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AL Introduction

Many concepts of great importance to progress in softward tech-
nelogy -- modularity, data structures, multiprocessing, hierarchies of
abstractions ~- were unknown at the conception of the stored progran
computer, and it should net be gurpriasing that the architecture of
conventional machines bears little relation to modern advanced program-
ming concepts. The result has been programming languages that make Lhe
undesireble compromise of foregoing clean semantics to achieve efficient
execution on conventional machines, and languagee in which it is diffi-
cult or impossible to divide program design into a hierarchy of indepen-
dent decisions about representing the abstractions of the problem domain.
(See the work of Parnas [33], Liskov[30, 31] and Dennis [10].)

Our research has had the goal of understanding the influence of
architectural concepts on the design and implementation of progranming
languages and systems. This work has led ta the diascovery of radically
new concepts of computer organization that could lead to computer systems
much becter suited to the needs of programming --- machines that directly
implement the fundamental sementic constructs of advanced programming lan-

guages.

Computers designed according to our concepts will achieve highly-
parallel program execution by identifying and exploiting the concurrency
of program parts. We see thia as essential in computers intended to sup-
port advanced programming concepts and still operate efficiently. Theae
computer systems mudt implement a uniform mechanism -- in the spirit of
Multies -- for acceasing information regardless of itz location in the
remory system. However, the performance of contemporary systems is
severely limited by the memory manapement problem -- a conventional proc-
cessor must have direct accegs to enormous main memories to ensure that

enough active processes are avallable to keep the processor busy.

L1

Our idea is to use & very small "page size” so only immedigtely

useful data is brought into higher memory levels. By not bringing in



information unlikely to be referenced, this should yield a large dec-
rease in the amount of fast memory required to support a gliven computa-
tional load. By itself, this idea wouldyield very little work for proc-
cesgors if programs were sequential -~ there would be lots of waiting for
data. Our answer is to find lots of actions to perform within programs
s0 the processors can be kept busy anyway. We believe we have discovered

@ bagis for hardware structures able to achieve this objective.

Our architectural concepts are based on data-flow representations
for programs which expose the concurrency of program parts. Data-flow
models are closely related to the "applicative' programming languages,
and have been developed to equal the expressive power of high-level lan-

guaAges.

We propose to develop and evaluate computer systems uaing data-flow
machine languages. We will pursue this project in stages starting with a
processor for a simple data-fiow langusge that nevertheless has ap interes-
ting and important domain of application in stream-oriented signal procea-
sing. The design of a processor for the alementary data-flpow language has
already been completed and we propose to construct a prototype machine of
modest capability. The second stage will be a highly parallel processor
for a Fortran-level data-flow language. We have golved some of the major
problems in exténding our architectural concepts to this level of expres-
sive power, but much further work ia needed before construction can be

propased.

We envision a third stage of the project in which data-flow concepts
are used in the realization of a general purpose computer system. Thias is
attractive to us but admittedly speculative as there ia much difference of
opinion regarding the amount of exploftable parallelism in generszl purpoae
computer applicaticna. Nevertheless, we are encouraged by the work of
Kuck [29] who has shown that a surprisingly large degree of parallelism
can be found from analysis of ordinary programs.

In the following sections we briefly review developments ia computer

architecture related to our work, discuss the fundamental concepts of



data-flow models for program execution, and present our work sa far on

the design of computers based on data-flow machine languages. The final
section of the proposal presents the program of research we wish to pur-
sue: Further development of architectural concepts; studies relating teo
the feasibility and expected performahce of data-flow computers; and the

construction of a prototype processor of modest size.

In summary, we propose an orderly step-by-step approach to the trial
and evaluation of a radically different concept of computer organization.
We will start at a level of language in which we are confident of suecess,
and work toward aystems of increasing generality. In each step the archi-
tecture developed will implement a specified level of user language, so
there can be no question regarding the class of programs the machine will
gerve -- the principal software problems will he solved {n the specifica-

tion of the machine.



B. Background
Two characteriastice of our studies in computer architecture are:

1. Each architecture developed must implement a

precisely specified base language.

2. The architecture developed muat be capable of
achleving efficient highly-parallel program

execution.

Although there have been a number of projects and studies having one of
these objectives, we are not aware of any project in which computer or-
ganizations hawving both characteristics were sought. 1In the Eoliowing
paragraphs we review previous work in computer architecture having either
of the two goals given above, end discuss its relation to our proposed

research.

Bl. High-Level Language Machines

The Burroughs B 5000 computer iz the earliest significant example
of a language-oriented advance in computer architecture. The built-in
stack mechanism ig designed tc match the convention for accessing varia-
blea in a procedural language such ag Algol 60. More recently, the idea
of designing & computer to directly execute programs represented in a
high-level language has inspired many projects. For example, machines
based on Fortran {5], Algol 60 [20], APL [19) and Lisp [15] have been
proposed, Thease projects are gignificant in that the practical feaasi-
bility of translating the run-time facilities of conventional language

systems into wired logic and/or microprograms has been demonstrated,

The Symbol Project [23, 36, 371 ig closeat in direction to our
proposed effort. Symbol ie both a language and a machine. The Symbol
language was designed without imposing the restrictions usually made to
allow efficient implementation on machines of conventional architecture --

the basic data cbjects of Symbol are tree structures which may be created



and altered in shape and content during program execution. The Symbol
machine was designed to directly implement the Symbol language; thus it
has built-in algorithms for creating and accessing representationg of

trees.

B2. Parallel Machines

The chief motivation for the design and construction of highly
parallel machines has been to achieve a high procesaing rate by expleiting
the complexity of proceasor organization made feaszible by advances in
technology. Unfortunately, the computer organizations chosen for attain-
ing highly parallel operation have been matched to the characteristics
of particular classes of data structures (vectors, matrices), and have
led to machines that are substantially more difficult to program than

conventional machines.

The Illiac IV [4] is the most ambitious and familiar example of an
array processor. . A single instruction decoding station drives many pro-
cessing elements aimultaneously, where each processing element has its

own memory and hence can operate on its own data. Algorithms must be

organized to make maximum use of array and vector operations if the power

6f an array procegsor 1s to be realized.

The Texas Inatruments Advanced Scientific Computer [43} and the
Control Data Star-100 [22] are two examples of machines using pipelined
arithmetic elements to achieve highly parallel computation. Yet a pipe-
lined arithmetic unit can achieve high performance only if it is fed a
continuous stream of inatructions and operands, In these machines
atreaming operation is established only by use of special Instructions,
and highly parallel operation is obtained only when the computation can
be represented in termg of primitive operations on long data streams or

vectors.

Array and pipelined processors, in spite of their high potential
throughput, have the serious drawback that the proprammer is forced to
use unusual and intricate representationa for his data if their perfor-
mance potential I3 to be realized. Thus these architecrtures have contrib-
uted little toward the goal of reducing the cost of creating correct and

eagily understood programs.



Efforts to use advanced technology to incresse the performance of
processors employing conventional machine languages include the CDC
6600 [40] and the L[EM 360/91 [2, 41]. These machines '"look ahead" in
the instruction stream to detect Instructions that may be executed con-
currently, and have several functional units that may perform indepen-
dent instructions simultaneously. Nevertheleas, these deaigns have
proven to be limited in their ability to exploit parallelism and ef-
fectively utilize thelr functional units.

The idea of a multiprocessor computer [L6] -- geveral monose-
quence proceasors sharing access to a number of memory units -- was
first realized in the Burroughs B 5000 system. Although such multiprocea-
g0r computer gystems are able to effectively multiplex their proceadsor
and memory resources among many concurrently executing programs, they
have not proven suitable for exploiting the internal parallism of pro-
grams. This is because a large overhead cost is associated with switch-
ing a processor from one activity to another, and the partitioning
of programe into many long sequential segments is a difficult, if not
impoasible, problem. Moreover, the number of processore in such systems

____ is limited by the complexity of the processor/memory switch.

The Carnegie-Mellon C.mmp project [44] is an interesting current ac-
tivity in multiprocessor computer systems. The C.mmp system embodies an
attractive near-term approach to distributing a computational task over an
unusually large number of procesgor and memory units, Making effective use
of the processing potential of the C.mmp requires careful parcitioning of
the workload among the processors to minimize reavurce use for interprocessor

commmication, and careful design of each part to fully utilize a proceasor.



C. Data-Flow Languages and Processors

A base language founded on the notion of data flow is at-
tractive to us both as a semantic model for programs expressed in
high~level languages and as the specification for the functional behav-
ior of computer systems. In a data-flow representation of a program,
the application of a function or a test 18 free to proceed as soon as
the values required for its application are availabla. Moreover, the
result of a function evaluation or the outcome of a decision is made
available to precisely those functions and predicates in the program
that depend on it,

The concepts of data-flow representation have developed through
the work of Rodriguez [38], and Dennis and Fosseen [12] at MIT, and the
work of Adams [1], Karp and Miller {26], Bahrs [3] and Kosinski [28].

Our most recent and complete formulation of a data-flow language is in

the paper by Dennis [ll], which is attached to this resesarch proposal ag
Appendix A. This language is a complete semantic base for source programs
expressed in command-oriented languages such as Algol 60 and applicative
languages auch as PAL. Since the basic procedure construct in the data-
flow language is funckional (that is, contains no free variables and does
-not produce side effects), this data-flow language satisfies important
criteria [10} for serving as the base language of computer systems that
support the modular congtruction of programs.

In our work, a data-flow program is a directed bipartite graph in
which the two cypes of nodes are called gctors and links. Actors perform
the basic steps in the process of computation -- the application of opera-
tors and the testing of predicates. Links pass values from each actor to
the actors that require its reaults. The values generated and conaumed
by actors are represented by tokens that are placed on the arcs of a data-

flow program and convey values between actors.



The expressive power of & data-flow language 1s determined by the
variety of actors allowed. We have ldentified three levels of data-
flow language for which corresponding computer architectures have at-
tractive application, Thus, our ultimate objective of developing a
general purpose computer system based on data-flow smemantics can be
approached by pursuing several less ambitious projects to develop data-
flow processors of increasing generality starting with a very slmple

language.

The simplest language level is called the elementarv data-flow
language. Programs in this language have actorg of just ome type called
operators. An example of an elementary data-flow program iz showm 1in
Figure 1, and representa the following simple computation:

Tnput a, b,
y := {a +b)/e¢

x:={a?* (a+b)) +c¢

OQutput vy, =

The rectangulsr boxes in Fipgure 1 are operators and each arithmetcic
operation in the above computation is reflected in a corresponding opera-
tor. The small dots are links. The large dots represent tokens; the con-
figuration shown repregents the initiazl condition for execution of the

data-flow program, in which the tokens carry the initial data wvalues.

Execution of a data-flow program is described by a sequence of con-
figurations, each consisting of the program graph and a distribution of
tokens. Program execution advances from oﬁe configuration to the next
through the firing of some node of the program. The firing rules for
elementary data-flow programs are as follows: An operator or link is
enabled if a token is present on each of its input arca and there is neo
token on any of {ts output arce. The enabling of an actor indicates

availability of the values required for application of the corresponding



Figure 1.

Elementary data-flow program.
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primitive function, A new token distribution is defined by the firing
of any enabled node. An operator fires by removing the tokena from its
input arcs, applying the corresponding fumetiom to the values carried
by the input tokens and placing a single token carrying the computed
value on its output arc. The flring rule for a link is identical ex-
cept that the firing of a link merely results in the replication of

the value carried by the token on its inpur are.

For example, in the program showm in Figure 1, linka L1, LZ and
L3 are initially the only enabled nodes. The firing of L1 makes copies
of the value a available to operatora Al and A3J; firing L2 presents the
value b to operator Al alone, Once both L1 and L2 have fired, (in anv
order}, operator Al is enabled aince it will have a roken on each of
its input arcs. After Al has fired, completing the computation of
a + b, link 14 will be enabled. The firings of L3 and 14 will enable

the concurrent firing of operators A2 and A3, and go on,

Although the elementary data-flow language is very primitive, its
expreaaive power is not as limited as the example in Pigure 1 might indi-
_ cate. The graphs of elementary data-flow programs may contain cycles,
allowing for repeated application of a group of operators to streams of
data. By designing a processor to execute an elementary data-flow
program for a specified number of repetitions of each operator, highly
parallel execution of a sizable class of stream-oriented computations
becomes feasible., For example, the computstion required for a second-
order digital filter

y(t) = Ax(c) + By(r - 1) + Cy(t - 2)
can be represented as an elementary data-flow program as shown in Figure 2,

By executing this program for n firings of each node, the values of v (t)

for t =0, 1 ..., n-1 can be generated.
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Figure 2. Data-flow program for the second order
recursive digital filter computation.
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C.1 The Elementary Data-Flow Processor

We have succeeded in designing the architecture of a processor,
called the elementary processor, capable of highly parallel execution
of programs expressed in the elementary data-flow language [13]. This
processar is viewed as a special-purpose computer particularly suited
to stream-oriented signal processing, and which would be operated un-

der the control of a conventional hoat computer.

The organization of the elementary data-flow processor is shown
in Figure 3. The data-flow program to be executed is represented in
the Memory Cells of the processor. FEach Memory Cell corresponds to an
operator of the data-flow program and congists of three registers. The
firat register holds an instruction which specifies the operation to be
performed and the address{es) of the register(s) to which the result of
the operation is to be directed. The second and third registers hold
the operands for use in execution of the instruction. Figure 4 shows
the contents of the Memory Cells of the slementary processor for the
initial configurstion of the program shown in Figure 2.

When a Cell contains an instruction and the necessary operands, it
is enabled and signals the Arbitration Network that it is ready to trans-

mit 1ts contente as an instruction packet to a Functional Unit which can

perform the desired operation. The instruction packet flows through the
Arbitration Network, which directs it to an appropriate Functional Unit
by decoding the inatruction portion of the packet,

The result of Functional Unit operation 18 one or more result
packets each consisting of a computed value and the address of a regis-
ter in the Memory. The result packets are presented to the Distribution
Network which, by means of the destination address, routea the data value
to the correct reglater of the Memory. The Cell containing that register
will become enabled if all operands are now pregsent in the Cell.
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Many Memory Cells may be enabled simultaneously and it is the
function of the Arbitration Network to efficiently deliver instructiom
packets to the Functional lnits and to queue instruction packets waiting
for each Functional Unit. Similarly, the Distribution Network may also
have many packets traveling through it simultaneously. In addition, the
Functional Units are organized in a pipeline fashion., Thus, 21l major
sections of the processor are organized to operate with a high level
of concurrency. Even through s single inatruction packet may experience
a significant delay in passing through the Arbitration Network, the
Functional Units and the Distribution Network, the processor can maln-

tain a high computation rate.

One major problem in achieving highly parallel computation is the
memory [ processor intercommection problem in multiprocessor computer
syastems [16]. The idea of an active Memory connected to the Functional Units
through the Arbitration and Distribution Networks offers an interesting
and, Iin our opinion, & very appealing golution to this problem. Since
there is considerable flexibility in the structure of the Arbitration
Network and Distribution Network, a structure can be selected that
yields balanced utilization of all sections of the processor.

The architecture of the elementary data-flow processar is naturally
implemented as a speed-independent intercomnection of separate units. In
fact, we have warked out specifications for all major sections of the
processor in terms of a small set of asynchromous module types that com-
municate with each other in a speed-independent fashion. This design is
presented in the attached Appendix B. The methodology of specification
uged in rhis work derives from our previous work on speed-independent

logic design and Petri Nets [7, 32, 34].

We have been attracted to the use of asynchreonous logic aince we
feel that it is only through the use of asynchronous logic that a '"natural
hardware realization of a data-flow language with all its attendant con-
kurrency can be obtained. Traditionally, logic designers have been reluc-

tant to emplay asynchronous logic due to fear of timing hazards. However,
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thege problems are avoided in our work by modular design using uniform
speed~independent communication conventions throughout the machine.
Moreover, we believe the task of enauring correctneess of an implemen-
tation will prove far sasier when units are precisely specified using
the methodology we have developed for the elementary processor.

C2. The Basiec Deta-Flow Processor

The second level of data-flow language for which development of a
corresponding architecture is attractive incorporates semantic conatructs
sufficient to represent computations expressed in a Fortran-level source
language. Such a data-flow language must be able to represent condition-
als and iteration, and its domain of values must include arrays. More-
over, achieving highly parallel computation in Fortran-level programa
requires that the parallelism inherent in array operations be exploited,
and that multiple concurrent activationg of subprograms be supported.
While most of theme constructs are covered by the data-flow language of
Appendix A, we have not yet made a definite choice of data-flow language
for Fortran-level programa.

Nevertheless, we have recently heen successful in extending the
architectural concepts of the elementary data-flow processor to a data=-
flow language that is a substantisl step toward a Fortran-level capability.
This language is called the basic data-flow languape, and extends the
elementary language with constructs for representing conditionals and

iteration.

The 1links and actors of basic data-flow programs are showm In Figure 5.
There are now two classes of values -- data values, and the control values

{true, false} -- and corresponding types of link nodes. Deciders apply

predicates to data values and yield control values; the Boolean operators
perform Boolean operations on control values. The firing rules for these
nodes are the same as for the operators and data links of elementary data-

flow programs.

The T-gate, F-gate and merge actors provide the means for controlling

the flow of data tokens according to the outcomes of decfsions. For example,
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A. Links
{(a) data link (b) contrel link
B. Actore
(a)} operator {b) decider
{c) T-gate (d) F-gate

{e) merge (f) Boolean operator

Figure 5. Linke and Actore of the basic data-flow
language.



- 18 -

a T-gate will pasa the data token on irs input arc to its output are

when it receives a control token carrying the value true at its control
input. Tt will absorb the data token on its input arc and place nothing
on its output arc if a false-valued control token is received. The merge
node has two data input arcs labeled T and F, and also a control input
arc. It will pass to its output arc a data token from the input arc cor-
regponding to the value of the control token received. Any token present
on the aother input arc will not be affected. A more detailed description
of these actors and the firing rules asaociated with them may be found in

Appendix A,

Using the actors and links of the basic data-flow language, condi-
tionals and iteration can be easily represented, In illustration, Figure
6 gives a basic data-flow program for the following computation:

input y, x
n: =0
while y < x do
Y: =y +x
n: =o+1
end
output v, n

The control input arcs of the three merge nodes carry false-valued

tokens in the initial coafiguration go the input values of x and y, and
the congtant 0 are admitted as initial values for the iteration, Once
these values have been received, the predicate y < x is tested, If it
is true, the value of x and the new value for y are cycled back into the
body of the iteration through two T-gates and two merge nodes. Concur-
rently, the remaining T-gate and merge node return an inecremented value
of the iteration count n. When the outcome of the decider is falge, the
current values of y and n are delivered through the two F-gates, and the

initial conffguration is restored.
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Figure 6.

Bagice data-£low program.
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We have developed an outline for the architecture of a processor,
called the basic processor, that directly executes basic data-flow prog-
rams. Two problems required sclution in the design of this processor:
One problem is the addition of mechaniswms to implement the new actors
of basic data-flow programs -- deciders, gates, merge nodes, and Boolean
operators. The other problem is the inclusion in the processor of a
multi-level memory system so only the active portions of a data-flow
program willloccupy the Cells of the processor.

The organization of a processor that extends the capability of the

elementary processor to basic data-flow programs is shown in Filgure 7. One
Memory Cell of this machine is assigned to hold an instruection cortregponding

to each operator, decider, or Boolean operator of the basic data-flow
program. Instructions corresponding to operators combine with their
operands to form instruction packets that sre meat to the Functional
Units as in the elementary processor. Instructions corresponding Lo
deciders and Banlean cperators generate instruction packets sent to the

Decision lnits. The Decision Units produce control packets containing

contrel values. These packets are directed to destination registers
through a Control Network according to destination addresses included

in the instructions.

The arrival of a control packet at a destination register either
praovides an operand value to a Boolean operator, or performs a gating
function for one operand of an operator or decider. The gating function
requires a second fleld in the operand registers of Cells conteining
operator or decider instructions. The new field containa a gating code
having three possible values with the following meanings:

gating code meaning
no no gating function occurs at the operand register.
true the operand register implements a T-gate actor. '
false the operand register implements an F-gate actor.

If the gating code of an operand register is no, then the arrival of a
control packet at the register is an error -- the register is enabled
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by arrival of a result packet as in the elementary processor. If the
gating code 1s true, then the operand register ia enabled only if a
result packet, and a control packet containing Erue are received, Ar-
rival of & control packet containing false causes the assoclated result
packet to be discarded and resets the operand regiater to its initial
condition. The complementary behmvior occurs if the gating code is
false, In this way, the function of T-gates or F-gates at the inputs
of operators or deciders is realized. The function of a merge actor

is realized by simply directing result packets from both input sources
to the same destination address; the merging of token flow occura withe
in the Digtribution Network.

In Figure / the Control Network is shown separate from the Digtri-
bution Network becguse it ia in fact a much simpler structure. The
values transmitted consist of just one bit, =o the parallel-to-serial
conversion included in the Diatribution Network {s not needed. This
simplicity permits quick propagation of decisions and increases exploi-

tation of concurrency by the processor.

The architectural concept for a basic data-flow processor just
described has the weakness that each inatruction of a program must oc-
cupy a Memory Cell throughout the course of program execution, For
elementary data-flow programs, this weakness iz of no congequence since
all nodes of an elementary program are continuously and equally active.
With the inclusion of conatructs for conditionals and iteration, the
various parta of s data-flow program will be active for different phases
of a computation, and some parts may not be executed at all. To avoid
providing & Memory Cell for each instruction of a basic data-flow program,
we have developed an organimation (Figure 8) in which the Memory Cells
(now designated Instruction Cells) act as a cache memory for instructions
held in a second-level Instruction Memory, Instructions are requested
from the Instruction Memory as result packets or control packets required

for instruction execution arrive ac the Imetruction Cells. Ingtructions
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(which may be partially enabled) are displaced from Instruction Cells
to the Instruction Memory as Instruction Cella are preempted for newly

active instructions.

The design of the basic data-flow processor has been developed to
the level of behavioral specifications for each major unit shown in
Figure 8. This design is the subject of a paper [14] that has been
submitted for conference presentation, and is included as Appendix C of
this proposal.

The basic data-flow processor lacks some essential semantic con-
structe needed for highly-paraliel execution of Fortran-level programs --
specifically, subprograms and arrays. The extension of our architectural
concepts to include these and further generalizations of expressive power

iz one subject of our proposed research.
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D. Prapogsed Research

We propose to begin a long-range program to design and evaluate a
geries of computers capable of direct, highly parallel execution of prog-
rams represented in data-flow form. For the period covered by this initial
proposal, our work will include: 1. Further development of our archiﬁec-
tural concepts to extend Lo direct execution of Fortran-level and general-
purpose data-flow programs; 2. Studies to evaluate the feasibility, per-
formance and practicality of the elementary and basic data-flow proces-

sorg; and 3. The construction of a prototype elementary processor.

Dl. Architectural Concepts

We plan to extend the ideas embadied in the elementary processor in
two stages -- first a processor for Fortran-level data-Fflow programs,
and then a ecomputer system far general data-flow programs, The Fortran-
level processor is intended to be a highly parallel machine for execution
of numerical computations expressed in a Fortran-like language and should
prove attractive for numerical problems calling for very high processing

rates.

The problems to be solved to obtain a viable design for a Fortran-
level data-flow proceasor fall into two categories ~- extending the set
of linguistic constructs, and solving the problems introduced by using
several levels of physical storage media. The constructs that mst be
added to the basic data-~flow language include procedurea and array opera-
tiona that expose their parallelism for exploitation by a data-flow archi-
tecture. Both of these extensions introduce the need for dynamic executlon
structures, and require a more sophisticated memory structure than we have

devised for the basic processor.

The second stage of architecture development is the further extension

of our ideas to a general purpose computer system using a data-flow repre-

' sentation for programs. The direction this work will take is difficult ro

prédict. Yet, since it is intended to 1ead to a design for a complete
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general purpose computer system, its design will have to encompass not
only the complete language of Appendix A, but also guch issues as program
creation, execution monitoring, ownership of procedures and data, and ac-
cess control. Our study of these aspects of a general data-flow computer
will be coordinated with the development of the CLU programming language
and system by Professor Liskov [30], for which separate funding is'being

sought.

D2, Feagibilitcy and Evaluation Studies

The merit of our data-~flow proeessors depends on their cost, their
performance, and their ease of application to important problem areas.

We propose to study these topics as Ffollows:

Feagibility of LSI Implementation -- The elementary processor is a

highly repetitive structure using meny copies of only a few kinds of units.
Hence, it is attractive to consider using LSI technology even for the con-
structlon of only a few complete systema. A large portion of the elemen-

tary processor could be fabricated using only a few chip types of moderate
complexity.
The feasibility of using LSI technology to conatruct a small number

of systems depends on the number of different device types and the invest-

ment required to put & device into production.

We believe our metheods of design specification in terms of apeed-
independent interconnection of basic asynchronous modules can lead to
fewer dealgn errors and greater confidence in correct translation of
specifications into masks for chip manufacture. This should lead to a
gignificant reduction in the number of design iterations required to per-

fect a device, and a lowar investment for the manufacture of custom devices.

We propose a detailed study of the expected coat of translating our
logic specifications into masks for LSI device fabrication. We wish to
understand the practical tradeoffs between tooling cost and logic speed
as applied to our architectural concepts, and we wish to choose a level
of formal description for communicating device specifications to the semi-

conductor manufacturer.
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It seems likely that the layout of masks should be done by capying
and interconnecting standard cells that are universal building blocks
for asynchronous logic. We propose to determine a suitable set of stan-
dard cells, perhaps in correspondence with the basic modules introduced

in Appendix B.

Avnalvsis of Performance -~ An attractive aspect of the elementary
data-flow processor is the possibility of configuring the Arbitration
and Distribution Networks, and designing the instruction set so that all
parts of the machine are equally well utilized. The computation rate
of the elementary processor is determined by its physical structure and
by the constraints on instruction sequencing imposed by data-flow programs.
We propose to identify useful measures of the sequencing constraints im-
posed by a program, and investigate methods for calculating bounds on
computation rate in terms of these meagures. In this work the methods

developed by Ramchandani [35] in our research group should prove useful.

Simi lar problems of performance analysis will be formu:lated and ana-
lyzed for the basic data-flow processor. In addition, we must be certain
there is no possibility that our data-flow processors will deadlock --
_cease all activity -- when computation remaing to be performed. Previous
work on liveness of Petri Nets [18] and asynchronous systems [25] should

be useful here.

Programming -- Application of the elementary data-flow processor re-
quires & suitable textuazl language for atream-oriented computatiom.
Several such languages have been developed [27, 21], and it will not be
difficult to design a suitable user language. However, the Fortran-
level data-flow processor poses an interesting language design project.
The challenge arises because basic data-flow programs will be able to
represent program structure by use of procedures and by use of streams,

To our knowledge, no satisfactory language has been proposed that is able

to satisfactorily represent both forms of computation. We will attempt

to develop the semantic bagis for such a language. We hope that the lang-
uage will permit natural expreasion of such algorithmes as the fast Fourier
transform for highly parallel execution. This work will be founded on

our studies of data flow schemas [l12] and parallel computation {8],
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D3. Construction of a Prototype Elementary Processor

We propose to build a prototype elementary data-flow processor of
modest capability using available commercial integrated cirecuit logic
elements. We view this project as serving three roles: It will demon-
strate the validity of our architectural concepts, which represent a
radical departure from past approaches to highly parallel computation;
we will gain experience in the technical problems of realizing moderate-
ly large sydtema using speed-independent principles of operation; and
there are interesting application areas -- esgpecially stream-oriented
signal processing -- for which the prototype processor will have valua-
ble application,

Two promiging applications are represented by current projects at
M.I.T. One of these is the work of Professor Barty Vercoe in the M.I.T.
Experimental Musglc Center on developing sound ayntheais Facilities for
use by serious composers of music. The signel processing computations
described by works expreased in the Music 360 language [42] are natural
computations for the elementary data-flow processor. The other project
is in the area of gpeech analysis and synthesis -- the signal processing
computation required for terminal analog speech aynthesis is an ideal
application for the proposed prototype processor.

The choice of processor size for prototype construction is a com
promise among cost of construction, physical size and power consumption,
and the difficulty of congtruction, checking and tegting. From careful
gtudy of alternatives, we have concluded that the prototype machine should

be a 64-cell machine having the following characteriatics:

memory cells 64

registers 192

word size 32 bits

functional units 4

magimum computation rate 5 million instructions per second (rzips)
physical size * 3 standard racks

POWer consumption * 10 Kw,

* The large size and power consumption arise from our use of active memory of
unique deasign. Both figures would be greatly reduced in an LSI realization
made possible by the repetitive nature of the architecture. In splte of this
defect, the prototype machine will achieve high and balanced utilization of all
components in applications well matched to its capabilities.
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A 6f-cell machine is gufficiently large to support interesting ap-
plications by the research groups mentioned earlier, yet small enough
that we are confident of success in its construction. The computation
rate of 5 mips is derived from complete preliminary logic designs for
all units of the processor using commercial TTL devicea, and represents
the maximum rate at which the Arbitration Network can pass instruction
packets to the four Functiomal Units. Structures for the Arbitration
Network and Distribution Network in the prototype have been chosen to
syppart at least this rate. Failure of the processor te achieve the
5 mipe rate can only result from gequencing constraints in the data-flow
program, or the absence of sufficient operators in the program to fully
utilize the capacity of the processor., Note that the computation rate
is equivalent to a much higher instruction rate for a conventional machine
due to the control and addresaing instructions required to implement

stream-oriented signal procesaing on a conventionmal machine.

The cost of constructing the prototype processor is as follows:

gemi-conductor components 14,100
circuit board layout 1 10,200
circult board fabrication 1 15,700
power supply and distribution 6,000
racks and hardware 8,800
backplane wiring 1 6,000
functional units 15,000
tegt equipment &,000

TOTAL 81, 800

1
to be contracted.

In addition to these purchased materials and servicea, direct labor is
reqguired for design verification, assembly, checkout and drafting of

diagrams. These costs are itemized in the Budget.

For tegting the prototype procesgor and to implement simple uzer and

command languages, a host computer is required. This machine should be a

mini-computer to facilitate easy connection to the protatype processor and
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other experimental equipment, For compatibility reasons (the projects
that are potential users of the prototype have private PDP-11 computers),
the host computer should be a PDP-11. We propose the following configura-
tions of Digital Equipment Corporaticn Unita:

PDP-11 E 10 processor 21,000
16k Memory
RK11-D DEC Pack Disk
TAll Dual Cassette
LA30 Decwriter Terminal

Basic Operating Software 1,700
Interfacing Hardware 2,500
TOTAL $25,200

This mechine will alsc be used to test printed circuit boards for the data-
flow processer and will be used in the development of automated design aids

for subsequent projects.
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