x < array1_len){

y = array1[x];

z = array2[y * 4096];

}

// ...

}

Problem and Motivation

Spectre Variant 1: Bounds Check Bypass

Goal: Leak data from the victim address space

void foo(long x) {

// ...

if (x < array1_len){

y = array1[x];

z = array2[y * 4096];

}

// ...

}

Problem and Motivation

Spectre Variant 1: Bounds Check Bypass

Goal: Leak data from the victim address space

void foo(long x) {

// ...

if (x < array1_len){

y = array1[x];

z = array2[y * 4096];

}

// ...

}

Problem and Motivation

Spectre Variant 1: Bounds Check Bypass

Goal: Leak data from the victim address space

void foo(long x) {

// ...

if (x < array1_len){

y = array1[x];

z = array2[y * 4096];

}

// ...

}

foo(valid_x)

Problem and Motivation

Spectre Variant 1: Bounds Check Bypass

Goal: Leak data from the victim address space

void foo(long x) {

// ...

if (x < array1_len){

y = array1[x];

z = array2[y * 4096];

}

// ...

}

foo(valid_x)

Train prediction:

if taken

Problem and Motivation

Spectre Variant 1: Bounds Check Bypass

Goal: Leak data from the victim address space

void foo(long x) {

// ...

if (x < array1_len){

y = array1[x];

z = array2[y * 4096];

}

// ...

}

foo(&secret - array1)

Problem and Motivation

Spectre Variant 1: Bounds Check Bypass

Goal: Leak data from the victim address space

void foo(long x) {

// ...

if (x < array1_len){

y = array1[x];

z = array2[y * 4096];

}

// ...

}

foo(&secret - array1)

Misprediction:

out of bounds

Problem and Motivation

Spectre Variant 1: Bounds Check Bypass

Goal: Leak data from the victim address space

void foo(long x) {

// ...

if (x < array1_len){

y = array1[x];

z = array2[y * 4096];

}

// ...

}

The secret is leaked

Problem and Motivation

Spectre Variant 1: Bounds Check Bypass

Goal: Leak data from the victim address space

Attacker - unprivileged user Victim - the Linux kernel

Problem and Motivation

Spectre Variant 1: Bounds Check Bypass

Goal: Leak data from the victim address space

Attacker - unprivileged user Victim - the Linux kernel

void function_called_from_syscall(long x) {

// ...

if (x < array1_len){

y = array1[x];

z = array2[y * 4096];

}

// ...

}

Problem and Motivation

Spectre Variant 1: Bounds Check Bypass

Goal: Leak data from the victim address space

Attacker - unprivileged user Victim - the Linux kernel

void function_called_from_syscall(long x) {

// ...

if (x < array1_len){

y = array1[x];

z = array2[y * 4096];

}

// ...

}

foo(&secret - array1)

The secret is leaked

Read from kernel → Read any physical address

Problem and Motivation

Mitigation in the Linux Kernel

A special API to ensure bounds checks are respected under speculation

void function_called_from_syscall(long x) {

// ...

if (x < array1_len){

y = array1[x];

z = array2[y * 4096];

}

// ...

}

void function_called_from_syscall(long x) {

// ...

if (x < array1_len){

y = array_index_nospec(array1[x]);

z = array2[y * 4096];

}

// ...

}

Problem and Motivation

Spectre V1 is more than just the bounds check bypass

From Spectre paper (Kocher et al., 2019):

Problem and Motivation

Speculative type confusion:

Mispeculation makes the victim execute with some variables holding

values of the wrong type, and thereby enabling leakage of memory

content

Problem and Motivation

Example

void syscall_helper(struct Base* obj) {

if (obj->type == TYPE1){

struct Type1* o = (struct Type1*) obj;

leak(o->value);

}

if (obj->type == TYPE2){

...

}

}

struct Common {

enum Type type;

};

struct Type1 {

struct Base base;

...

uint32_t value;

};

Problem and Motivation

Example

struct Common {

enum Type type;

};

struct Type1 {

struct Base base;

...

uint32_t value;

};

void syscall_helper(struct Base* obj) {

if (obj->type == TYPE1){

struct Type1* o = (struct Type1*) obj;

leak(o->value);

}

if (obj->type == TYPE2){

...

}

}

Problem and Motivation

Example

struct Common {

enum Type type;

};

struct Type1 {

struct Base base;

...

uint32_t value;

};

void syscall_helper(struct Base* obj) {

if (obj->type == TYPE1){

struct Type1* o = (struct Type1*) obj;

leak(o->value);

}

if (obj->type == TYPE2){

...

}

}

Problem and Motivation

Example

struct Common {

enum Type type;

};

struct Type1 {

struct Base base;

...

uint32_t value;

};

void syscall_helper(struct Base* obj) {

if (obj->type == TYPE1){

struct Type1* o = (struct Type1*) obj;

leak(o->value);

}

if (obj->type == TYPE2){

...

}

}

Problem and Motivation

Example

struct Common {

enum Type type;

};

struct Type1 {

struct Base base;

...

uint32_t value;

};

void syscall_helper(struct Base* obj) {

if (obj->type == TYPE1){

struct Type1* o = (struct Type1*) obj;

leak(o->value);

}

if (obj->type == TYPE2){

...

}

}

Speculative

type confusion

Problem and Motivation

Observation: speculative type confusion may be much more prevalent

than previously hypothesized.

Authors analyzed the Linux kernel, looking for speculative type

confusion.

Authors found new types of speculative type confusion

Challenges

Answering the question: Are OS kernels vulnerable to speculative type confusion

attacks?

Speculative type confusion vulnerabilities are not well studied.

Proposal

Speculative type confusion in three contexts:

Attacker-Introduced: EBPF

EBPF is a Linux subsystem, enabling user-defined programs in Linux kernel

space

eBPF bytecode

Attacker-Introduced: EBPF

EBPF is a Linux subsystem, enabling user-defined programs in Linux kernel

space

eBPF bytecode

Attacker-Introduced: EBPF

EBPF is a Linux subsystem, enabling user-defined programs in Linux kernel

space

eBPF bytecode Static verification
Bounds check

bypass mitigations

Attacker-Introduced: EBPF

EBPF is a Linux subsystem, enabling user-defined programs in Linux kernel

space

eBPF bytecode Static verification
Bounds check

bypass mitigations

Compiled into

native code

Attacker-Introduced: EBPF

// r0 = ptr to an array entry (verified != NULL)

Attacker-Introduced: EBPF

// r0 = ptr to an array entry (verified != NULL)

// r6 = ptr to stack slot (verified != NULL)

Attacker-Introduced: EBPF

// r0 = ptr to an array entry (verified != NULL)

// r6 = ptr to stack slot (verified != NULL)

// r9 = scalar value controlled by attacker

Attacker-Introduced: EBPF

Flows considered by eBPF verifier

// r0 = ptr to an array entry (verified != NULL)

// r6 = ptr to stack slot (verified != NULL)

// r9 = scalar value controlled by attacker

Attacker-Introduced: EBPF

Flows considered by eBPF verifier

// r0 = ptr to an array entry (verified != NULL)

// r6 = ptr to stack slot (verified != NULL)

// r9 = scalar value controlled by attacker

Attacker-Introduced: EBPF

// r0 = ptr to an array entry (verified != NULL)

// r6 = ptr to stack slot (verified != NULL)

// r9 = scalar value controlled by attacker

Speculative flows are not verified!!

Attacker-Introduced: EBPF

// r0 = ptr to an array entry (verified != NULL)

// r6 = ptr to stack slot (verified != NULL)

// r9 = scalar value controlled by attacker

Speculative flows are not verified!!

Attacker-Introduced: EBPF

// r0 = ptr to an array entry (verified != NULL)

// r6 = ptr to stack slot (verified != NULL)

// r9 = scalar value controlled by attacker

Speculative flows are not verified!!

Attacker-Introduced: EBPF

// r0 = ptr to an array entry (verified != NULL)

// r6 = ptr to stack slot (verified != NULL)

// r9 = scalar value controlled by attacker

Speculative flows are not verified!!

Attacker-Introduced: EBPF

Training mutually exclusive branches

Attacker-Introduced: EBPF

Training mutually exclusive branches

Mutually exclusive

Attacker-Introduced: EBPF

Training mutually exclusive branches

Mutually exclusive
Shadow gadget

Attacker-Introduced: EBPF

Training mutually exclusive branches

Mutually exclusive
Shadow gadget

Both branches can be taken

Attacker-Introduced: EBPF

Training mutually exclusive branches

Mutually exclusive
Shadow gadget

Both branches can be taken

Attacker-Introduced: EBPF

Training mutually exclusive branches

Mutually exclusive
Shadow gadget

Both branches can be taken

CVE-2021-33624: fixed in mainline Linux development tree in June 2021

Compiler-Introduced

Compilers might create speculative type confusion

void syscall_helper(cmd_t* cmd, long* ptr, long x) {

cmd_t c = *cmd;

if (c == CMD_A)

{

… // %rsi = x

}

if (c == CMD_B)

{

y = *ptr; // y = *%rsi

z = array[y * 4096];

}

// ...

}

Innocent looking code is compiled in a way

that introduces vulnerability

Attacker-controlled
(trusted) ptr

argument held in

x86 register %rsi

Compiler-Introduced

Compilers might create speculative type confusion

void syscall_helper(cmd_t* cmd, long* ptr, long x) {

cmd_t c = *cmd;

if (c == CMD_A)

{

… // %rsi = x

}

if (c == CMD_B)

{

y = *ptr; // y = *%rsi

z = array[y * 4096];

}

// ...

}

Innocent looking code is compiled in a way

that introduces vulnerability

Compiler reasoning:

Branches are mutually exclusive

Attacker-controlled
(trusted) ptr

argument held in

x86 register %rsi

Compiler-Introduced

Compilers might create speculative type confusion

void syscall_helper(cmd_t* cmd, long* ptr, long x) {

cmd_t c = *cmd;

if (c == CMD_A)

{

… // %rsi = x

}

if (c == CMD_B)

{

y = *ptr; // y = *%rsi

z = array[y * 4096];

}

// ...

}

Innocent looking code is compiled in a way

that introduces vulnerability

Compiler reasoning:

Branches are mutually exclusive

Attacker-controlled
(trusted) ptr

argument held in

x86 register %rsi

code during which

x moves to %rsi

Compiler-Introduced

Binary level analysis of Linux

Focused on system calls, which have well-defined user-controlled interface

The leakage mechanism is out of scope: aiming at finding speculative attacker-

controlled memory dereference

Compiler-Introduced

Binary level analysis of Linux

Focused on system calls, which have well-defined user-controlled interface

The leakage mechanism is out of scope: aiming at finding speculative attacker-

controlled memory dereference

Compiler-Introduced

Binary level analysis of Linux

Focused on system calls, which have well-defined user-controlled interface

The leakage mechanism is out of scope: aiming at finding speculative attacker-

controlled memory dereference

Polymorphic Type Confusion

struct Common { void (*foo) (void*); };

struct A { struct Common common; char* ptr; };

struct B { struct Common common; long user_controlled_scalar; };

void some_code_path(struct Common* common) {

/* … /*

common->foo(common);

}

Polymorphic Type Confusion

struct Common { void (*foo) (void*); };

struct A { struct Common common; char* ptr; };

struct B { struct Common common; long user_controlled_scalar; };

void some_code_path(struct Common* common) {

/* … /*

common->foo(common);

}

Polymorphic Type Confusion

struct Common { void (*foo) (void*); };

struct A { struct Common common; char* ptr; };

struct B { struct Common common; long user_controlled_scalar; };

void some_code_path(struct Common* common) {

/* … /*

common->foo(common);

}

Polymorphic Type Confusion

struct Common { void (*foo) (void*); };

struct A { struct Common common; char* ptr; };

struct B { struct Common common; long user_controlled_scalar; };

void some_code_path(struct Common* common) {

/* … /*

common->foo(common);

}

void foo_A(struct Common* common) {

/* … /*

char x = *((struct A*) common)->ptr;

leak(x);

}

Polymorphic Type Confusion

struct Common { void (*foo) (void*); };

struct A { struct Common common; char* ptr; };

struct B { struct Common common; long user_controlled_scalar; };

void some_code_path(struct Common* common) {

/* … /*

common->foo(common);

}

void foo_A(struct Common* common) {

/* … /*

char x = *((struct A*) common)->ptr;

leak(x);

}

B→user_controlled_scalar

Potential Impacts and Limitation

Thousands of patterns were flagged as being potentially vulnerable

Hundreds of “array indexing” instances

For all -- limited speculation window or limited control on user value

Potential Impacts and Limitation

Thousands of patterns were flagged as being potentially vulnerable

Hundreds of “array indexing” instances

For all -- limited speculation window or limited control on user value

Linux kernel security would be on shaky ground if conditional branch-based

mitigation were used instead of retpolines*

*retpoline: “return and trampoline” is a software construct which allows indirect branches to

be isolated from speculative execution

Discussion

What is a speculative type confusion attack? How is it categorized in relation to

Spectre V1?

Is speculative type confusion a reliable method for reading arbitrary memory?

How can we defend against speculative type confusion attacks?

Discussion - Select Submitted Questions

It wasn't entirely clear how to mitigate these attacks without large performance

losses. Has there been any proposed mitigation strategy that works without

significantly compromising performance?

Discussion - Select Submitted Questions

When you get the gadgets from the compiler analysis, is there any generalized

way to assess their exploitability or is the assumption that one would have to

reason through each gadget by hand?

Discussion - Selected Questions

- Are there any hardware-leaning solutions to speculative type confusion vulnerabilities?
- Are tools that detect vulnerabilities through static or dynamic analysis evolving over time and implementing some of the insights shared by this paper?
- When you get the gadgets from the compiler analysis, is there any generalized way to assess their exploitability or is the assumption that one would have to
reason through each gadget by hand?
- Is there a way to change the way a processor squashes incorrectly predicted branches in order to eliminate leakages? What sort of overhead might this entail?
- The authors found that speculative load hardening (SLH) is generally an effective mitigation against speculative type confusion vulnerabilities, but at a
significant slowdown cost of up to almost 3.5x (depending on CPU). How significant is this slowdown in reality? If a CPU is fast enough, could this slowdown be
imperceptible to a human?
- What would it take to make the compiler-introduced exploitation more reliable?
- Can you explain for we force branch misprediction? I found the code examples kind of confusing
- I don't understand what taint analysis is. Can you clarify?
- What other types of Speculative Type Confusion Vulnerabilities are there?
- How do other OS-s vulnerabilities compare to Linux?
- It wasn't entirely clear how to mitigate these attacks without large performance losses. Has there been any proposed mitigation strategy that works without
significantly compromising performance?
- How much work has been done after this paper in defending all the novel compiler induced vulnerabilities discovered in this paper? This part seemed to have
the least amount of related works available.
- How does the out of bounds misprediction attack discussed in lecture compare to the speculative type confusion vulnerabilities discussed in this paper? Which
attacks would be easier to defend against or introduce mitigations for? How do the performance costs of these mitigations compare?
- Are eBPF vulnerabilites like the one shown in the paper still existing in the Linux kernel?
- Is there a formal framework or automation tools established for kernel developers so that code written don't introduce these vulnerabilites?

	Slide 1: An Analysis of Speculative Type Confusion Vulnerabilities in the Wild
	Slide 2: Outline
	Slide 3: Discussion Questions
	Slide 4: Problem and Motivation
	Slide 5: Problem and Motivation
	Slide 6: Problem and Motivation
	Slide 7: Problem and Motivation
	Slide 8: Problem and Motivation
	Slide 9: Problem and Motivation
	Slide 10: Problem and Motivation
	Slide 11: Problem and Motivation
	Slide 12: Problem and Motivation
	Slide 13: Problem and Motivation
	Slide 14: Problem and Motivation
	Slide 15: Problem and Motivation
	Slide 16: Problem and Motivation
	Slide 17: Problem and Motivation
	Slide 18: Problem and Motivation
	Slide 19: Problem and Motivation
	Slide 20: Problem and Motivation
	Slide 21: Problem and Motivation
	Slide 22: Problem and Motivation
	Slide 23: Problem and Motivation
	Slide 24: Challenges
	Slide 25: Proposal
	Slide 26: Attacker-Introduced: EBPF
	Slide 27: Attacker-Introduced: EBPF
	Slide 28: Attacker-Introduced: EBPF
	Slide 29: Attacker-Introduced: EBPF
	Slide 30: Attacker-Introduced: EBPF
	Slide 31: Attacker-Introduced: EBPF
	Slide 32: Attacker-Introduced: EBPF
	Slide 33: Attacker-Introduced: EBPF
	Slide 34: Attacker-Introduced: EBPF
	Slide 35: Attacker-Introduced: EBPF
	Slide 36: Attacker-Introduced: EBPF
	Slide 37: Attacker-Introduced: EBPF
	Slide 38: Attacker-Introduced: EBPF
	Slide 39: Attacker-Introduced: EBPF
	Slide 40: Attacker-Introduced: EBPF
	Slide 41: Attacker-Introduced: EBPF
	Slide 42: Attacker-Introduced: EBPF
	Slide 43: Attacker-Introduced: EBPF
	Slide 44: Attacker-Introduced: EBPF
	Slide 45: Compiler-Introduced
	Slide 46: Compiler-Introduced
	Slide 47: Compiler-Introduced
	Slide 48: Compiler-Introduced
	Slide 49: Compiler-Introduced
	Slide 50: Compiler-Introduced
	Slide 51: Polymorphic Type Confusion
	Slide 52: Polymorphic Type Confusion
	Slide 53: Polymorphic Type Confusion
	Slide 54: Polymorphic Type Confusion
	Slide 55: Polymorphic Type Confusion
	Slide 56: Potential Impacts and Limitation
	Slide 57: Potential Impacts and Limitation
	Slide 58: Discussion
	Slide 59: Discussion - Select Submitted Questions
	Slide 60: Discussion - Select Submitted Questions
	Slide 61: Discussion - Selected Questions

