MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo 109-1

On Storage Management for Advanced Programming Languages

by

Jack B, Dennis

This work was supported by tha National Science Foundation
under research grant GJ-34671.

October 1974

(Revised November 1, 1974)

*
On Storage Management for Advanced Programming Languages

Jack R, Dennis
Project MAC
Maggachusetts Institute of Technology
545 Main Street
Cambridgé). Massachueserta 02139
Tel: 617-253-6856

- Abstract: Advanced programming languages developed with guldance from con-
siderations of good program structure and proof of correctness have generally
been implemented using the memory management scheme known as mark/sweep gar-
bage collection. Such implementations are unlikely to be acceptable in prac-
tical computer systems intended to support the modular construction of large
programs. Using an illustrative language designed with consideration to good
program structure and clean semantics, we demonstrate the feasibility of
using the reference count memory management technique in its implementation.
The language i defined by its functional semantics, and its implementation
is modelled by a formal interpreter based on acyclic directed graphs.

*
Thiz work was supported by the National Science Foundation under research
grant GJI-34671,

1. Introdwetion

The software problem [18] has inspired increasing interest in the im-
plications of structured programming concepts on the design of programming
languages. The field of language desipgn iteelf has moved intc an era of
self-criticiem and evaluation rather than undisciplined innovation. Familiar
programming constructs -- the goto, assignment to a formal parameter, global
variables -- have been found wanting with respect to the construction of
easily understood and certifiable programs. Hoare [9] has shown how the
merit of programming constructa may be evaluated in terms of an axiomatic
semantics: What is the method of program proof that juatifies uses of a con-
atruct? Reynolds has argued* that a construct should not be introduced into
a programming lenguage unless the corresponding proof rule is understood.

The concept of levels of abstraction in composing programs has led to
interest in the structure and communication of data in programming, and a new
viewpoint on user defined data types that brings together and encapsulates the
specification of object representation and the implementation of the opera-
tions of the abstract data type [11, 21].

Much eriticism of programming constructs is concerned with inde-
pendence of program parts and the programmer's ability to separate design
decigsiong 2o as to minimize interaction of cheir comsequences [15]. This is
the essence of modular programming -- the building of programs from independently
written components. Modular programming has far-reaching implicatioms for the
structure of computer -systems: A .computer system that supports modular pro-
gramming must provide a uniform scheme for representing and accessing informa-
tion. If the benefits of wmodularity are to be realized for very large pro-
grams, the uniformity must extend over information shared at all levels of the
computer 's memory hierarchy. Moreover, if modularity is to benefit a commun-
ity of users, then the uniformity must hold over all programs written by the
users, Ome interesting proposal of a uniform basis for support of modular pro-
gramming is the Binding Model developed by Henderson [8].

Advanced programming languages such as Pascal. [10], PAL [6], Gedanken [16],
and ECL [2], that have seriously sought to have clean semantics, call for

x
In a presentation at the Symposium on the High Cost of Programming [18].

dynamie allocation and reallocation of storage to objects created during the
progress of computation. The usual approach to implementation uses the
memory management scheme known as mark/sweep garbage collection [7]. There
are two serious problems with garbage collection that make it unlikely to be
acceptable in a practical computer gystem designed to support modular pro-
gramming: The mark/sweep scheme regquires that all computation be stopped oc-
casionally so all acceasible information may be identified and storage oc-
cupied by inaccessible information released. This requirement is, of course,
intolerable in any system intended to meet real time deadlines. The second
problem is that no efficient mark/sweep scheme has been devised for storage
management in a memory hierarchy.

In this paper we show that by restricting a programming language to con-
structs that are powerful, yet are not in conflict with considerations of good
program structure and program verification, mark/sweep storage management can
be avoided. We define a language L and discues itz functional semantics. By
constructing interpreter uesing a directed graph formalism, we show that memory

mapagement by reference count sufficea for the implementation of L.

2, A Language With Clean Semantics

A specific programming language L has been developed for an exposition
on the methods of formal semantica [4], and illustrates the level of gen-
erality that cen be achieved while omitting constructs having undesirable
properties with respect to program structure and proof of correckness.

In choosing constructs for inclusion in L we have ignored many aspects
suchaas inputfoutput, precision of numerical computations, which would de-
tract from our main purpoge. Also we have omitted some syntactic sugar (for

example, multiple arguments for procedures) merely to simplify the task.

We are concermed with the gsemantics of L -- not its éénérete syntax -- and it
auffices to present the structure of L by giving an abstract syntax for a
class of abstract objects that correspond to the programs of L. We have
adapted McCarthy's approach [14], as extended by the work of the TBM Vienna
Laboratory [12]. The semantics of L are given by definipng semantic functiens,
following the style of Scott and Strachey [17], that assign mathematical
meaning to each conastruct of the language.

The constructe of L include both expreasion forms and command forms;
the language shows how the two classes of linguistic constructs can combine

harmoniously.

2,1: “Bbjects

The general clasa of abstract objecta is defined by the syntax

Obj ::= ﬂlglgglcomgound [{the set of objects]
Elem ::= truthligg\atring [the elementary objects]
Truth ::= true|false [the truth values]

Int ::= 0|+1‘-1‘ - [the integers]

String ::= < >|'a%]'p"| ... |'aa‘’] ...

[strings on the alphabet of letters and digits)

The first line of this syntax is intended to be read thug: An entity is an
element of the set Obj if and only if the entity is the empty set @, or is an
element of ome of the sets Elem or Gompound. The names of gsyntactic classes start

with a capital letter; the uncapitalized name denotes an element of the class,

=5«

A compound object (an element of Compound) is a finite set of ordered

pairs written

<se11:nb]1, ...,selizobj1> [compound objects]
where
Sel ::= int‘string [the selectors]

ig the set of selectors.

Objects may be thought of as trees with ares labelled by selectors and
with elementary cbjects associated with their leaf nodes (but not necessarily
all leaf nodes).

We will use a schems attributed to Strachey to make sure the syntactie
form of an object is evident from its denotation. To illustrate, the class
of compound objects representing the let expreasions of L ia defined by the

form rule
- Letexp ::=?£g£j§§:= exp, in expy
which means, by ﬁonvention, that ahﬁabjectelegeﬁp»intthe class Letexp has the form

ts

letexp = <'§':llet * = * in *', id':id, ‘expo':exgo, 'expl':ex9f>

The '$'-componment of this objects is a tag that identd fiedddlve’ sjwe 17~ <
tactic form satisfied by the object. Regarded as a tree, a ng expreesion
looks like Figure 1.

_2120, m,szES-giﬂnﬂ __g_ l.l_

The abstract syntax for the expression forms of L ia:

Exp ::= id jidentifier
gggg constant
upp £xp unary operation
BXP,y 922.2122 binary operation
let id = exp, in exp, let exprasaion
if &XP, then exp, else exp, conditional
iterate id from eXp, by exp, EQ%;EAEEBQ iteration
proc(id,): exp procedure declaration
rec ;go(Lgl}: exp recursive procedure
apply g;gifgggz) application

cmd res exp result of commend

=
o
rt
*
1
#
g
*
-
(="
m
:
m
:
—_

Figure 1. - An object in the syntactic class of let expresggions.

-7-

The identifiers of I. are strings
Id ::= gtring
the constants are values
Cons ::= value
and the values are typed:
Value ::= Boolean truth|integer int |atring string
The sets Uop and Bop contain elements denoting unary and binary operations on
the values of L. Discussion of structured values {(for example, arrays and
records) 1s deferred to Section 7.
The meaning of an expression in 1 is given in terms of a mathematical

domain of values V, which 1s the "reflexive domain' of functiomal semantics
[17]:

Y=E+ (LYl
where
E=I+N+Q
T = 1, true, false, T}

[the domain of truth values]

N=(, 0, +1, -1, ..., T
[the domain of integers}
Q={L, <> 'a'y b, ..., 22", ..., T}

[the domain of quotations]

Elements of V will be denoted by @, B, @. For the semantics of L we take
4L ("bottom") to be the meaning of nonterninating computations and T("top"}
to be the meaning of exprassions that fail to produce a mormal value due to
mismatch of operator and operand (data type error), or absence of identifier
binding. L

We asaume.a-sémantic funetion X that maps the syntactic values of L into
the mathematical domain:

A i Value 4 B in

112

hut we shall not further study ilta nature.
For an expression to have meaning, its identifiers must be bound to values;

this binding is given by a member p of a class of functions E called envirorments:

The meaning of an expression is given by the semantic functionm
£: Exp -+ [E + V]

that assoclates with each expression a mapping of enviromments (identifier
bindings) inte values. This function is conveniently specified by a kind of

mathematical cage statement:

£ i expll p = {exp = <<id>»> — p(id),
exp = «<cong>>—*X [[cons]],

This is usually abbreviated to
Ll idl] — p{dd)
g1l cons]] —> Hlfcons]l

The firat six forms of expression are familiar comstructs -- they have their
familiar meaninge in L -- and we omit discusaion of them. For iteration ex-
pressions, it is convenlent to give their meaning in terms of translation
into command form, which is dome in Section 4.

The meaning of a procedure value in L is a function in [V 4 V] deter-
mined by the identifier bindings holding when the procedure value is created.

We give the semgntic equation for recursive procedures, which requires use

of the fixed point operator ¥ of functional semantic theory:

Ellzes Lc_!oLig_lh expll p = Y[Ag. (Oor. Ellexpll p) in D]

of =Md{1d - 14, —» g, (id = 1d, —>o, pUD)]

The argument of the fiwed point operator 18 the function determined by the
mapping of functionms into functimms that mapa the function ¢ into the function
determined by the procedure body exp for the envircmment p' in which igﬂ is
bound to ¢ and the formal argument 1gl is bound to the value . The meaning
of the recursive procedure is the function 8 which, if hound to ;gﬂ, yields
the same function 8 as the meaning of the procedure body.

-9-

The meaning of procedure application is given by

which says that values are obtained for both expressions, and the value of
exp; (which must be a function in ¥ -+ V) is applied to the value of exp, .
Finally, we have

£l cmd res expllp = £ {lexp T C {T emd]l o)
— ——

p

which states that exp is evaluated for the enviromment p' determined by the
meaning of cmd, Note that p' is created only for evaluation of gxp and can
make no other contribution to the meaning of a program.

2,3. The Commsnds of L

The sbstract eyntax for the command forms of L I8:

comd = () the empty command’
cmd,; cnd, sequencing - . <
id := exp asglgnment T
if exp then cmd, else emd, conditiomal .
while exp do cmd iteration -

The meaning of a command is a mapping of enviromments into emnvironments:

C: Cmd -+ [E + E]
For example, the meaning of assignment is given by
Clgsd, = expllp = Md.(1d = 1d;, —> ¢ llexplo, p{d)}

For the while command, a fixed point must be found:

C [while exp do cmdll p =
YA L (£ expll p1T) —» $(C [emdD 0", 0o'1lp

in which §: E -+ E.

The design of L follows many recommendations for clean semantics.
The control structures of L are in correspondence with straight forward
methods of proof -- case analysis and induction; procedures denote functions --
there. are no side effecta; consequently, the meaning of expressions is inde-
pendent of the order of evaluation of subexpressions. As a resulc, a simple
set of axioma for L may be derived from the semantic functions £3 and C.
(See [4] for details,)

The assignment command of L does not cause difficulty because its effect
is limited to the result expression within which it occurs. The environment
defined by a sequence of commands is used only for evaluation of the result
expression, and does not otherwise influence the course of computation. The
language has "free variables,'" but they can only crandmit values into a pro-
cedure application because assignment merely creates a local binding of the

ldentifier that temporarily occludes the external value.

3. Management of Storage for L

The function of a storage management scheme in 2 language implementation
ig to recover for reallocation apace occupied by storage structures abandoned
during the progress of computation and to which no future access is pozsible.
The technique of mark/sweep garbage collection [7, 133 is used when the lan-
guage implementer is unable to devise a scheme for recognizing the computational
step at which a storage structure becomes inaccessible and is therefore a can-
didate for reclamation of storage cells. Inherent in the use of mark/sweep
garbage collection is the gradual accumulation of memory locations occupied
by inaccessible information, the number of such locations being unknown to the
storage management mechanism, -

Garbage collection is expensive because every location in & program's ad-
dress space occupled by accessible information must be touched for marking.
There is & tradeoff between infrequent garbage collection which allows the
number of occupled but inaccessible locations to become large -~ wasting
memory, and frequent garbage collection which wastes processing power in
marking accesgible locationa.

The desirable ability to share procedures and data structures among the
programs of differenf users requires that all programs operate within the

same address space and utilize 2 common storage management mechanism, I£

-11-

mark/sweep garbage collection is used by the implementer of a computer system
intended to support modular programming, then all users would share the prob-
iems of the scheme -- ita inefficiency and the need to intexrrupt all compu-
tation at unpredictable times to reclaim storage cells. This -

would be intolerable in systems intended to meet real-time deadlines.

Another problem with mark/sweep garbage collection is that efficient
realizations of the scheme for physical hierarchies of storage devices have
not been found.

Our main objective ria te :show that the«"teference count' . -
storage management scheme [7, 20] is applicable to an efficient implementation
of the language L. By an "efficient implementation” we mean that the storage
cells used to hold values defined during executiion of L programs are released

%
once the values become inacceasible.

3.1. Memory Manapément by -Refefence Count

Tn general, language implementations allocate storage in unita called
elements which contain elementary (unstructured) values and peointers that
uniquely identify other elements. In using the reference count scheme, each
element includes a count of the number of inatances of pointers to the element
located in other elements and in execution data atructures (activation records
or stack frames). The reference count is ineremented for each instance of a
pointer to the element created during program execution, and is decremented
whenever an instance of a pointer to the element is deleted (by termimation
of a procedure activation and release of its stack frame, or by release of an
element containing an ingtance of the pointer). When a reference count becomes
zero, there are nc poeinters left in other elements or execution structures and
the element can be disxletad and the storage cells it occupies reclaimed. If
cyclic chains of reference are present, groups of elements cam become inac-
cessible while each element in the group retains a nonzero reference count.
Thus the reference count scheme fails to be generally applicable. Neverthe-

less, if no cyclic reference chains are poasible, it is usually possible to

*Implicit in this statement 18 a schematic model of L programs in which the
primitive cperations are replaced by uninterpreted operation letters and it
i3 assumed that every path of controlfflew is possible for some choice of
initial environment and meanings of the operation letters.

12«

arrange that reference counts become zero when and only when the element
becomes inaccessible.

We will show that the reference count scheme is applicable to the lan-
guage I, by presenting a formal interpreter in which the states are acyclie
directed graphs called g-graphs. The s-graphs are a simple abstraction of

storage structures composed of linked elements.

4. The Kernel-iaoguage K

It is possible to give an Interpreter for L that establishes our claim.
However, a much simpler interpreter sufiices 1f we firac show how L can be
translated into a subset of itself -- the kernel language K, The kernel lan-

guage embodies three simplifications of L:

1, Conditional, iteration and let expressiona are omi tted.
2. There 15 no nesting of expreasions.
3. .The test expressions in conditional and iteration commands are re-

stri:cted ro identifiers.

Abatract Syntax of K:

Exp ::= id|cons|uop id]id; bop id,|
proc(id,): exp|
rec 1d,(id;): exp|
apply id, (1d))]

emed res exp

md 3= () |emd; s emd, |
id := exp|

Af id then cmd, else cmd, | |

while id, do cmd

-i3-

4 A - Iranalatien ‘from L to K

The translation of programs in L to programs in K is accomplished by
a sequence of trans formations each of which preserves meaning according to
the functional semantics of L. In some of the rules of transformation given
below, it is necessary to introduce one or two new identifiers. This is
{ndicated by writing id = Newid. In Rule 4 it is essential that id, # id,.
Otherwise, the choice of jdentifier does mot matter except in Rule 5 where
the choice is explicitly reatricted.

Trapslation rules 1, 2 and 3 replace expression formg with corresponding

command forma :

Rile 1: let expressions
Let

id = exp, in expy
becomes <<ii = ex2n>b Les exp

Rule 2: Conditional expressions

if £XD, then [-r.4-) elae exp,
becomes <<1f exp, then <<id := 9521>>

else <<id := exp,>> >> res id

where id = Newid

Rule 3: Iteration expresaions

iterate id from exp, by exp, while exp,
b < < := s <<
ecomes id ex20>>, < ghile exp, gg
<<id :=empy, >> >> 1es 1d

Rule 4 13 used to substitute aséignments with simple right-hand sides for

nested expressions.

Rule 4: Operationa and Application
8. uop &Xp becomes <<id := exp>> res <<uop id>>

b. 8E2, bop sxp, becomes 4<;§1 = exp,; ng 1= gxp,>> res <<id, bop ;gz>>

c. apply exp (exp)) becomes <<id; = exp;; id, := exp,>> res <<zpply id, (id,)>>
where id = Newid
id, = Newid
id, = Newid

2

-14-

Rule 5 gtransforms conditional and iteration commands @o the expregsion

tested is an identifier.

Rule 5: Transformation of test expressicms in conditional and iteration commands.

a., Lf exp then gggl else cmd,

becomes <<id := exp; if id then cmdl else cmd2>>

b. while exp do emd

becomes <<id := exp; while id do
<<emd; id = exp>> >>

where id = Newid occurs melther in the command sequence
containing the conditional or iteration com-

mand, nor in its result expression.

After making all possible applications of rules 1 -5, programs satisfy the
syntax of K. The process terminates because each application of a rule removes
an instance of a syntactic form allowed in L but not K, without introducing any
new Iinstances of such forms. It is easy to show that the translation rules
preserve the meaning of the expressions of L using the semantic equations of
L -~ a task we leave to the reader. However, the weaning of a command is not
strictly preserved due to the possibility of extra identifiers having values in

the environment produced by the translated command.

5;--Eﬁe-Integﬂyetiveﬂiaimzligiqm)

We wish to use a formal model for the execution of programs in K from
which claims can be made about implementations of K, and hence also implemen-
tations of L. Tor this purpose we need a formalism for comstructing an inter-
preter for K that fairly represents considerations of storage management.

Two properties .are impordant: The -Interpreter must nof op-
erate by making copies of information structures that may be arbitrarily large;
and there must be a clear relationship between the state transitions of the
interpreter and the operation of the storage management mechanisms of an
implementation -- specifically, the reference count acheme.

The interpreters developed by the.¥ienria grxoup [12] do riat. provide:
this combination of traits. The use of objects as interpreter states forces
uae of explicitly generated unique names to identify shared objects as compo-

nents of a global structure. This scheme fails to provide any easy way of

-15-

detefmining whether a shared object is accessible. To identify inaccessible
shared objects the designer of an interpreter must in effect implement mark/
sweap garbage collection.
Tnstead of objects, we use directed graphs as interpreter states.

Directed graphs clogely model the linked storage structures often used in

the implementation of advanced programming ianguages. The possibility of
different peths leading to the same node provides a direct way of modelling
gharing, and restricting interpreter states to aeyclic graphs makes it simple
. to demomstrate the sufficiency of referemce count storage management. A simi-
lar formalism has been used by Eilis [5] in a study of the gepantics of data

structures and sharing in a number of contemporary programming languages.

5.1. The Directed Graph Formalism

The directed graph formalism is developed from three sets of entities!

Elem ::= truth|int|string
the elementary values

Sel ::= int|string

the selectors

Unid: a denumerable set of unmique identifiers

A graph iz a triple

(nodes, arcs, val)

where

nodes — Unid

arca € nodes ¥ Sel x nodes

val € nodes x Elem

and represents in the usunal way a directed graph in which the arcs are labelled

with selectors and the valuation val associates elemeniary values with certain
nodea.

We require that the set of ares originatinmg at each node o be distinct

(o, sel,, B;) € arcs
and Bl.# B, implies gel, # sel,
(e, sel,, B,) € arcs

and that val associare at most one value with any node

(Cl’r e_leml) € ‘Ll
implies elem, = elem
1 -1 ===
(o, elem,) € Val)

-16-
For representing interpreter statez we use a restricted class of graphs
called s-graphs:

1. An s-graph contains no closed paths (cycles).
2. The valuation of an s-graph y associates elementary values only

with leaf nodes of vy.

Any node of an a-graph y = {né&és, arcg, val) is said to denote the
object Object(w, Y) according to the following inductive rule:

Let g be
(sel] (», sel, B} € arcs for some B € nodes)

and suppose

o= {ﬁlr '-':__...1391{}
If ¢ is not empty, then
Object (o, ¥) = <§§;1:g§11, ...,sel!:ob >

where obj[= Ubject(ﬁi, Y) and Bi is the unique node of y such that

(o, sel,, Bi) € arca. If ¢ ia empty and (¢, elem) € wval, then

Obhject(w, v) = elem

Otherwise

Object(w, ¥) = @

In words, this simply states that Object(y, y) contains paths to its leaves
that correspond (in the sense of identical selector labelling of the arcs)
to paths Iin y originating at y and terminating on leaves of y.

The states of an interpreter expresged in the formalism are pairs (p, Y
where p is the unique root node of the s-graph y; that is, each node of y is
accesgible by some directed path from node .

An interpreter specifies for each state (p, Y) the construction of a new

state (p', v') by a series of steps that modify the s-graph:
YD“""'Yl‘—""""‘_’Yk

Each step may access components of the current s-graph,;phopse between alter-
natives according to the outeome of a test, or add nodes anﬁ arcs to the s-

graph. The final step produces the s;graph ?k and a node p' of Yy that defines
the new interpreter atate (p', y'). The s-graph y' of the new state is ob-
tained from Y by deleting the old root node_p,and all nodes and arcs inac-

cessible from the new root node p'.

-17-

Each state {p, Y) determines the object Object(p, Y) denoted by the
root node p. Hence an interpreter may also be regarded as defining a
function

" Interp: State - State

where State is a class of abstract objects that correspoend to interpreter
states. This clags of objects may be defined by giving an abstract syntax,
as we shall give below for the kernel language K.

An interpreter 1s writtem according to the concrete agyntax given in

Figure 2. The effect of each construct ia as follows:

(name) names are bound ta values which are either nodes of an

s-graph or elementary values,
{selector) ylelds a value which is a selector (an element of Sel).

{function nnme)((name)) = {construction) specifiea, for any state
' {p, Yv), the successor state (p', v'). The (constructiOn) is
performed with {name) bound to p yielding a transformed
s-graph y* and the root node p' of the next state. The s-graph
v' is obtained from y* by deleting p and nodes inaccessible from

p'.
(construction) builds the s—graph of the next state by adding nodes and
arcg to the current s-graph. A (construction) has a value which

is the node p that denotes the object whose representation has

been constructed.

We conmsider in turn the six forms of a {conatruction}:

-18-

s
(definition) :i= {function name) ({name}) = (construction)
{comatructdom) ::= (name)|

{elementary value)|

Select {{name}), (aelector))]

Append{selectar):{caons tructionl) to (constructi-onz}

<< {constructive denotatiom)>>
{{test} — {construction,), {constructionz)]

{selectaor) ::= {(name)|({integer)|(string)

{constructive denotation) ::= {pattern)|
{pattern){construction){constructive denotation}

Has ({name}, (selector})|
{name) = << (binding denotation }>>
Select({name), (sslector)) = <<(binding denotation)>>

{binding denotation) ::= (pattern}l(pattern)(camponent)(binding denotation’

{component) ::= {name)|<<{binding denotation)>>

Figure 2, Concrete syntax for the text of an interpreter.

-19-

C1. Performing {name) yields the value bound to (nawe); the s-graph

1s not affected.

G2. Performing (elementary value) adds a2 node B to the g-graph and makes
{elementary value) the value associated with p. The value re-

turned s B.

€3. Performing Select{{name}, {selector}) does not affect the s-graph.
If {name) is bound to node o and sel is the value af .(selector),

then the value returned ia the unique node B such that (v, sel, B)

is an arc of the current s-graph. The effect ig to select the sel-

component of the object denoted by w in the s-graph.

C4. Performing Append(selector):(constructionl) to (constructiunz) augments
the current s-graph by performing {consgtruction,) and {construction23
to yield nodes oy and o, that denote objects obj, and obj,. If sel
is the value of {selector), the s-graph is further auggented with a
node § and arcs such that § denotes the object formed by appending
ggl:ggjl to obi,. Specifically, the added arcs are

(B H E.E_ls 0:'1)

and

. (tps gel', §) is an arc of the
(8, 2el’y 8} s-graph and sel' ¥ sel

The value returned is B.

05. Performing a << {constructive denotation y>> of the form
<< {pattern) {conatruction,} ...{constructionk}{pattern)>>
augments the current g-graph with a node B and arcs such that B
denotes an object satisfying the abstract syntax of the denotation.
Per forming (conatruction, Ygrens Qconsnucttopi.}auwms the: s-graph
and yields nodes qp, «..s % - If # represents the pattern of the

k

denctation, and sell, ...,sell are the selectors for the components

‘of objects satisfying the abstract syntax, the arcs added to the

g=-graph are

-20-

(Bl ﬁl, Q'l) LR (Bt E‘.e_lkn Q’k)
@B, '$', &)

and the valuation of the s-graph i{s extended to asasociate # with

a new node 5. The value returned is B.

C6. Performing {({test) — (construction,), (constructioné)} causes
{constructionl} or (constructionz} to be performed according to

the outcome of {test}.

There are four forms of {test). Performing a (test) has no effect on the

current s-graph.

Tl. Performing a {test) of the form {name) has as its outcome the value to

which {name) is bound. This value must be a truth value.

TZ; Per forming Has ({name), {selector)) with {name) bound to node ¢ and
gel the value of (selector) tests whather the object denoted by ¢
in the s-graph has a sel-component. Specifically, the outcome is
true if the s-graph contains an arc (w, gel, B) for some node B,

and 18 false otherwise.

T3. Performing {name) = << {binding denotation}>> has outcome true if the
object ghj denoted by the node « bound to {(name) satisfies the
abstract syntax of the (binding denotation), and outcome false
otherwise. If the outcome is true, the nodes of the s-graph that
denote components objecks of obj are bound to corresponding instances
of ¢{name) in the (binding denotation}, These bindings hold through-
out performance of the (construction) determined by the {test) out-

come .

T4, A (test) of the form Select((name), {selector)) = << (binding denctation) >>
is performed as in T3, except node ¢ and thé denoted object obj are

determined by performing the left-hand side according to C3.

21~

Ag an illustration of the formaliasm, consider the following text:

Interpret(state) =
fstate = <<eval id in env; cont>> —>»

{Has {(emvy, id) —»
Append "val':Select(env, id) to cont,
<<error 5>],

<<egrror >>)

In Figure 3 the nodes of the initial s-graph are solid. The effect af the

outer conditional is to bind components of state to the names id, env and cont,
as shown in brackets, if the given syntax is satisfied. The inner conditional
tests whether y . is bound ip;the enviromment siw. If both tests are satisfied,
the Append {construction) creates a new node p' that dencteas the object formed

by replacing the 'val'-component of cont with the 'y'-component of eav. The

new state comsiasts of the root node p' and the s-graph containing only those
nodes accessible from p'.

If an interpreter state transition cannot be completed by following the
above rules, no successor state is defined, and we consider the interpreter to
be faulty unless the current state is a final state. I hope the interpreter

for K is able to complete all easential state transitions!

6. An Interprecter for the Kernel Languape

OQur interpreter for the kernel language K has five modes of operation:
expression evaluation; command performance; assignment; successful termination;
and error termination, Accordingly, the atate class is composed of five sub-

clesses:

State ::= gyal exp in env; cont|
perform cmd in env; Egggl
asgign val to id in env; cont|
done val|

ercor
e

For each state other than a terminal state, the 'cont'-compoment
(continuation) is a skeleton of the state that is to hold following completion
of the action called for by the present state. For example, the initial state
of the interpreter is

-2

[state] . p

]
t |] !
=N 14’ Tenv' Tcont'

pl
l (1d] l [9292]_4_1] _
'eval * in *; *' 'y! f r

=N l$l‘ Ivﬂlf lsl l"i,‘a‘]_|I

[eny] ¢

le
'§e ing! ot 'int'
'integer' 5 'integer' 3

Figure 3. Example of a state transition.

eval exp in env; <<done P>>

where the task to be performed is evaluation of the expression exp in a
given environment env. The evaluatiom of exp mey require many state tramsi-
tions, but the ultimate effect is to append the value of exp as the Tyal'-
component of the continuation dome #f. 1In general, the continuation of an
evaluation state has an empty 'val'-component, and the contimiation of a
perform state has an empty 'env'-component,

The interpreter for K is presented in Figure 4. Rules El through E8 con-
cern the evaluation of expressiona. Procedure values are represented according

to the syntactic forms
functinn(igl): exp in env
and

recfun ;gﬂ(;gi): exp in env

These representations include the environment env in effect at the time the
procedure value is created.

Rule E7 concerns procedure application and has cases for nonrecursive
and for recursive procedures. The enviromment env, from the procedure value
is appended with binding of ;ga to .the argument valwe and, for recursive pro-

cedures, binding of|ig0 to the procedure rvalue itseB_. This enviremment ia
used for evaluating the procedure body exp.

Rules Pl through P5 concern the performance of commands. In the case of
assignment, the right-hand side is evaluated with a skeleton assignment state
as its continuation. The continuation is completed with the result of expres-
gion evaluation. The assigoment state causes formation of a new enviromment
which completes the continuation of the performance state for the agsignment
command .

The scheme embodied in Rule 7 for application of recursive procedures
avoids representing the circularity of recuraion by a cyclic structure in the
interpreter state. This is, of course, essential to our main paint -- that
reference count storage management suffices for implementation of L.

Study of the interpreter reveals that there is a fizxed bound on the
number of steps required to perform a state transitiom, and a fixed bound on
the number of nodes added to the s-graph.

-2f-

Note that this interpreter halts jimmediately on encountering an
unbound ideatififér: or a type error, In this respect the interpreter fails
to faithfully implement the functional semantics of K: An expression of X
may have a normal value by the functional semantics if erroneocus values
(represented by T) generated are never used in producing the result value
of the expression. However, the interpreter reflects the usual treatment of

errors in language implementations that perform run~time checks.

-25-

Interpret(Btate) =

El, <<eval <<id>> in env; gcont>> ——
{Has (env, 1d) —=>
Append 'val': Selackt(env, id) to gont,

<<arror =>)

E2. <<eval <<cons>> in env; comt>> —»

Append 'val'scons to cont

E}., <<eval <<uop id>> in env; cont>> —»
—— — o e— ———

{Has (env, id) —>»
{Check]l (uop, Select{env, id}) ==
Append 'val'iOperl(uop, Select(env, id)) to cont

<<error >>), <<error>>}

Eh. <<eval <<gl bop ;_q_z» in env; cont>> —%

{Has (env, 1d,) —> {Has (env, id,) —>
{Check?2 (bop, Select(env, id,), Select (env, id,))

Append 'val': Oper2(bop, Select{env, ;gl), Seleck(env, id,)) to cont,
<<error>>), <<error>>}, <error>>)
R Trr——— == —

E5. <<eval <<proc (;gl) : exp>> In énv; conk»> —W -

Append 'val':«function(i_ql): -axp iin-env>> to contr

Eb6, <<gval <<rec i_do(gl): exp>> i envi gone>> —»

Append 'val': Qﬁ'ecfun_i_do(j._gl : exp in emv > :to cont

Figure 4. Formal interpreter for the kerpsl lamguage: Part 1

=-26=-

E7. <<eval <<apply id,(id,)>> 1in env,; cont>> —>

{Has (emv,, 1d,) —» {Has(envy, id,) —=
{Sele::t(gﬂ, id;) = <<function(;u_3): exp in env, >> —>
<cgval exp in
{Append i_d3: Select{env,, _1__:12) to e_ngl); copt>>,
{Select(env,, gl) = <«recfun ﬂo(ﬁa)’ exp in env > ——
<<eval exp in
{Append i_do: Select@mr_o, El) to
{Append ﬁa: Select{env,, _1;:12) to mljj; cont >>,
<<grror>-},
<<M>>] <<%»]

E8. <€eval <<cmd res exp>> g eNnvV; Conto>s> —e2»

<<perform cmd in env; <<eval exp in §; cont>> >>

Figure 4. Part 2,

Pl.

P2.

P3l

P4,

P5.

Al.

-27-

<per form << {)»> in env; cont>> —
Lﬁ — —— ———

Append 'env':env to cont
<<perform <<cmd1; cmd2>> 1=n env; cont>> —»

<<gerfo cmd in eny; <<perform cmd in o; cont>> >>

<<perform <<id := exp>> in env; @onL>> —

<<gval exp in env; <<aseign nd to id in env; cont o> =P

<<perform <<if id then cmdl else gnd,>> in eav; comt>> —3

{Has (env, id) — {Select(emv, id) = <<Bgolean truth>>
(truth — <<perform omd, in env; cont>>,

<<perform cmd2 in env; cont>>J,

<errar >>], <<errot >>}

<<petrform «@mﬂe id do cmd>> in env; cont>> —»
(Has (env, id) —> {Select(env, id) = <<Boolean truth>> =3
{truth — g <<perform emd in env;
<<perform Select{statd, ‘emd') in @; cont>> >> gont},

<<grror >>}, <<error>>}

<<ggsign val to id in env; cont>> ~—3

Append 'env':(Append id:val to env) to cont

Figure 4. Part 3.

-28-

7. Data Structures

For simplicity, data structures were uot included in our language L.
Now we shall extend L to include representations for structured data and
an appropriate set of primitive operaticms.

Considerations of clean gsemantics and ease of program proof led ug to
design L so that no "side effecti" are possible -- every procedure communi-
cates to its caller only by returning a value. In adding data structures to
L we will preserve this characteristic of the language. This decision is in
contragt with use of a storage model based on the concept of cell [19, 8], or
the concept of left-hand values [1].

Affays and records-aEE‘Ega_gE;E;ai classes of data structures. We
model both with clagsses of abstract objects: An array is an object where the
selectors of the components are elements of Int; a record is an object where
the selectors of the components are members of String.

To extend L we add a semantic domain C of compound values to the domain

of values-Y¥. Mathematically, a value o in C is a mapping
o:8 + [T x V]
where § is the domain of selectors:

§=8+Q

A compound value g maps each selector ¢ into the pair

alg) = <r, B>

where v = true if ¢ hae a g-component, and g is' the value of the g-component
if one exists; and T otherwise.

Thus the extended domain of values for L is defined by

V=B+ S+ [TxYI]+I[L- vl
compound values functions
where
B=T+N+9g " [the elementary values]
S=N+¢ [the selecto;s]

The essential operations on data scructures are their construction from
components, and their analysis into component values. Since we wish to regard

data structures as values, it makes little sense to speak of modifying or

«3g-

updating a data gtructure. Rather, we provide means for creating new data
structures by selecting and combining existing values. To this eund, we ex-

tend the syntax of L to include six additional forms for expressions. These

are:
Exp ::= g_=1 the empty compound value
elem exp test if elementary value
&xp, has exp, teat exlistence of component
exp, [ggzl gelect component of compound value-
append exp, :exp, O &XPg append value to compound value

congtruct <se11: xgl, ...,sellzexgiar conagtruct a compound value

The expression nil denotes the compound value that has no components; it is

the function that maps each value that is a gelector inte the pair <false, T>.

£[[nilﬂp = M.[azg — o <false, T>, T}

The value of <<elem exp>> is true if evaluation of exp produces an elemen-

tary value, and false 1f evaluation of exp produces any other value.
£ lielem expllp = {(£ (lexpllp):B —> true, false)

An expression <<exp,; has exp,>> teats whethar a compound value o has a

g~component, where o is the value of expy and g is the value of exp, - That is;

the outcome is
(ale)) i1

which denotes application of ¢ to o followed by selecting the first component af

the result. The value of the expresslon is T if ¢ ig not g compound value or g

{s not a selector.
£ liexp, has exp,lp = ((E Mexp, Bp) | C) (€ lexe,B[E)) ¢ 1

An expression <<exgl[ex22] »> gelects the g-component of o, where o is the
value of exp, and g 1s the value of exp,. The result is

(olod) 12

If y is not a compound value, ¢ is not a selector or if g does mot have a

g-component the reagult is T.

=30-

Mexp, [exp,] Np = ((€llexp,0p|C) Cllexp,Np|8)) 4 2
1 EER) 1 2

Compound values are constructed from simpler values by appending, which
is denoted by an expression <<append exp, :exp, Eo EXPy >> . The result is the
ecompound value

' o' =0 —> B, alc")]

where g, B and ¢ are the values of exp,, exp, and exp,. The new compound
value is y with its g-~component replaced by p. The value g mst be a se-
lector and o must be a compound value, but B may be any value.
£ llappend exp, :exp, to exp,llp =
Ao’ {(o"]8) = (EMexp;Npls) —» Ellexp,lp, (Ellexpslipds')
A construction
construct {ggllzgggl,..., seli:exm >
is syntactic sugar for the phrase
append sel, :exp, to <<, . <<append seli;exgi to nil>>...>>

We require that the selecturssaéll, ..., sel be distinet, and therefore the
order in which components are appended in constructing the new compound value

does not matter,

The translation rules given in Section 4.1 rémain velid. for thig.extension

of L; the corresponding extension of the kernel language K incorporates the

expression forms
Exp ::= pil|elem id|id, has id,|id, (id,]]append id, :id, to id,

Five corresponding rules must be added to the interpreter; the two most
interesting rules -- for selection and appending -- are given in Figure 5.
These rules have been simplifiéd by considering only integer selectors. The
reader may provide the extension to include string selectors.

" It follows from the extended Interpreter that the extension of L has an
efficient implementation (in our sense) using acyclic storage structures and’

for which reference count storage management is applicable.

31

(a) selection

<<eval <<E1[;g2] >> in env; gont>> —>
(Has (env, id)) —> (Has(enyv, id;) —
[Select (env, 1d,) = <<gompound obj>> —>
(Select(env, 1d,) = <<integer ing>>» —*
Append 'val':Select(obj, int) to cont,
<<%>>],
<<error>>},

«cerror »>}, <<error>>])
r———— E——

(b) appending -
<<gval <<append gl :id, to 23 >> in env; eont>> ——¥
{Has (env, id,) —> {Has (env, 1d,) — (Has (env, id,) —>
(Select (env, g.gl) = <cinteger int>»>—&

(Select(env, 1d,)} = <<gompound gbj>> —¥
Append 'val': {Append int:Select{env, 1@_2) to abj) to comt,

<Gerror>> },
—_———

<<arror >>},
———
<cerror >}, <<error>>}, <<error>> H
- —] e =

Figure 5. Interpreter rules for selection and appending.

-32-

8. Conclusion

We have ghown that it is poasible to implement a rich language having
clean semantic constructs. without resorting to a mark/sweep mechanism for
storage reclamation. By denying assignment to free variables, procedure
values are included in a form that avoids difficulty, 2nd a duality is
achieved between command forms and expression forms. These characteristics
of the langusge hawe significant hearing on the:exploitation of parallelism
in computation: Programs in the language are easily translated into the data
flow procedurelanguage we have recently described [3]. The data flow repre-
sentation exposes many of the posaibilities for parallel execution of program
fragments. The simplicity of L's formalization and its exposure of parallelism
are both consequences of the independence of program parts -- the absence of
side effects.

Yet this language 1s incomplete as a general purpose applications language
because it lacks provision for several programs to interact -- there 1s no
means for sharing access to data structures between independent programs. How-
ever, all popular high-level languages are inadequate in this respect, and the
design of appropriate mechanisms with clean semantics remains a challenge. The
language does not incorporate the notion of user defined abstract data types
[11, 22], but its extension to inmcorporate thls concept {at least in the ab-
sence of shared objects) seems straightforward.

The interpretive model shows that atrictly acyclic storage structures will
suffice for implementation of L, but it also has the property that the object
denoted by a node never changes. Thia suggests a potential gimplification of
memory systems, for many difficulties in the design of parallel processing
computers arise from the possibility that informatfon can be modified. The
design of cache memories for a multiprocessor computer provides an eiample.
Thus hasing computer design on a language such as L offers the possibility of
computer systems that support modular programming and can also exploit the

parallelism of program fragments. -

Acknowledgement

The design of the programming language discussed in this paper is the
joint work of the author and Joe Stoy, who has been a valuable source of

knowledge about the theory of functional semantics.

. ‘33'

References R . aT IEpa e

1.

3.

10.

11,

12.

Barron, D. W., J. N. Buxton, D. F. Hartley, E. Nixon, and C. Strachey.
The main Features of CPL. Comp. J. 6, 2 (July 1963), 134-143.

Bobrow, D. G., and B. Wegbreit. A model and stack implementation of
multiple environments. Comm. of the ACM 16, 10 (October 1973), 591-603.

pennis, J. B, First version of a data flow procedure language.
Proceedings of Symposium on Programming, Institut de Programmatiocn,
University of Paris, France, April 1974, 241-271,

Dennis, J. B;., and J. E. Stoy., TPaper in preparation.

Ellis, D. J. Semantics of Deta Structures and References. Technical
Report TR-134, Project MAC, M.I.T., Cambridge, Mass., August 1974.

Evans, A., Jr. PAL -- a language designed for teaching programming
linguistics. Proceedings of the 23rd ACM National Conference, 1968,
395-403,

Fenichel, R. F, List tracing in systems allowing multiple cell-types.
Comm. of the ACM 14, 8 (August 1971), 522-526.

Henderson, D. A., Jr. The Binding:Model: A Semantic Base for Modular
Programming. Ph.D Thesis, Department of Electrical Engineering,
M:I.T., Eambridge, Mass., forthcoming.

Hoare, C. A. R. Procedures and parsmeters: an axiomatic approach.
Symposium on Semantica of Algorithmic La ed, Lectures Notes in Mathe-
matics, 118, Springer-Verlag 1971, 102-116.

Hoare, C. A. R., and N. Wirth, An Axiomatic Definition of the Programming
Language Pascal. Computer Science Group RepoTt, Eidgenossiache Technigche
Hochschule, Zurich, November 1972.

Liskov, B. H., and S, N. Zilles. P_r:og'a;"néni.gg with abstract data fypes.
SIGPLAN Notices 9, 4 (April 1974), 50-53.

Lucas, P., snd K. Walk. Omn the formal description of PL/1. Annual Review

in Automatic Programming 6, Pergamon Press 1969, 105-182.

13.

Lé.

Li.

220,

21,

-34

McCarthy, J. Recursive functions of aymbolic expressions and their
computation by machine, part 1. Comm. of the ACM 3, & (april 1960),
184~-195.

McCarthy, J. A formal description of a subset of ALGOL. Formal Language
Description Languages for Computer Programming, North-Holland Publishing
Co., Amsterdam 1966, 1-1Z.

Parnas, D, L. On the criceria to be used in decomposing systems into
modules. Comm. of the ACM 15, 12 (December 1972), 1053-1058,

Reynolds, J. C. GEDANKEN -- A simple typeless language based on the prin-
ciple of completeness and the reference concept. Comn., of the ACM 13, 5
{May 1970), 308-319.

Scott, D. Qutline of a Mathematical Theory of Computation.
Technical Monograph PRG-2, Oxford University Computing Laboratory,
Programming Research Group, Oxford, England, November 1960.

Stanford Research Imstitute, Proceedings of a Symposium on the High Cost
of Software, Naval Postgraduate Scheol, Monterey, Calif., September 1973.

Walk, K. Modelling of storage properties of higher level languages.

Proceedings of a Sympoaium on Data Structures in Programming Languages,
SIGPLAN Notices 6, 2 (February 1971}, 146-170.

Weizenbaum, J, Symmetric list processor. Comn. of the ACM 6, 2
(September 1963), 524-536.

Zillea, S. N. Paper in preparation.

