MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Computation Structures Group Memo 101

The Design of a Highly Parallel Computer for Signal Processing Applications

by

Jack B. Dennis
David P. Misunas

The work reported here was supported by the National Seience Founda-
tion under research grants GJ-432 and GJ-34671.

August 1974

‘The Design of a Highly Parallel Computer for Signal Processing Applications
by

Jack B. Dennis and David P. Misunas

Abstract: A computer of unusual architecture ig described that achieves
highly parallel operation through use of a data-flow program represantation.
The machine is especially suited for signal processing computations such as
waveform generation, modulation, and filteriny, in which a group of opera-
tions must be performed once for each sample of the signals being processed.
The difficulties of processor switching and memory/processor interconnection
arising in attempts to adapt Von Neuman type computers for parallel operation
- —are avoided by an organization in which sections of the machine communicate
through transmiasion of information packets, and delays in packet transmis-
« 'n do not compromise effective utilization of the hardware. The major
sectiwng of the processor are specified as speed independent interconnec-
tions of & small set of asynchronous module types, and hence, the design
concept is especially suited to implementation using asynchronous logic and

large-scale integrated circuita.

2.

Introduction

Highly parsilel computers such as the Illiac IV [4] and the CDC Star [10]
achieve their processing speed by imposing constraints on the atructure of the
data being processed. Both of these machines are organized to perform very
well for data represented as vectors. To realize its potential, computation
using the Illiac IV must be organized to exploit the machine's ability to exe-
cute the same operation simsltansously for many sets of operands. In the case
of the CDC Star, the maxiwmum processing rate of the pipelined processing unit
is approached only if the computation is organized to make effective use of
streaming operations on very long vectors. In both machinea the programmer
(or the compiler) is forced to use unusual aond intricate data representations
if highly parallel execution is to be achieved. Thus these machines are devel-
apments contrary to what is generally seen as one of the most important is-
sued in contemporary computer practice -- the difficulty of developing cor-
rect programs. Even such an important notion as the use of subroutines is
inadequately supported in these machines.

Othar approaches Lo parallel processing in practical computer systems
have not proved to be succeggful for highly parallel program execution: The
clageical multiprocessor computer system is limited in chpahility by the
growth in complexity of the memory-processor switch as system size increases.
Also, the problem of compiling user programs into concurrently executable
parts of sufficient size that processor switching cost ig acceptable is very
difficult in the absence of unnatural constraints on the user langusge. Large’
processors like the CDC 6600 and the IBM 360/91 achieve parallel instruction
execution by discovering absence of data dependency in imstructions of a se-
quential program. The degree of parallelism achievable in this way has praved
to be small.

We have been studying concepts of computer organization that can yield
highly parallel program execution but with no sacrifice in the gemeraliiy and
ease of programming in the language supported. The ultimate goal of this work
is a computer architecture able to achieve highly parallel execution of pro-
grams expressed in a user language such as CLU [14] which embodies linguis-
tic features designed. to support the development of well structured programs.
An outline of the concepta expected to ba aemployed in such a computer has »aan
given in [5]. A central idea is the use of a machine language that permits a
simple mechanism for fdentifying all instructions available for execution.

We have found that a program representation based on the concept of data
flow ig well suited for highly parallel program execution. In a data-flow re-
presentation, an instruction is enabled (that is, made available for execution)
just when each required operand has been supplied by execution of predecessor
instructions. Completion of instruction execution produces a result which is
forwarded to each specified successor instruction for use as an aperand. Data-
flow representarions for programs have been described by Karp and Miller [11],
Rodriguez [21], Adama [1], Denuis and Fosgseen [9]), Bahrs {3], Kosinski [12, 13],
and Dennis [8],

In the predent paper, we describe a machine capable of achieving highly
parallel program execution for a special class of data-flow programs that cor-
respond to the model of Karp and Miller [11]. These data-flow programs are
well suited to representing signal processing computations such as waveform gen=
eration, modulation, and filtering, in which a group of operations is to be
performed once for each sample (in time) of the signals being proceased.

Our machine avoids the problems of processor switching and processor/memory
interconnection preaent in attempts to adapt conventional Von Neuman type ma-
chines for parallel computatfon. In our desigr, processors in the ususl sense
do not exist. Sectionas of the machine communicate by the trangmission of fixed
size information packets, and the machine is orgenized so that the sections can
tolerate delays in packet transmission without compromliaing effective utilization
of the hardware. 1In future work we expect to further develop these ideas and in-
vestigate the feasibility of their application to the design of highly parallel
computers using a generalized deta-flow language such as deacribed by Demnis [8],
Kosiucki [12, 13) and Biahrs [3].

Part I: General Description
To illustrate the basic concepts of operation of the proposed processor,
consider the data-flow program shown in Figure 1. This program represents rthe

computation required for a second-order recursive digital filter
y(t) =Ax(t) +By(t - 1) +Cy(t-2)

vhere x(t) and y(t) denote input and output samples for time t. In this disgram,
operators 2, 3 and 4 are unary operators that multiply by the fixed parameters

A, B and C; operators 5 and 6 are binary operators that perform addition; and
operator 7 is an identity operator that transmits its input values unchanged.

Each amall solid dot is a link that receives results from an operator and dis-

tributes them to other operators for use as operands. Input operator 1 repre-

senta 2 port through which an externgl stream of values that represent the input

b

Figure 1. A data-flow program.

signal x{t) is presented to the program. Similarly, output operator 8 repre-
sents an output port at which the sequence of values representing v(t) is de-
i1ivered during program execution.

The large solid dots (tokens) show the presence of values at cert»in in-
put arcs of operators and define the initial configuration for program execu-
tion. An operator with tokens on each of its input arca and no token on its
output arc is enabled, and may fire by removing the tokens from its input arecs,
computing a result using the values associated with the tokens, and agsoclating
the result with a token placed on the output arc of the operator. A link is en-
abled when a tokaﬁ is present om its Input arc and mo token is present om any of
its output arcs, It fires by placing tokens on each of its output arcs and re-
moving the token from its input arc. The new tokeng distribute copies of the value
associsted with the input token over each output arc of the limk.

The processor has seven major sections organized as gshown in Figure 2:

Memory Section
Arbitration Network
Functional Units
Distribution Network
Controller

Command Network
Control Network

Tn addition, the block labeled "Host" represents a source of operating commands
to he machine and could be either 2 manusl conscle or a separate computer.

1.a design is conceived as using asynchronous comunication of information
packets between sections of the processor. Each connection is shown explicitly
in Figure 2 and is independently coordinated using an acknowledge signal for
gach information packet transmitted. The arrowheads in the figure indicate di-

rection of packet flow,
The information units transmitted through the Arbitration Network from the

Memory Section to the Functional Units are instruction packets; each instrue-
tion packet épecifies cne unit of work for the Functiomal Unit to which it is
directed. The information units sent through the Distribution Network from
Functional Units to the Memory Section are result packets; each result packet
delivers a newly computed value to a specific register in the Memory Sectlon.
The Memory Section of the processor holds a representation of the prdgram
to be executed and holda computed values awaliting use., The Memory is a collec-

tion of Cells; one Cell must be associated with each operator of the program,

Memory
n Cells

3n Reglsters

Controllex

Figure 2., General organization of the processor.

Each Cell (Figure 3) contains three reglaters -- one register to hold an {n-
struction which encodes the type of operator and its connections to other
operators of the program, and two registers that receive operand values for
use in the next execution of the instruction. Each register may be set to
behave as a constant or as a variable. If get to act as a variable, a re-
glster expects to receive a resu;t packet containing an operand value through
the Distribution Network; if set to act as a congtant, a reglster retains the
value delivered to it when the program was loaded into the Memory. The in-
struction register of a Cell is normally set to hold a constant. When all
three registers of & Cell are full, the Cell is said to be enabled and the
contents of the three registers (instruction and two operand values) form

an instruction packet which {s presented to the Arbitration Network.

Figure 4 shows the instruction format. Assuming four Functional Units,
the operation code has a flald of two bits which specifies the Functional Unit
required, and a fiald that indicates which specialized capability of the Func-
tional Unit is to be used. Each destination field contains the addresa of a
memory register which is to recefve one copy of each result generated by exe-

cution of the instruction.

For digital filtering according to the data-flow program of Figure 1,
eight Memory Cells may be set up as shown in Figure 5 to heold instructions
and initial values for the computation; the Cells are numbered to correa-
pond with the numbering of operators in Figure 1. Empty parentheses in an
operand register indicate that.the Cell is waiting for a value to be deli—
v2*d to the register; a dash in a register meana that the register is idle
and docs not have to be filled to enable the Cell. 1In Cells I and 8, which
hold the input and output instructions, one operand register is shown holding
3 channel designator which may be regarded as an extension of the operation
code. Let us trace the events that occur during execution of one instruc-
tion. In Figure 5, Cell 2 is enabled and contains the instruction

mult, 13, —
in which the dash indicates there is no second destination address. The Cell
presents the contents of its three registers to the Arbitration Network as

the instruction packet
mule, 13, =

x{0)
A

result
packet

resuit
packet

Temorr Jell

racister

TAstructlion

regt ator
instruction
? packet

Fipure 3. Operation of a Memory Cell.

operation code

destination destination
1 2

A ..
f W LK

[}
[)
L

d speclalized function

furictional unit

Megnre 4. Instruction format.

1+
0t

p2

o3

as

07

08

09
10

11

cell 1 cell 5
nput| o4 | - 12{agd | 17 | -
charrel 1 13 {)
- 14 ()
cell 2 cell 6
L:ult 131 - 15)add | 19 {23
x{0} 16 {)
A 17 ()
cell 3 cell 7
nlt 16 - 1f 160# 10 o7
() 19 ¥(-1)
B 20 -
cell & cell 8
I!ult iy - 21 but - -
¥{=2) . 22 charnel 2
c 23 ()
Figure 5. Imitialization of Mamory Cells for

the digital filter computation.

=10-

The Arbitration Network routes the packet according to the Functional Unit bits
of its operation code mult which direct the packet to a Functional Unit able to
pecform multiplication. The Functional Unit computes the product

z = A X x(0)
forms the result packet

13
2

by associating the computed vaiue z with the destination address obtained from
the instruction packet, and presents the result packet to the Distribution Net-
work. The result value z {8 routed by the Distribution Network to Memory Regis-

ter 13 whare it becomes one operand for the instruction

cell 5: add, 17, —
Execution of an instruction with two deatination addressea, for example,

cell 6: add, 19, 23

will pregent two result packets for independent transmission through the Distri-
bution Network,

The Functional Units of the procesaor may be constructed to operate in pipe-
line fashion as illustrated in Figure 6 to realize the best compromise between
throughput and complexity. Operands x and y from each instruction packet are
fed into the computational pipeline together with the funetiom specialization
code ¢. At the same time the two destination addresses are entered into a peir
of identity pipelines and are later assoclated with the result £ as it emerges
from the computational pipeline. Then each destination address and a copy of
the computed result £ form a result packet for delivery to the Distribution
Network.

Since the data-flow form of a program exposes many possibilicies for con-
current execution of instructions, we can expect that many Cells in the Memory
Section of the processor will be enabled at once. Aa the Functional Units have
high potential throughput, we must ghow how the Arbitratiou and Distribution
Networks can be organized to handle many packets concurrently so all sections
of the processor are effectively utilized, The Arbitration Network is designed
go many ingtruction packets may flow into 1t concurrently from Célls cf the
Memory Section, and merge intoe four streams of packets -- one for each Func-

tional Unit, The network is bullt of the four cypes of units shown in Figure 7.

resul®
packet 1

rasult
packet 2

-11-

Functional Unit

tdentity
pipeline

identity
pipelins

] dl § 42
‘ 7
Irstrantieon

computation
pipaline

X ? ralat

r i
dl
| el
az
J
2
5

Figure 6. Pipeline operation of a Functiocral Unit.

_—’c
a. Switch Unit

serial-to-parallel

D

parallel-to-serial

c. LConversion Unlts

3

b. Artitrati-nm Unit

i

1. Buffer tUnit

Figure 7. Units fer the Arlitration Network
and Meirikation Network.

-12-

The Arbitration lUnfit passes packets arriving at input ports A and B, one-
at-a-time to output port €, using a round-robin discipline to resolve any ambi-
guity about which packet should be sent out next., The Switch Init assigns pac-
keta arriving at port A to ports B or C according to some property of the packet.
In the Arbitration Network, Switch Units separate fnstruvction packets into four
categories, one for each Functional Unit, by testing the operation codes of the
instructions they contain. In the IMstribution Network, Switch Units test suc-
cessive bits of the destination address and direct each result packet to a spe.
cific register in the Memory.

Figure 8 showa how Arbitration Units and Switch Units might be arranged into
an Arbitration Network. This network contains a unique path for instruction pac-
kets from each Hemnry Cell to each Functional Unit. .

Since the Arbitration Network has many input ports and only four output
ports, the rate of packet flow will be much greater at the output portz. Thus,

a serial representation of packets i{s appropriate at the input ports to minimize
the number of commections to the Memory Section, but & more parallel representa-
tion is required at the ocutput ports so a high throughput may be achfeved. Evi-
dently, serial-to-parallel conversion is required within the Arbitration Network,
and Convergion thnita (Figure 7¢)} must be included, In addition, a packet emer-
ging from a Conversion Unit must be prevented from engaging a subsequent Arbitra-
tion Unit until the serial packet has been completely absorbed by the Conversion
Unit. Thua, Buffer Units are needed at the output of each converter. Figure 9
shows an improved Arbitration Network including Conversion Units and Buffer Units,

The Distribution Network is similarly organized. As shown in Figure 10,
many Switch Units route result packets to the Memory Registers speciffed by their
destination addresses. A few Arbitration Units are required so result packets
with different destination codes may enter the Diatribution Network concurrently
and ghare use of the second rank of Switch Units.

The Host computer controls operation of the processor by giving commands to
the Controller section of the processor. Four types of commands provide the
means for setting up or changing the status and contents of Memory Registers,
elther at the beginning or at intermediate atages of a computation:

1, enter-constant a, v -- enter the value v in the Memory Register

with address a, and set the Register to act as a constant.

2. enter-variable &, v -- enter the value v in the Memory Register with

addreas a, and set the Register to act as a variable.

3. empty a -- empty the Memory Register with address a, and set the

Register to act as a varisgble,

-13-

from
Memory to
Cells ¢ Functional
r Units
Yy
Figure 8. Primitive Arbitrstion Network,
r " -
tor-5(2/P)-ofur J
{)
| S E @ buf 3
y
Flgure 9. TImpraved Arbitration Networ',
[n tuf
from 2 . ‘
Furetional . to
Units < . Mermory
: fPogt ster
] - Tnits
E »
- : buf

Figure 10. Distribution Network.

-14-

4, 4dle a -- set the status of the Memory Register with address a

to idle.

For each command, the specified register is notified of the command type
through the Command Network. In addition, the firat two commands cause-the
value v to be sent through the Distribution Network as a result packet with
address a.

A fifth comuand type provides control over executfon of the data-flow
program represented in the Memory Cells:

3. run v == run the proceasor for v execution cycles of each instruc-

tion in an active (not idle) Memory Cell,
A run v command ia distributed to the Memory Cells by sending v enable signals
through the Control Network of the processor. The Controller waits for acknow-
ledgement that all v execution cycles have completed bafore performing further
commands .

The Host is responsible for requesting execution cycles only when the Me-
mory contains a valid program represantation, for otherwise program execution

would lead to deadlock and no acknowledge signal to the Host.

-15-

Part IL: Processor Specification in Terms of Speed Independent Modules
The concepts of processor organization just presented are very attractive

for application of techniques for gpeed independent logic design [6, 7, L6, 19]
that we have evolved from the early work of Muller [17]. The Appendix contains
4 complete specification for each wmit of the processor as u speed independent
interconnection of a small set of basic asynchronous module types. Here we ex- -
plain the fundamental ideas on which the specifications rest and discuss their
application to a key element of the processor -- the Memory Cell.

Asynchronous Ciréuits

An asynchronous circuit is an interconnection of switching elements. Each

awitching element has a unique ourput wire which is a node of the circwit and is
said to be driven by the switching element. Each input wire of each switching
element comes from some node of Ethe eircuit. At any instant during operation of
the circuit each node has &n associated value, which is efther O or 1, and is de-
termined by the switching element that drives the node. A get of values for all
nodes of a circuit is a totsl state of the circuit. The total state changes with
time through the firing of switching elements; “iring an element changes the wva-
lue of its output node (from 0 to 1, or from 1 to 0). The conditions for which

a switching element may fire may be specified by a specialized form of Karnaugh
map called a transition matrix. Transition matrices for rthree common awitching

elerents are given in Figure 11, Each cell of a transiticn matrix corresponds

to a particular set of values for the input and output nodes of the switching
ele-ent. Conditions for which a switching element ig able to fire are indicated
by the presence of an asterisk in the appropriate cell; the condition that holds
after firing is shown by an arrow. The inirial condition of a circuit is wich
all nodes at 0.

A svstem is gpeed-independent if correctness of its operation s unaffected
by the presence of delay. Two kinds of delay are considered: delay in the con-
nections between system components; and iniernal delays in the components. A
circuit built ae an interconnection of component circuits ias called a type 1
speed independqgg eircuit if arbitrary delays on the interconnecting wires do

not affect correctness of circuit operation. 4 circuit is a type 2 speed inde-
pendent circuit if its correct operation is not affected by arbitrary delays in-
serted at the output nodes of its component circuics.

It is attractive from an engineering viewpoint to construct systems as type
1 interconnections of componentsg, for timing consideratrion may be ignored in de-
8igning the physical placement of the components. However, the switching elements

-15-

h, E

2
[)
o
=]

"l
LI{
a

- O
I'i-) 3
e i
2
x|

A, B
o0 01 10 11
A c .
B c MY Y
S FYEAEZAL]
A
0 1
A B o A
- JsL

Figure ii. Transitior. matrlces for elementary switching .

slements.
(a) module (b) transition matrix
A, B
A
00 0l 10 i1
C

o

B C f *
1| % ¥

{(e) eircult

—3 1=

L

Flgure 12, The C-moduls.

=17=-

introduced so far do not provide an adequate basis for the degeription of aya-
tems as type 1 interconnections of components. In the following paragraphs we
describe 14 kinds of basic modules which have proven to be ugeful in the forma-
tion of type 1 deaigns for the umits of the processor. .

In using interconnections of basic modules to specify units and sections of
the processor, & communication discipline known as reset signaling is used: A
0 - to - 1 transition on a wire represents a meaningful event; we say that the
wire has gsent & signal from the module that drives the wire to the module to
which the wire is connected. Before the wire can transmit a aubpequent signal,
@ 1l - to - 0 transition must occur; this transitiom is called a reset of the
wire. During the interval between a signal event and the following reset event,

the wire ig gsaid to be active.

Rasic Modules

An importent switching element for speed independant systems is the C-module
shown in Figure 12. The output node of a C-module becomes 1 when both inputs be-
come 1, the output returns to 0 only when both inputs have beccme (., The reali-
zation of the C-module shown in Figure 12 is r:ither a type 1 nor a type 2 con~
nection of switching elements, yet its behavior will be consistent with the given
trangition matrix if delays within the circuit are proparly controlled.

The use of the C-module as a synchronization element and as a buffer storage
element is demonstrated in the design of the data switchk (Figure 13)., This rlzle:n:mle.I
waits for signals to arrive on the enable wire E and one of input wires Al and
. It then sends & signal on the enable wire A2 or B2 correaponding to the ac-
tive input wire. The output wire resets only when both the active input wire
and the enable wire are reset. For speed independent operatiovn, it is necessary
to use the data switch module only where signals cannot arrive on both input
wires Al and Bl without an intervening reset.

The circuit for the data switch given in Figure 9 i3 a type 2 intercomnection
of switching elements because of the comnnection from the enable input to the two
C-modules. Delay in the enable connection to the unused C-module may keep the (-
madule enable input from resetting in time to prevent a false output when an in-
put signal arrives at that C-module. Nevertheless, if there is negligible delay
in the wires, the circuit will exhibit the behavior specified by the transitfon
diagram.

Data switch moduies with more than two pairs of correaponding input and out-
put wires are also used. A three-wire data switch is shown in Figure 14. For
correct operation, only one of the three input wires Al, Bl, Cl may be active at

a time.

-18-

{b} elrcult
1
——) A
Bl B2
-——-—)
E

Figurs 13+ The cata switch module.

(a) module (b) clrcuit

Al A2

Figure . The three-uvire deta switch module

=19=-

The multiple data switch shown in Figure 15 is three simple data switches
combined into one module. In operation of the multiple data switch, the roles
of the input wires and the enable wire of the data switch modules are reversed,
A signal on input wires AQ, BO, or €O leads to a signal on one of the paft of
corresponding output wires, according as an enable signal srrives on input El
or EZ. For correct operation, wires E1 and E2 must not be active at the same
time,

The gate module shown in Pigure 16 is a basic element for controlling parts
of a system that perform cyclic activity. A channel for data flow from input pi
Eo output D2 is opened or closed by a signal at input S or input R, respectively.
The data input wire D! need not be O when input S is raised; data may be waiting
at the input fof the channel tc be opened. However, dats transmission must have
stopped and the data input and output wires must reset to 0 before the channel
is closed by the arrival of a signal at the reset input R. Also, inputs 3 and
X must not be simultaneously active. The implementation shownluses the sigrals
at inputs_s and R to set and reset a flip-flop, which allows gignal and reset
events arriving at Dl to pass through to D2 when gset, and allows no signals to
pass when reset.. The completion of opening or :losing of the gate is acknow-
ledged by a signal on wire AS or AR, respectively.

The select module (Figure 17} routes data events arriving at input DO ta
catput DI or D2 according to whether the module was last set by 2 signal at ena-
ble input 81 or §2. Acknowledge signals at Al and A2 confirm the setting of the
module. Taputs S1 and S2 must not be simultaneously active, and input DO and
cutmuts D1, D2 must be 0 while rhe module is being set. The design is similar
to that of the gate module.

Two conventional switching elements are important as moduies in speed inde-
pendent circuits: Figure 18 shows a convention used to represent the Boolean OR
gate as a module. The OR module s drawn as a line on which lines representing
input wires terminate in arrowheads. Only one input wire of an OR madule may be
active at a time; within this Testriction, signal and reset events occurring at
either input are transmitted at the output noda. The NOT module performs the
function of an inverter. Signal and reset events at the input oode become reset
and signal events, respectively, at the output node. The initial condition of a
NOT module is with the input and output wires at 0. Thus, when a circuit is
turned on each NOT module will be enabled, leading to activetion of its output
node; the NOT modules are the initiators of activity in a speed independent cir-
cuit,

The synchronization module (Figure 19) {g used to coordinate action by two
parts of a system so neither part continues before the other is ready. A signal

(a) module

Mgwe 15.

=20-

() oireuit

i
'o

BO
co ¢
c

The multiple data switch module

Al

Bl

cl

21

(a) moduls (b) transition matrix
S, "e
3 000 OC1 010 100 101
000-13
_} _ 000=5 *
AS, AR, 001
—3 010
100 [%
101 I *

(e) ecireuit

24

Al

Flgure 16. The gate module.

22

(a) moduls (b) transition matrix
' $1, 52, Do
000 001 010 100
51 Al > 0000=1 ¥ |¥lY
2 A2 > pazs EIE
mm—.__) gz 0001 [l v
s f—— 0010
0100 |l%
1000
(¢) eircuit

sl
s2
-
+ D A2
o D1
)

Fgure 17. The select module.

-23-

(a) OR module {(b) NOT module

B : - 4@ B’

Figure 18. The 07 and HOT modules.

{a) module (b) transition matrix

E1l, B2
00 01 10 11

> 01
10 »
11

Al,A

{e) cirecuit

Figure 19. The synchronization modula

avent must occcur at input El and at input E2 before signals are transmitted at
outputs Al and A2, Each output resets only after ita corresponding input has
reset, and each input/output pair must reset before the two outputs can become
1 again. However, it is not necessary for both inputs to be O together. One
can become 0 and then be set to 1 after its associated output has reset, yet
the output wiil not become 1 again until the other input/output pair resets
and the input becomes 1. When both inputs become 1, thea three AND gates are
enabled, and their outputs become 1., When either input returns te 0, the cor-
responding cutput will become 0, but the output node of the NOT module does
not returo to L until the two C-modules associated with inputs E1 and EZ have
registered resets of their inputs. The synchronization module is a type 2
speed independent interconnection of its parts.

The signaling module shown in Figure 20 is usad for controlling sequences
of actions by parts of a system. The module acknowledges an enable signal om
input S by a signal on AS only after a signal sent at output R is acknowledged
by a signal on AR, and both R and AR have reset. Then a reset of 5 is followed
by a reset of AS, with no activity at R and AR,

Initially, all wires are at 0, and the output of the C-module is 0, making
one input of each AND gate active and making AS initially 0. A signal at 5 leads
to m signal on R by firing the upper AND gate. An acknowledgement on AR enables
the lower AND gate, and its firing allows the C-module and NOT module to fire,
resetting both AND gates. The Tesaetting of the uvpper AND gate causes a reset
of R. The subsequent reset of AR completes an R/AR transaction and leads to an
acknowledge signal on AS. Resetting S allows the C~module to reset its output
leading to reset of AS, completing an S/AS transaction and returning the circuit
to its original conditiom.

The signaling module is another example of a typa Z speed independent inter-
connection. The use of the AND gates within the circuit does not allow one to
determine whether the reset of one or both inputs to the gate has occurred.

Activities by parts of a gystem may be sequenced by a cascade of signaling
modules. The sequence module shown in Figure 21 is implemented in this way. The
module operates by causing a cycle of signal and reset transitionas of the R and
AR wires of each SIGC module before the next SIG module is enabled, When the final
SIG module completes its cycle, an acknowledge signal occura on AR. Wires R and
AR reset without further transitions of the remaining input and output wires of
the sequence module,

The signaling module also provides the basis for implementing counter mo-
dules (Figure 22), After receiving an enable signal on wire E, a CIR[n] module

-25-

{a) module (k) transition matrix
S, A
3 3 -00 01 10 11
00-1
16 ¥
00-2 lf P
10 r
11
(e} elrevit
5
s
»

AS O + _ AP

Flgure 20. The signalling module.

(a) module (b} ciremit

Figure 21. The sequence module,

(b} eirceit
B 5 R
{a) module
SIG
E H > AS AR
CIR [r] ‘ Al A2
+

L35 « o 2
E

SIG

E—Jrsm

Flgure 22. The counter module.

-27-

performa n complete cycles of signal and resst events on wires R and AR, and
then returns an acknowledge signal on AE. Resetting E leads to resetting of
AE without further tranaitions of wires R and AR,

The circult shown is for one stage of & binary counter, The two SIG mo-
dules generate two enable signals on wire R in sequence through the OR module.
Acknowledge signals on AR are directed to the appropriaste SIG module by the data
switch module. Since the upper SIC module must complete its cycle before the
lower one is enabled, inputs Al and BL of the data switch will not be simulta-
necusly active. Counter modules of n states may be constructed using various
combinations of SIG, DS and OR modules.

The counter module and the sequence module are both type 1 speed indepen-
dent interconnections of basic modules, so the correctneas of their operation
1z unaffected by delays in the interconmections.

The Memory of a system can be constructed of asynchronous awitching ele-
ments linked to other system components by a gpeed independent interconnection.
One such memory element is the bit pipeline module shown in Figure 23. Signals
on inputs El or EQ enable a ! or O to be entered into the pipeline, after which
an acknowledge signal is returned on wire A. U to n bits may be entered into
a pipelina wodule designated BP[2n] and having 2n sections. If the pipeline is
not empty, a signal presented on wire E enables the pipeline to emft its longest
held bic by a signal on output Rl or RO.

The pipeline module ie constructed as a cascade of data switch modules with
feedback connections using OR modules and NOT modules arranged so that bits ad-
van e through the data switches until all alternate atages hold information., As
in the case of a data switch module, inputs EI and E0 must not be simultaneously
active,

Occasionally, a circuit is required that holds a queue of undistinguishable
aevents, Such a circuit (Figure 24) is called an event pipeline and iz similar
in construction to the bit pipeline but uses half as many C-modulea.

Often thera is competition for resources between two unite of a gystem.

For example, two memory cells may wigh to use the same functional unit at the
game time. Such conflicts can be resolved by a switching element known as an
elementary arbiter (Figure 25), The Firat signal to arrive at input Al or El
will set the latch and disable the other Input. If both inputs arise simulca-
neously, one will succeed in disabling the other. The transition matrix of Fig-
ure 23b demoustrates the indeterminacy of this action;.there are two possible
transitiona which can occur when both inputs go to 1.

-28-

(a) module
A 3P[4] E
Jol¢] RO

(t) eireult

£l

Figure 23« The bit pipeline module.

(a) module {b) circuit
5

. i € B
i
L 3

Figure 2h. The ovent pipeline module.

s

-20-~

(a) module (b) transition matrix

A2, B2
10 11

¥
v

o0

%

Al,B1 C1

¥
¥

retg]2

#—Tx«-’ 3

10

(e) cireutt
Al

Figure 25. The elemertary arbiter.

2t =odle (b) circuit
A1 '
At A2 Al A2
EA DS
Bloosi Bt =2

Pgure 26. The arbitration module.

=30~

The Jdifference amplifiers in the circuit produce an output signal when the
two outputs of the latch differ by an amount greater than the fixed offset vol-
tage. This prevents any false output signals that may result if the latch enters
its metastable state. An analysis of the design of e¢lementary arbiter circuits
is presented by Patil [20].

The elementary arbiter qf Figure 25 cannot be used to build larger circuits
through speed independent interconnection because the reset of an active acknow-
ledge wire 1a not forced te occur before the other acknowledge wire tecomes ac-
tive., This problem is resolved in the arbitration module shown in Figure 26, in
 which a signal at the enable input E is required before each transaction at either
output, A2 or B2, A signal at input Al or Bl is registerad in the left hand data
awitch module upon arrival of an enable signal at E. If signals arrive at both
Al and Bl, the elementary arbiter will allow only ona at a time to be regiastered.
Although the commectiona of the elementary arbiter to the left hand data switch
are not speed independent, an arbitration meodule can be used as a componment in
type 1 speed independent circuits.

In the processor design, arbitration modules are used only in the Arbitra-
tion Umita of the Arbitration Network and the Distribution Network.

Comminication Between Units and Sectioms
R Commnication between units and sections of the proceasor iz, ag we noted]

esrlier, accomplished by transmission of packets of information. Packets are
sent over paths called links, each link conaiats of one or more groups or wires
within which a strict signaling discipline is obserwved.

In the quiescent condition of the processor (juast turned on, or awaiting the
next command from the Host), all wires are inactive, The wires of a group are di-
vided into gnable wires and acknowledge wires. The units of the processor are de-
signed 80 that signaling in each group follows a repeated cycle of four steps:

1. Signals are sent over at least one enable wire,

2. Signals are returned over at least one acknowledge wire.

3. The enable wires used in step (1) are reset.

4, The acknowledge wires used in step (2) are reset.
All eventa of one step must occur before any event of the following step. A com-
plete cycle of eventa on the wires of a group makes up a transaction. For example,
the four events comprising a transaction on a two-wire group are as illustrated
in Figure 27: enable signal, acknowledge signal, enable reset, acknowledge reset.

The structure of each type of link shown in PFigure 28 i1a given in Figures 29
through 32, and the function of each type of link in the operation of the processor

=31~

enatle enable
sipnal reset
Enable
Wire
. acknowledge - aclnowledge
signal resat
Acknaowledge
Wire
tine —
enable
——-—-—*
group (linl:)
acknowledge
h——

Figure 27. Link sigralling discipline.

2q.r)—y

E[Ci.’m] -~

-33-

Tunctional
Units =
A(3l
Astribution ¥ |jArbitration

hetwork

premaadill e twork

Control
Network

Contrellar

Figure 28. Link types for communication between
sectionz of the processor.

'(.fa {3]

(a) link {(e) link

-m—’ M
(b) structure (b} structure
1.1 —
1.

Pl,1 iRy eap i
P———— group 1 : group
,_P_l_-_g_’)p“ir 1 {packet content) ._A_h:i_’) (address)

: kel
)palr k

Pk.O 3 o EM |

E vi.1 -
'——-—.’ group 2

AE (enable) 0 o
——p : group 2

kel {value)
Figure 29. Structure of type A Yko0)
1ink for instruction
packat transmission. AV
*ll—-d -
s ey
> loronp 3
(a) link i, | (space)
-—EJ—)C Figure 30. Structure of type 3th, K]
- link for result packst
(b} !tructw‘e transmissiun.
Al.0) a) link
: group 1 o
Ak.1 (addross) -_—
Ceml Ty
AksQ . {L) st.':ucture
J it l
RE . groun 1

CzC n {exezation

- P ° request)
——2>p |lgroup 2 -

u;-.bT-I‘ | (command) . B
.—C-I&... r———p groun 2

~ AD (exmzutior
A | O Jii0ne)

Figurs 3l. Structure of type C[‘a Flgure 32. Structure of type D
link for commard packet link for execution

tranemission. contral.

=34 -

is described below, Within each group the enable wires are distinguished by
solid arrowheads. We suppose the Memory section consists of n Memory Cells,
that each Register Unit holds an m-bit word, and that q-bit addreases are used
to identify the Register Units of the Memory,

Instruction packets are tranamitted between units of the Arbitration Net-
work over type A[k] links having the structure shown in Figure 29, where k is
the number of bits transmitted f{n parallel through the link. The links from
Memory Cells to the Arbitration Network are of type A[3) (three bits at a time,
one from each register), and the links from the Arbitration Network te each
Functional Unit are of type A[3m].

Starting with all wires inactive, transmission of a k-p-bit instruction
packet over an A[k]-link is requested by the producer of the packet by sending
an enable signal on wire E of group 2. Then the contents of the packet are sent
a8 p k-bit bytes by p transactiong on the wirea of group 1, where each transac-
tion congists of: an enable signal on wire 5; an acknowledge signal on one wire
in sach palr of acknowledge wires; followed by resets of S and then the active
acknowledge wirea, Afrer completion of all p transactions, an acknowledge siz-
nal is returned on wire AE, and wires E and AE reset to complete a single trans-
action on the wirea of group 2. The link is then ready for transmission of the
next I{nstruction packet.

S Result packets are transmitted between units of the Distributionm Network
over type Bfh, k} links shown in Figure 30, where h is the number of addresa bita
in the result packet and k is the number of bits in each byte of the value part
of the packet. The linkas to the Distribution Network from the Functionsl Unics
and the Controller are type B[g, m] having a complete set of address bits, and
@ fully parallel representation for the value., The links connecting the Distri-
bution Network to Memory Registers are type B[O, 1] in which group 1 is absent
and the value is in serial format.

For result packets containing h-bit addresses and values represented by p
bytes of k bita each, transmission through a type B[h, k] link consists of ane
transaction on group 1 for the address and p transactiona on group 2 for the
value, When these transactions are completed, a transaction on group 3 signals
that the entire packet haa been tranaferred to the conauming unit.

Commands to set vp the contents and status of Memory Reglsters are transmit-
ted to the registers by command packets sent through the Command Network over
type Cfk] linka having the structure shown in Figure 31, Trangmissafon of a com~
mand packet consists of one transaction on group 1 for the address bits and one
transaction on group 2, in which an snable signal is sent on one of wires CEC,

=35~

CEV, CEMT, CIDL to indicate which of the four commands enter-constant, enter-
value, empty or idle is to be effected at the specified register.

The type D links shown in Figure 32 are used to transmit execution requests
from the Controller to the Memory Cells through the Control Network A command
Iun n generates a sequence of n R/AR trensactions followed by one RF/AR transac-
tion on the group 1 wires; the enable signal on wire RF indicates the final exe-
cution request, A D/AD transaction signals that all Memory Cells served by the
link have completed all n execution cycles, and are ready to accept further com-

mands from the Controaller.

Structure and Operation of a Memory Cell

Since the Memory Cell is the key element of the processor, we will use its

design ro illustrate the specification of hbehavior by type 1 interconnections

of modules. A Memory Cell consiasts of three Register Units connected as shown
in Figure 33, where each Register Unit is specified in terms of modules in Fi-
gure 34, Both dfagrams sre simplified by omitting the means for setting the
mode and initial contents of the Regiaster Units, including the type C links from
the Command Network. (A complete design for tae Memory Cell is included in the
Appendix.)

In Figure 33 we see how a Memory Ceil interacts with other sections of the
processor. The Register Units of the Memory Cell are loaded with values received
from the Distribution Network over the three type B[O, 1] linkd. Once enabled,
the Cell groups the inastruction and operands from its Regileter Units fnto an
ir. 'truction packet, which it sends to the Arbitration Network over the type
A[3] I{nk. The Control Network Tequests one instruction execution cycle with
eaca enable signal on the type D link. The request is distributed to the Regis-
ter Units which respond individually when each has completed ome cycle of opera-
tion. When all three Register Units have completed a cycle of operation, the two
C-modules generate an acknowledge signal to the Control Network.

Each Register Unit generates an emable signal on wire E when Lt has been
loaded from the Distributfon Network and has received an execution request signal
on wire R. The conjunction of enable signals from the three Register Unlits is
detected by two C-modules, and produces an enable gsignal to the Arbitration Net-
work. When it is able, the Arbitration Network accepts an lnstruction packet
using the communicatfon discipline described earlier for A-links, acknowledging
complecion with a signal on wire AE, which {s disctributed to the three Register
Unictas.

-36-

= ™ . ! Cegister Umit

Fl.1
Pl1.0

Tegister Unit

71 5 #
o Pt 2.1
2.0
PO :

A

Register
Control
sz E
q c
Heglster Unit
71 3 F
Vo Pl 1512'Q

& ’ o P35,
_1931 Leglster

[¥]

Mstributian atwork

e S el A s -

Contrpl .
=
H*

L)

E

A3 i B —

L AZ

[4]

L
1

AZU

R AR

| Control ¥etwork |

Figure 33. Specification of the Memory Cell,

(l).Register

=-37=

(b} Contrel
i
AS
R
s
smpty
va
e C
. s
L
idl '
L]
‘—-—.- -
6 ! AT)

figure 34. Speclfication of a heglster Unit.

=-38-

Before execution of a program, each Ragister Unit is set fo ome of four
modes. The register may be set to idle, in which case it is not utiliged in
the computation, or it may be set to hold s comptant (con) or a variable (var).
In the case of a constant, the register is loaded with an initial value before
program execution and will retain this value while transmitting Lt as part of
an inatruction packet. If the register contains a variable, it may be either
empty or full. A full register holds an operand value in the initial configu-
ration of the Memory, and must receive a new value through the Distribution
Network after each packet transmission to complete one cycle of instruction
execution. An empty register must receive & value in each cycle of instruc-
tion bafore packet transmission may begin, _
In the diagram of the Register Unit (Figure 34), the mechanism for setting
" the mode of the register has been omitted for simplicity; the signal paths re-
quired for each mode are indicated by labeled gaps in the drawings. In the com-
plete design, the mode of each regiater is set by transactions through the Con-
trol Network initiated by the Controller in response to commands from the Host,
The Register portion of & Regieter Unit is specified in terms of the basic
speed independent modules in Figure 34a. Data presented at the input port en-
ters the bit pipeline module through the data switch module 1f the first stage
of the bit pipeline module is empty and the register is 1n variable mode. Each
bit of data 1s acknowledged by a signal from one output of the data switch. i
Data is requested from the pipeline by a efignal from the Arbitration Net-
work on the S wire. If the register contains a variable, the output of the bic
pipeline passes through the lower section of the multiple data switch module
and exits on the Pl or PO output wires. If the regiater holds a constant, the
upper section of the data switch passes the data to the output and also returns
it to the pipeline input. The PO and Pl output wirea are creset when wire S re-
geta to indicate that the Arbitration Network has absorbed the data, and, if the
register is in constant mode, that the data has been reentered in the bit pipeline.
The Control part of a Register Unit is specified {n Figure 33b. The re-
sponse toc the arrival of a signal on the C wire is determined by the mode of the
unit. If the register is idle, an scknowledge signal is immediately returned
to the Contrel Network, If the register contains a constant, an enable signal
ie immediately sent to the Arbictration Network on wire E. When an acknowledge
asignal returns on wire AE indicating that an inerruction packet has been com-
pletely transmitted to the Arbitration Network, an acknowledge signal is sent
to the Contreol Network.

=315

If the register is in variable mode, the sction depends on whether the re-
gister fs empty or full. If it i{s full, the Control behaves initially
28 in constant mode -- it sends an enable signal on wire E, However, the ack-
nowledge signal on wire AE causes the lower data switch to send a gignal to the
upper data switch, which waits unti{l a space signal arrives from the Distribu-
tion Network indicating the the register has been reloaded. Then acknowledge
signals are sent to the Distribution Network on wire AS and to the Control Net-
work on wire AC.

If the register holds a variable, but is initially empty, an enable signal
waits at the upper data switch for the register to be filled from the Disrribu-
tion Network. Then action completes as if the register were in constant mode,

In specifying units of the processor as speed independent interconnections
of basic modules, note that we have s8imply given precise statements of the in-
tended behavior of the units -- the diagrama should not be regarded as wiring
diagrams for their manufacture. The available logic elements do not permit eco-
nomical fabrication of procesgor units directly from basic modules. Nevertheless,
each unit has s reasonably efficient implementation, using conventional logic
elements, that has behavior consistent with Eie gpecified behavior. Further-
more, since the procegsor dezign makes use of large numbers of identical units,
fabrication by connecting several kinds of LSI chips 1s feasible, and a set of
modules similar to those presented here could become basic cells for mask lay-
out in an LSI technology.

¢ tclusiom

The idem of organiging a computer 80 execution of instruetions is triggered
by the presence of their operands has been discussed by Seeber and Lindquist [22],
Patil [18], Dennis [5], Shapiro, Saint and Presberg {23], and Miller and Cocke
[15). However, none of these authors has suggzested a detailed and efficient
scheme for communicating enabled fnstructions and operands to functional units
for processing. We are hopeful that the architecture proposed here offers an
attractive golution to this problem ~- & solution that can be extended to the
design of processors that support prograrming languages suitable for general
purpoge computation,

-40-

References
1. Adams, D. A. A Computation Model With Data Flow Sequencing. Technical

16.

11.

i2.

13.

Report CS 117, Computer Science Department, School of Humanitiea and
Sciencea, Stanford University, Stanford, Calif., December 1968.

Anderson, D. N., F. J. Sparacio, and R. M. Tomasulo. The IBM System/
360 Model 91: machine philogophy and instruction handling. IEM Journal
of Research and Development, Vol. 11, No. 1, January 1967, 8-24.

Rihra, A. Operation patterns (An extensible model of an extensible
language). Symposium on Theoretical Programmipg, Novosibirsk, USSR,
August 1972 (preprint).

Barnes, G. H., R. M. Brown, M. Kata, D. J. Kuck, D, L. Slotnick, and
R. A. Stokes. The Illiac IV computer. IEEE Trangactioms on Computers,
Vol, C-17, No. 8, Augusk, 1968 746-757,

Dennis, J. B. Programming generality, parallelism and computer archi-
tecture., Information Processing 68, North-Helland Publishing Company,
Amsterdam 1969, 484-492,

Dennis, J. B. Modular, asynchronous control structures for a high per-
formance procesder. Record of the Project MAC Conference om Concurrent
Systema and Parallel Computation, ACM, New York 1970, 55-80.

Demnis, J. B., and S, S. Patil. Speed independent asynchronmous eircuits.
Proceedings of the Fourth Hawaii International Conference on System

——— e ———— ———r———

Sciences, Western Periodicals Co., WNorth Hollywood, Calif., 1971, 35-38.
Dennig, J, B. First version of a data flow procedure language.
Symposium on Programming, Institut de Programmation, University of Paris,
Paris, France, April 1974, 241-271.

Dennis, J. B., and J. B. Fosseen. Introduction to Data Flow Schemas.
{(Submitted for publication), November 1973.

Hintz, R. G., and D. P. Tate. Contrel Data Star-100 processer design.

Sixth Annual IEEE Computer Society International Conference, Digest of

Papers 1972: Innovative Architecture, IEEE, New York., 1972, 1-4.

Karp, R. M., and R. E., Miller. Properties of a model for parallel compu-
tations: determinacy, termination, queueing, SIAM J. Appl. Math., 14
(Novembar 1966), 1390-1411.

Kosfnski, P. R. A Data Flow Programming Language. Report RC 4264, IBM
T. J. Watson Research Center, Yorktown Heights, N. Y., March 1973.

Kosinski, P. R, A Data Flow Languape for Operating Systems Programming.
Proceedings of ACM SIGPLAN-SIGOPS Interfmce Meeting, SIGFLAN Notices 8,
9 (September 1973), 89-94.

14,

15.

le.

17,

18.

19,
20,
21.
22.
2.

24,

-41-

Liskov, B. H., and S. N, Zilles. Programming with abstract data types.

Proceedings of a Symposium on Very High Level Languages, SIGPLAN Notices
8, 4 (April 1974), 50-59.

Miller, R. E., and J. Cocke, Configurable Computers: A New Clags of
General Purpose Machines. Report RC 3897, IBM T, J. Wataon Research
Center, Yorkrown Heights, N. Y., June 1972,

Misunas, D. P. Petrf nets and speed independent design. C . of the
ACM 16, & (August 1973), 474-481.

Muller, D. Asynchronous logics and application te information processing.
In Switching Theory and Space Technology. Howard Aiken and William Mann
(Eds.) Stanford University Press, Stanford, calif,, 1963.

Patil, S. S. An Abstract Parallel Processing System. S, M. Thesis,
Department of Electrical Engineering, M.I.T., Cambridge, Mass., June 1967.

Patil, S. §., and J. B. Dennis. The description and realization of digi-
tal systems. Proceedinga of the Sixth Annugl IEEE Computer Society Inter-
national Conference, IEEE, New York, N. Y. 1972, 223-226.

Patil, S. S. Synchronizers and Arbiters. Computation Structures Group
Memo 91, Project MAC, Massachusetts Institute of Technology, Cambridge,
Mess., October 1973,

Rodriguez, J. E. A Graph Model for Parallel Computation. Report TR=-64,
Project MAC, Massachugetts Institute of Techmology, Cambridge, Maes.,
September 1969,

Seeber, R. R., and A. B. Lindquist. Associative logic for highly parallel
gystems. AFIPS Conference Proceedings 24, 1963, 489-493,

Shapiro, R. M., H. Saint, and D. L. Presberg. Representation of Alpo-
rithms as Cyclic Partial Orderings. Report CA-7112-2711, Vol. I,
Applied Data Research, Wakefield, Mass., December 1971.

inornton, T. E. Parallel operation in the Control Data 6600. AFIPS
Conference Proceedinga: 1964 Fall Joint Computer Confarence, Academic
Press, London 1971, 575-588.

-42-

Appendix: Specifications of Processor Units

-Each section of the Processor: Memory, Arbitration Network, Functional
Units, Distribution Network, Controller, Command Network and Control Network,
ig built as an intercomnection of simpler units. A apecification for each
unit type is given here as an interconnection of the basic modules presented
in the paper.

In each apecification, component modules of each figure are numbered and
referred ta by figure number and component number. For example, (A4#6) desig-
nates module & in Figure A4. Also, each port of each unit ie labeled with an
identifier specifying ita type (input or output) and a number to differentiate
among input or output ports. A specific wire of a link is referenced in the
text by designating the port the link enters and the wire identifier within
the link. For example, inl:P1.1 refers to wire Pl.1 of input port inml.

1.0 Memory
The Memory consists of 3n Register Units organized into Cells as showm in

Figure Al. Each Cell contains three Register Units having consecutive addres-
ses and a control atructure. As described previously, type B[0,1] links trans-
mit values of result packets from the Distribution Wetwork to the input ports
of the Register Units, and links from output ports of the three Regiater Units
and the control structure combine into a type A[3] link, delivering the con-
tents of the Cell as an instruction packet to the Arbitration Network.

The Control Network enables the execution of instructions by loading the
number of operations desired into the bit pipeline of the econtrol structure
over a type D link., The pipeline stores requests for data received on the R
input and acknowledges them as AR. Fach input allows one transferral of an
instruction packet to the Arbitration Network by means of the SIG module., The
final requeat from the control network (RF) is acknowledged on AR and, upon
reaching the ocutput of the pipeline, causes an acknowledge to be sent to the
Control Network on wire D, signaling completion.

The Command Network controls the emptying of Register Units, the entering
of values in Register Units, and the setting of Reglater Units to function as
constants, variables or in idle mode, by a Type C link coonected to the inputs
of the Register Units.

Reglister [nit

Reglister

- - S dep
Control

type
c{a)

2o, 1]

Mistribution Network

Adegister

control

Reglister Unitl

co}

2] (9

Negister

Pl ﬁaé
>
jﬂ 2
- 3
(Pl F3.1

Jontrol

i Command
Yetwork

Tevee D

.

Central atwork

Tigure Al. Specication of the Yemery Tell.

—

type

_f.[_alH

on Network

Arblitrati

YA

1.1 Register
The conetruction of a Regieter from basic modules 13 shown in Figure

A2, An m~bit instruction or operand iz held in the bit pipeline module
{AZ24#6). Whether the Régister igs to treat the word in the pipeline (A246)

as a constant or variable is represented by the state of gate module (A2#13)
and SEL module (A2#14). When holding a constant, the gate module (A2#13) is
reset and SEL module (AZ#I#) is set for output D2, The oppoeite conditions
hold when the Register holds a variable. The mode of the unit is set by the
receipt of a command from the Control (in2:C, in2:V) specifying the type to
be stored. Thia command appropriately sets or resets (A2#13), sets (A2¥14)
and ia acknowledged (inZ:AC, in2:AV).

The multiple data switch module (AZ*B) directs the flow of bits leaving
the pipeline module (A2%6). Cutputs Al, A2 of (AZ*S) are active during pro-
gram execution if the Regiater is in constant mode; in this case bite from
(A2%6) are directed to cutput port outl and are also recirculated into (A2#6)
via modules (A2#4, A2#5). Outputs Bl, B2 of (A2#8) are active for program
execution in variable mode, Qutputs Cl, C2 of (A2#8) are used to empty the
pipeline module upon receipt of a command do so from the Control.

Data switch module (A2#2) gates bits into the pipeline module from port

inl either in response to a&n enter command or during program execution in va-

" riable mode, Data switch module (A2#12) directs input acknowledge events

from the pipeline as appropriate for filling from port inl (output Al), or
recirculating a constant f{output Bl)}. Modules (A2#13, A2#14) set up signal

paths for constant mode or variable mode operation.

1.2 Control

The Control provides the interface with the Command Network and the con-
trol structure of the Cell and maintains the status of the Register. The con-
dition of a Register Unit when the processor is quiescent (not executing a
command) is either empty or full, according as the pipeline module (A2#6) is
empty or holds an m-bit value, Thie difference affects operation of the Re-
gister Unit and is recorded in SEL modules (A3¥#3, A3#4), the modules being set
to their Dl output for the empty quieacent condition of the Register Unit.
SEL module (A3#1), in a manner similar to the SEL modules in the Reglater (A2#13,
A2#14), containe the mode of the Register {constant or varisbla). The state
of the Register (idle or active) ig stored in SEL module (A3#16). This module

Dlstribution
b w ‘|

—-45-

“ .
-
¥5 ' ‘ ’
e n W £ i
Wi“ $6 A ,::‘ Ly
1 A2 YT T A AZ -+ 55
: Bp [2m4i]E ij Y o eV 1) ;}4’5‘
RC B qi-) L%
oo °1 $10]
c2 1 outl
S e

#13 #15
31 A
2 AZ

DODI

1 lf}}ﬂc A‘Lféi.’%."!
- T

' Control L

1

Mgure A2. Specification of the Reglister.

Mstribution

-6

ertwark
. |"
s 3
b
=l <=
ey
—3
(g%
_ +

$1sg
+
o0
AN N .
WCEC__CEY cron CEX
I Cell Control 1
Structure

ICommnnd Network l

Figure AJ. Structure of the Control.

-47-

is set to its Dl output by the receipt of a command to load & constant or a
variable (in2:CEC, in2:CEV) and to its D2 output upon receipt of an idle com-
mand (in2:CIDL). The SEL modules change condition only irn response to enter,

empty, or idle commands.
One cycle of execution activity occurs in response Lo an enable aignal

from the control structure on wire in3:C. If the Register Unit has been set

to idle, an acknowledge is immediately returned (AS#IB, A3#21) on in3:AC, If
the unit 18 in constant mode (A3#1), an acknowledge signal is generated via
(AB#IO, A3#11) on in3d:AC, which informs the Cell control structure that the
Register contains a value teady for transmission to the Arbitration Network.

If the Register Unit is in variable mode (a3%1) and is enpty (A3#3), genera-
tion of the acknowledge signal on in3:AC is delayed (A347, A3#10, A3#11) until
an enable signal on ini:5 Indicates that the pipeline module (A2#6) has been
filled by a value from the Distribution Network. An enable signal on in3:E
signifies that the Arbitration Network has received an entire instruction pac-
ket. In the preceeding two cases, an acknowledge signal on in3:AE is genera-
ted immediately via (A3#12, A3#13). The initial conditfon of the Register Unit
is reestablished by resets in sequence on in3:C {n3:AC, in3:E and ind:AE. 1f
the Register Unit is in variable mode and is full, an enable signal on in3:C
immediately generates an acknowledge on in3:AC via modules (AI#1, A3#3, A3%11),
In this case, module (A3%#12) causes the acknowledge signal on in3:AF to be de-
layed via (A347) until an enable signal occurs on in3:E, indicating that the
instruction packet has been entirely accepted by the Arbictration Network, and
2 srace signal appears on inl:§ indicating that the Register has been refilled
by a r-sult packet.

The commands enter-constant, enter-variable, empty and 1die are signaled
te the Control through port in2. For each of the first three commands, the
initial step is to empty the pipeline if ir im full (A3#14, A344, A6, in3:EM/
AEM), to set the gate and SEL modules in both the Register and the Control.
(A2=13, A2414, A3#1) to indicete variable mode, and to set SEL modules (A3#3,
A3*4) to indicate empty. The setting of the modules in the Register is accom-
plished with either an outl:SC/AC or an outl:SV/AV transaction, controllaed by
the sequence module (A3#14). Data switch module (A3¥18) causes an immediate
acknowledge signal on in2:AC if the command is empty. In the case of the two
enter commands, modules (A3#7, A3#9) cause a wait until the pipeline has been
filled. Then modules (A2#13, AZ#I&, A3¥#1) are set for constant or variable
mode, and, for both enter commands, modules (A3#3, A3#4) are set to indicate

48-

a filled pipeline. The receipt of an idle command (in2:CIDL) sets SEL module
(A3#16) to indicate the idle atate and is acknowledged (in2:AC).

2.0 Arbitration Network

The Arbitration Network provides transmission paths for instruction pac-
keta from each Cell of the Memory to each Functional Unit. One possible struc-
ture for the Arbitration Network was shown In Figure 9. An Arbitration Unit

accepts inatruction packets through several input ports on a first-come, first-
gerved basis and delivers them at a common output port. Sufficient Arbitration
Units are required to provide a path from each Cell to each Functional [nit., A
Serial/Parallel Conversion Unit transforms each arriving instruction packet in-
to & more parallel format. This conversion from serial to parallel format may

be done in several stages. Buffer Units store complete instruction packets in
readiness for quick transmission through a following Arbitration Unit, in order
to prevent an instruction packset from engaging an Arbitration Unit before serial/
parallel conversion ia complete. Function Switch Unita direct instruction pac-
kets to one of several cutpur ports according to fumction bits of the instruction.

The Arbitration Units provide the fan-in whereby each Functional Unit may
receive an instruction packet from any Cell. Tha Function Switch Units provide
the fan-out whereby each Cell may send an instruction paﬁkat to any Functiomal
Unit. For gimplicity in the present description a fan-in and fan-out of two is
assumed. Generaligation of the designs is atraightforward.

All connections to units of the Arbirration MNetwork of Figure 9 are tvpe A
linka. We suppose that each Serial/Parallel Converter multiplies the number of
parallel dmta paths by b. Thus, input linke to the Arbitration Network are
type A[3]; the input links to the second rank of Arbitration Units are type
A[3b]); and the input links to the third rank of Arbitration Units are type &[3b2].

2,1 Arbitration Unic

A typical Arbitration Unit is shown in Figure A4. This design is for the
first rank of Arbitration Units in Figure 9. The versions required for the se-
cond and third ranks are obtained merely by increasing the number of data switch
modules (A4#3, A4¥7, A4#11) to gecommodate the larger numbar of date wires and
by changing the modulus of counter (A4#14).

A gignal on inl:E or in2:E indicates that an instruction packet is availa-
ble at one of the input ports. The arbitration module (A4#15) gives priority
to the first enable signal to reach it, and sets S5EL module (A4416) accordingly.

1__Nemar7 Cell

Memory Cell

{

U=

~49-

+

3/P Conversion and

Juffar Unit

-3 S 1
< # 'S N
Pl.1 M Pl.1
1 A2
P1.0 AL -
m .
PZ.1 = +
o LN T RILN
Al P2.0 | 5
F3.1 k¥ 8
. ' +* F2.1
P3.0 1 A2 —
o oS +
(" E >
AE
| % #11 pL2
inl P3.1
Al A2 >
’_ $10 s . A[ﬂ
S 2_5‘
E‘__ ElL B2 P
Plei
c.._
Bil.0
c;z.: £13
o -
P20
Gl] o—
3.2
o-
3.0
&
E
AE #18 s
- F15 $16 c $13 -
in2 '
in Al A2 51 Al 1.42 -
ARE AmA | outl
Bl B2 A2
S Bl B2 --F——iﬁ
Elﬁi 17 Z 21
0 e

22
Cx

Figure A4. Specification of an Arbitration Unit,

-50-

Once (A4#16) is set, counter (A4#14) is enabled to perform m cycles of data
transmission, and an enable signal is sent out on putl:E.

Each data transmission cycle is started by an enable aignal from counter
(A4#14) sent over wire S of the input port selected by (A4#16). When an ack-
nowledge gignal is received over one wire of each data pair, C-module (A4%13)
sends an acknowiedgement to the counter (A4#14). The signal path just traced
must Teset before a new transmission cycle may begin. When the count is com-
plete, the acknowledge signal from (A4#14) ia directed to wire AE of the appro-
priate input port by data switch (A44#19), and the arbitration module (A4+15)

I8 reenabled through (A4#21).

2.2 Serial/Parallel Conversion and Buffer Unit

The functions of zerial-to-parallel conversion and buffer storage are con-
veniently combined im one unit &s shown in Figure A5. This unit has a type A[l]
input link and & type A[3] cutput link. The generalizatlion to the forms re-
quired in Figure 9 is easy.

Data arriving on wires inl:Pi.l1 and inl!P.0 are passed to the pipeline mo-
dules (AS#1, AS5#2, AS#3) through a multiple data switeh (A5%4). The sequence
module (A5#6) controla distribution of successive bits cyclically to the three
pipeline modules. The action of filling the pipeline modules is started by a
signal on inl:E which enables counter (A5#7). When each pipeline ts filled with
@ bita, the counter acknowledges, yielding through (AS5#8) an enabla signal on
outl:E and an acknowledge signal on inl:AE. The pipeline buffer may then be
emptied by w enable signals on gutl:S.

2.3 Function Switch Unit
A typical Function Switch Unit is shown in Figure A6. For illustration,

the instruction packet arriving at port inl 18 assumed to have w bytes of 2 bits
each. The Function Switch Unit uses bit Pl of the first byte to direct the pac-
ket to either output port outl or oucrZ.

Modules (A6$12, A6#13, A6#14, A6#15) make up a w-state counter whose first
state is distinguished by an enable signal on output R of {(A6#12) rather than
on output R of (A6#15). Hence, when enabled by a signal on inl:E, the SIG mo-
dule (AG#12) causes bit Pl of the first byte received to be stored in data switch
(A647). An enable signal is then sent on outl:E or out2:E, and the entire pac-
ket is sent out port putl or out2 through multiple data switch (A6¥4) by a se-
quence of w enable signals on outl:5 or out2:5. An acknowledge signal occurs on

¥

Arbitration Urit

=5]=

Conversion and Puffer Urnit.

teh Unit

.
)

Arbitration Unit/

Fanclios 3wl

Led
g
[y

s
[i —®
El : P1,1
Al 1 T Ll
r S " PPl E 510
€ A2 70 =0 P10
Pl.1
P1.0 81 P2.1
° | 0])
B2 0 ROt F2y0
MDS3
| 5]
cl P31
—»
co BF
ﬁ 2 0 G rop—P3g0
E2
+
E
% >
1 AS
Al —0
n —
E2 outl
A2
At g3
A
] sza’
¥7
S
bd E R
CcTr fid]
AE AR
f8 o
’E;'(——@e
AE
“ Al A2
inl
Filgure A5. Specification of a Serial-to-Farallel

=57=

L uﬂﬁzp ue ety 1 | 31u[] ©O138A3IqLY |
wm._, ..w.q
= -z
| i r 1
AR ST I S) & I 571 B thed it e IR
I B B P =l 2] & € °
+ 3
ol
*
L
. L
g% o &) wl® 2=
.- 7] @0 -, E
=1 L X
L]
o)3
, 2l
—
N
Rl
ag
|

[un 1s3407 pue vorsawaucy 4/S/ATUA LOTIRARTRY

inl

Specification of the Function Switch Unit,

Figure Ab.

inl:AE when packet transmission {s complete and counter (A6#15) acknowledges.

3.0 Functional Units
Fach Functional Unit has the structure shown in Figure A7, Inatruction

packers enter through port fnl in parallel format, and consist of two addresses,
a specification and two values. The Operation Unit (A?#'B), which might be a
pipeline multiplier, for example, receives the two values which are used as
operands, and the specification, which indicates & specialization of the opera-
tion to be performed. The two addresses are entered into two Address Pipeline
lmits (A?#l, A7#2). Results of operations and their associated addresses are
formed into twe result packets and sent separately to the Distribution Network
through ports outl and out2.

Modules (A7#4, A7#5) implement the signaling discipline required of type
A (port inl) and type B (ports outl and out2) links.

4.0 Diatribution Network

The Distribution Network provides transmiassion paths for result packets
from each Functional Unit and from the Contro’ler to each Register Unit of the
Memory. Omne possible structure for the Distribution Network was shown in Figure
10 of the paper. A few Arbitration Units are required in the network because

result packets from several Functional Units may comoete for accesg to the Dig-

- rribution Network. Each Switch Unit directs result packets over one of two paths

in the Distribution Network according to the moat significant remaining bit in
t! » address part of the packets. The address bit tested by the Switch is dele-
ted 1-om the packet. The Parallel/Serial Conversion Units handle only the value
part of the result packet since there is insufficient advantage to serializing
the address part. The purpose of the Buffer Unit {g to avoid causing the pre-
ceding Value Switch [Init to wait for the parallel/serial conversion to complete
before passing other result packets,

4.1 Switch Unit

The sttuctﬁre of a typical Switch Unit ia ghown in Figure AB. The most
significant addreas bit of the result packet is received on wires inl:Al.l,
inl:Al1.0 and is held in data switch (AB#1). The output signal from (AB#1) ena-
bles mulriple data switch module (A8#9) for transmitting a value and multiple
data switch module (AB#2) for transmitting the remainder of the address from

port inl to port outl or out2.

matribution Network

?f;ﬁi

~54-

L
-
#1 r
- addrass}e S }.ddrgzg 8 k ,Laddrass
1 ne
AN s Fipe E
O -
e
valua}‘ S Address N M€ address
‘ o Plpeiine x
xs 3
© F spacification
Ef_t'l ; 1 o1 operand 1
a-ldress Operatlion r
Al Unit o2 operand 2
&)
A
._} value E
AT ’F)
c-
.‘:L
E
o~ c & *
out2 El Li
R M S R
SEQ r STG
2
AR o AS AR i‘-
r
5 | -
4a1
Figure A7. Specification of & Functional Unit.

[T Arbtiration tietwork

5=

| Buffer and F/S Conversion Unit

2 op A1
) Al _______ iy
)”‘0112 1 2 e
3 A2,
El AZ.
2, =
:_ (] ’Bo ! o
8[3. &?2—
NS e c | vi.1
pE oact? i ¥ R Y B
Az ’.3 A}:)
B0 . o * g
!9282 5#* fg;:J
+ aE
& = JJIE #7 ad
. o5 10 AT
Vi- - D Bl ’ - %
i G
g ~ i
2;;" z 1 Al,
A e g 2-
i1 1 3 :2.1
!
2 #3(c c M arnd
D
- Tl.u
5.-1??>
17 - S
! >
= A
aat?
O - *
Al ﬁ",_
A2 _,I s2r $24
D1
o2

Flzure AS.

Specificaticn of the Switch Unit,

onversion Unit

=
-~
"

Corversion Lnit

{ puffar and p/s

-55=

This ensble signal sets the select module (A8#20) to indicate the output
port to be used, and then sets the gate module (A8#23) which permits passage
of value bits through the multiple data switch modules. Sequence module (A8#26),
vhich atarts operation with a signal at output EI, permits a signal on E2 only
after the data awiteh (AS8#1) has reset. Then a space signal on inl:S resets
gate module (a8#23), bluéking further data transmimsion, and the space aignral
{s transmitted by an outl:S/AS or an out2:S/AS transaction. When this trans-

action is complete, sequence module (AB#26) returns to its initial conditiom,

4.2 Buffer and Parallel/Serial Conversion Unit
The Buffer and Parallel/Serial Conversion Unit (Figure A9) uses the same

principle of operation as the Parallel/Serial Conversion and Buffer Inic (Figure
A5). The buffer storage is provided for the address by pipeline unit (A9#1) and
for the value by three pipeline modules (A9#2, A3, A9#4) which are filled by
w transactions on port inl. Sequence module (A9#10) and dnta.switch (A9¥11)
control the tranamiseion of bits through port outl from the three pipeline mo-
dules cyclically. Counter (A%¥12) generates the space signal on gutl:SP when
all bits of a result packet have been transmitted and the counter has reset.
The event pipeline (A9#13) ensures that an S/AS transaction is completed on
port inl before a new packet is transmitted.
5,0 Controller
The Controller accepts commands from the Host, which may be a supervisory

computer or an operator conscle. The five types of commands are the following:

enter-constant(a, v)

enter-variable(a, v)

empty (a, =)

idle(a, -)

run(=, v)
The two types of enter commands cause the value v to be entered in the Register
Unit with address a. An empty command causes the Reglster Unit with address a
to be emptied. An idle commend specifies that the Register Unit with address a
is not to be used in the computation and should be set to idle, A run command
iz a request that the program represented in the Memory be run for v execution

cyclea, 30 that each instruction is executed v times.
The structure of the Controller is shown in Figure Al0. The Command Inter-

preter Unit (Al0#1) accepts commands from the Host (A10£3), transmits result

Uttt Unit

Arlaitiration

-57-

Ai.z.

Al.0

vl.1

V1.0

Figure AG,

3
.L....aﬂs
As B o 1|
by
ini

Specification of 2 Buffer and Farallel-

Convaersion 'rnit.

#1

#1D
53531' “—]
gy
233 | #11
o1 B2
¢l 2
E
§1
T -
o™
,
#13 314
:"l c s
—>
’ . A5

to=Sertsl

-

Arbitration Unit/ Switch Upit

E4
3
, Command tietwork f *s l_Ccorﬂ.r:‘;l “etwork _lr
H" _-— ——— e s - e w—— wser sl vl S AP S AN s NN Spm wuie i
v o f w 12
b | ur' |
{ |
5 i command Execution :
-l B Pl
EPR "Interpreter Counter Unit |
sE ;
Bgl !
m a2
=3 ' l
4 !
' |
L W A . T L] S s R Sl EEnle skl ddnall Snll D SN EENE S SIS summn GRE J
¥
o
] L)
ilost

Fgure £10. Iinks and Specification of the Zentreller,

~59-

packets through the Distribution Wetwork (Al10#:) for enter commands, requests

Register Units to fill or empty themselves or set themselves to idle through
the Command Metwork (Al10#5), and delivers run commands to the Execution Coun-
ter Unit (AlO#2). The Execution Counter Unit transmits the specified number
of execution cycle request signals to the Cells of the Memory through the Con-
trol Network (Al0#6).

5.1 Command Interpreter Unit _
The structure of the Command Interpreter Unit is shown in Figure All.
However, addresses and values are 1llustrated as 2-bit values for simplicity.

The generalization to q-bit addresses and m-bit values is straightforward. The

commands enter-comstant, enter-variable, empty, idle and run are performed in
response to enable gignals on wires inl:CEC, inl:CEV, inl:CEMT, inl:CIDL, inl:CRK,
respectively. An acknowledges signal occurs on inl:AC when execution of a com-
mand ia completed. Addresses are presented to the Controller on wires inl:Al.l
through inl:A2.0 and acknowledged on inl:AA for enter, empty and idle commands.
Values are presented on wires inl:¥1.1 through inl:V2.0 and acknowledged on
inl:AV, for enter and run commands,

For an enter-constant or enter-variable command, a result packet is presen-

ted to the Distribution Network {(port cutl) through a type B[2, 2] link. The
result packet is formed by data switch modules (All#1, All#4) controlled by mo-
-dules (All=8, All#6, All#7). The sequence module (All#€) performs a transac-
tion inl:S/inl:AS after the result pucket.is acknowledged, and the packet wires
are reset, as required for type B links. At the same time the address is sent
to t:e Command Network {port out2) through a type C[2] link, and one of the
trensactions out2:CEC/AC or gut2:CEV/AC is performed [Modules (AL1#12, Al1#10)}.
This action directs the specified Register Unit to await delivery of a value
from the Digtribution Network and return an acknowledge signal when the value
is completely received.

An empty or idle command is executad by sending the address to the Command
Network (port out2) and performing an out2:CEMT/AC or gut2:CIDL/AC transaction.
[Modules (Al1#12, A11410)]. This directa the specified Register Unit to empty
its pipeline module or set its state to idle.

A run command is executed by sending the value to the Execution Counter
(port out3) and performing an out3:D/AD transaction [Module (Al11£15)].

Modulen (All#3, All#2) handle acknowledgement of addresses and permit the
address wires to be reset as saon as the address has been absorbed by the Dis-
tribution Network or Command Network. Module (Allg5) provides the same function

At

H+
"
+
=
[

¢ F12

o

Figure All.

3pecification ¢f the Command Interpreter Unit.

netuwark

Ec?."] T

ctat salian

Jv

re
[IR]

EI
D adeliwQY

S LI
el

L]

NIRR

=-61-

for values. Modules (AL1#9, All414, Al1#13) generate the command acknowledge
signal on inl:AC when command execution is complate.

5.2 Execution Counter Init

The Execution Counter Unit is shown in Figure Al2. Again values are as-
sumed to have 2 bits for sfmplicity. The value supplied at port inl by a rum
cormand is entered in the two bit pipelines (A1245, Al2#6). The decrement mo-
dule (Al12#7) has the property that the three-bit value represented on output
Pairs X, Y, Z is always one leas than the two-bit value on input pairs A, B,
Output pair X of (A12#7) represents 1 if a borrow is required to form the de-
crement. If no borrow is required, the value is discarded and the pipelines
are left empty Lo receive the next run ccmmand.

This action is controlled by sequence module (A12#7) and the assocfated
gate (A12#19) and data switch (A12#6) modules. Output El of (A12#17) 1a ini-
tially 1, and when data enters the pipeline (A12£5, A12#6) from port inl, the
acknowledge is sent out inl:AC by data switch module (A12#16). The sequence
module {s then enabled on its E2 output and will set gate module (A12§19).

This permits a signal on the input of (A12#19) co pass through the unit and
enable the pipeline cutputs. An outl:R/AR transaction requests one cycle of
program execution through the Control Network (port outl). The outl:R siznal,
in conjunction with the acknowledge (out3:AR), resets the pipeline outputs if
the decremented value has entered the pipeline (12415, A12f16). The pipeline
Qutputs are them reenabled. ’

When & barrow is required by decrement module (A1¥7), an gutl :RF/AR trans-
actio. is sent through the Control Network to direct all Memory Cells to acknow-
ledge that all requested exacution cycles are complete, The azknowledge of this
{outl:AR) causes the sequence module (A12417) to enable its E3 output and reget
gate module (Al12#19)., Module (A12#17) is then enabled on ita E1 output to await
another numerical input. The acknowledge of the out]:RF gsignal leads to an
gutl:D/AD transaction, which, by module (A12%27) signals completion of command
execution by an inl:D/AD transaction.

6.0 Command Network

The Command Network (Figure All) is a tree of Register Select Units (Al3#2,
Al3#2, A13#3) that direct comnand trangactions from the Controller (Al3#4) to the
Register Unit (A1346, A13#7) specified by a gq-bit address. For simplicity in
this description, we suppose that one address bit is decoded at each level of the

Comrand Interpreter jait)

~
-

-62-

Flgure ALZ.

lt,

tmbien ey

Speci fication of the Txecution Counter Unit,

outl

{ Tantrol

Register 5 ' Register Jr!?
Undt O - —— Unit n-1
L Hamory sl
CIIOIII‘-}“ - Ir;rf
T T I ,-'2 T T L5
Register Kegister r
Select Unit Select Unit
1
ot | I A o o chp-1
[Register e H
Select Unit
o
cla) |~ Vs
I Controller {
I command '
Interpreter

Figure Al13. 3Specification of the Command Network.

tree, Thus the link (AIS#B) connecting the Command Interpretar (A13#5) of the
Controller to the First Reglater Select Unit (A13F1) 18 a type Cig] link and
includes a pair of enable wires for each of the q address bits. Ths links
(A13%9, A13#10) connecting the firat Register Select Unit to the second level
units (A12#2, A12#3) are of type C[q-1], and the links (A13#11, A13#12) con-
necting to Register Units are of type C[O].

Figure Al4 shows the structure of a typical Register Sslect Unit having
a type C[4] input link and two type C[3] output links. Multiple data switch
modules (Al4#1, Al4#2) direct address and command sigmals to port outl or out?
according to the most significant address bit. Acknowledge signals are returned

through modules (Al4#3, Al4#4).

7.0 Control Network
The Control Network (Figure Al5) is a tree of Run Enable Units (A1S#1,

Al5#2, A1S5#3) that communicate requeat and completion transactions between the
Execution Counter Unit (AlS5#4) of the Contreller and Cell control styucturea
(A1585, Al5#6) of the Memory. All links shown in Figure Al5 are type D.

The apecification of a Run Enable Unit is shown in Figure Al&. Modules
(Al6#1, Al6#2, Al6#3, Al6#4) forward request signals and provide immediate ack-
nowledgement go many request transactions may propagate through the Rum Network
at once. Modules (Al6#5, Al6#6, Al6#7) perform the same function for completion

signalm,

U} 19979 I835 e

100 903735 1a3syFey |

AlLD

Az
A3.0

ﬁ“

AleD

AZL0

()

.éj.o

4.1

4.0
.}

(&}
uk
b

.
-

Loy]

(&)

~§ 3Ten 108198 e1stBey
JHejesdasqul puEuwe)

egister Select Unit.

Specification of a

MEure Alb.

T CIRULE UTIL G

-6~

a1l Control 5 Ce Cantre 36
ructure r_— - Structure r
L r S |
Dl l D
Run Enable [.#2] Run Enable #3
Unit Unit r _

7

;

Run Eﬁable v 41
Uit

r 3

D

l Controllqr

L

Execution 1Lt a

Countar

Figure Al5. Specification of the Control Network.

