MASSACHUSETTS INSTITUTE OF TECHNOLDGY

PROJECT MAC

Computation Structures Group Memo 115

*
Performance of an Elementary Data-Flow Processgor
by

David P. Miesunas

Edited trangcription of a rkalk presented at the Second Annual

Symposium on Computer Architecture, Houston, Texas,
January 21-22; 1975,

February 1975



‘Introduction

Efforts to develop a model of computation which can effectively ex-
press parallelism have yielded a new form of program representation, known
as data flow [1, 2, 3, 4, 8, 9, 11]. The attractiveness of data flow lies
in the fact that it is data-driven; that is, an instruction i3 enabled for
execution ouly after each required operand has been provided by the execution
of a predecessor instructionm.

We have been conducting architectural studies to iLnvestigate the design
of a processor which can efficiently execute data-flow programs by taking ad-
vantage of the parallelism inherent in the data-flow representation. The re-
sulting architectures offer attractive solutions to some of the problems of
parallel systems [5, 6]. The usual problems of processor switching and memory/
processor interconnection are avoided by the use of interconnection networks
which have a great deal of inherent|parallelism. The structure of the pro- -
cessor allowsa large number of instructlons to be active slmultaneously. These
active ingtructions pass through the networks concurrently and form streams of
instructions for each pipelined functiomal unit.

Initial investigations culminated in the develapment of an architecture
for a processor that executes programs expressed in the elementary data-flow
language [5]. The elementary language incorporates no fancy capabilities auch
as recursion, data structures, conditionals, or iteration. However, the lan-
guage and its corresponding architecture are well-sulted for the representa-
tien and performance of signal processing computations such as filtering, wave-
form generation, fast Fourier transforme, and so forth.

The next step involved developing the architecture described in the con<: -
feremce proceedings, the basic machine [6]. This machine and ite: corresponding
language incorporate conditional and iterative mechanisms and a multi-level
memory system in which the active memory is operated as a cache, and individual
instructions are retrieved from the auxiliary memory as they become required for
computation.

The design of the final machine in this series is nearing completion, ex-
panding the architecture and language to incorporate procedures, recursive acti-
vation, and data structures of arbitrary size and shape. Also a forall con-
struct 1s being implemented to permit parallel procesaing of the elements of a

gtructure.



-2-
Today I want to day a few wordg about performance of the architectures.
In order to do this, I am going to discuss the implementation on the elementary

processor of a rather common computation, the fast Fourier transform.

The Elementary Data~Flow Processor

The computational capdbility of the elementary data-floy processor Ig
limited to Programs: expressed in the elementary data-floyw language, A pro-
gram in this language is congtructed of two kinds of elements, called operators
and links (Figure 1). Operators are represented as circles with a number of
input arcs and cne output arc., A link ig designated by 2 small dot and re-
ceives results from an operator on its input arc and distributes them to other
opérators over its output arcs.

Tokens are represented by large solid dots and convey values over the arcg
of the program. An operator with a token un each of its Input arcs and no to-
ken-onrits output arc is enabled (Figure 2), and sometime later will fire, re-
moving the tokens from its ioput arcs, computing a result using the values asso-
ciated with the input tokens and associating that result with a token placed on
its outpur arc. Similarly, a link is enabled when a token is present on itg
input arc and no token is present on any of its output arcs. It fires by re-
moving the token from its Input are and associating copies of the value carried
by the input token with tokens placed on its output arcs,

In Figure 3 we have a rather simple data-flow program. There is a value
present on each input are and thus links L1 and L2 are enabled. FEither one can
fire -- guppose L1 does. Then operator A2, which multiplies its input by the
constant A, and link L2 are enabled. Ounce again, either can fire and in this
manner tokens travel!through the program until a token appears on the output
conveying the value Ax(x + ¥). Once operators Al and A? have fired, there are
no tokens on the arcs emanating from Llzadd L2, and the links can fire as soon
a3 two new input values:arrive. Thus, these elementary programs can easily rep-
resent pipelined computation.

The Memory of the procegsor holds a representation of the program to be
executed. This Memory is a collacticn of Cells (Figure 4); one Cell must be
associated with each operator of the program. Each Cell contalns three
registers, one to hold an instruetion which encodes the type of operator and

‘_'_-. . < -



TA

operator link

Figure 1. Operators and links of the elementary
data-flow language.

Y-y

"enabled" “"fired"

A 7 A

Figure 2. Firing rule for operators and links.



L1 L2

100
0)-

Ax (x+y)

Figure 3. An elementary data-flow progfam.

Memory Cell
——

T MR
register
. 'ﬁd_,‘ﬁ
| ingtruction
neglater

ﬁ operand 1 -'—’ H

register
——— operand 2 L a4

Figure 4. Structure of a Memory Cell.



“5-

"its connections to other operators in the Program and two registers that
receive values for use in the next execution of the instruction. When all
three regiaters of a Cell are full, the Cell is said to be enabled and aig-
nalg that it is ready to have its contents cperated upon by an appropriate
Functional Unit.

The instruction format is shown in Figure 5. The firat field contains
the operation code, which specifies the type of Functional Unit to ba used
and the function it is to perform. The sacond and third flelds hold the ad-

dresses of the Cells which are to receive copies of the result.

The Fast Fourier Transform

The discrete Fnﬁrier-transfcrm of a sequence of‘ﬁ_inputuéampies is given by
the equation;

N-1
= fn Wnk, where W = e-j(Zn!N)

Fk n=0)
The value of eachofithe.Nelements of the output, F, 18 equal to the summation
over the number of input samples of the sample,'fn, times some power of a
weighting factor, W, requiring N2 operations for the direct computation.[7]. - When
the number of {nput sampleg fg2 even, the transform can be computed by dividing
the input sequence in half, performing two smaller transforms on the half-
sized sequences, and combining the results with N mitltiplicétions and additiong.
When N is a power of two, this derivation can be successively repeated until
the problem is reduced to a number of one-point transforms, which are null op-
erations. The resulting fast Fourier transform (FFT) computation consists of
logzN stagea, each of gize N.

The structure for a four-point FFT is shown in Flgure & in ita data-flow
repregentation, This structure has identical geometry from stage to stage, al-
lowing us to implement only one stage of the algorithm on the elementary pro-
cessors and to cycle the data through that one stage logzN times., The four op-
erators within the closed dotted line form one basic operational unit which ia
repeated throughout the program. Let us define thege four operators as a:basiei.

operation and implement them as one Functional Unit, with two inputs and two



Operation code

destination destination

apecialized Function

functional init

Figure B. Ingtruction Format,



f

Figure 6.

Data-flow representation of a four-point FFT.

(¥ ]



outputs tFigufe ). TEEHEESEfamyia-then.considerabiy reduced, and an N point trans-
form (assuming.N some-poweE OF-two)-consists of N/2 - logZN'applicationa of this
operation (Figure 8) and can be implemented on the elementary processor ag N/2
Cells, each of which is executed logzﬂ times in the ccmputation

Rather than examining the contents of each Cell for the FFT computation,
let us look at a typical Cell, say Cell 0 (Figure 9), which, upon receiving
two inputs, f0 and f2’ becomes enabled, and passes its entire contents as an
operation packet, consisting of the instruction and the two operands, to some
FFT Functional Unit. The Functional Unit performs the required multiplication,
addition, and subtraction and sends the two results as data packets, each con-
sisting of a destination address and one result, to the appropriate regigters
specified in the destination address fields of the ingtruction, in this case
register 1 of Cell 0 and'register 1 of gome Cell m, Cell 0, upon sending an
instruection packet to a Functional Unit, once again has emply operand registers,
and awaits the arrival of two new values. Upon their receipt, the Cell re-
peats the gbove process. The operand stored in the Cell is divided into two
parts -- a value and a: stage number which is uged in the determination of the

exponent of W.

Network Structure and Performance

In a preceding section we described the structure and operation of a
Memory containing the program. Now the question arises -- how do we inter-
connect that Memory with the Functional Units? Our answer to this classic prob-
lem is to construct a network, called the Arbitration Network, providing a path

from each Memory Cell to each Functional Unit with the feature that many opera-
tion packets can pass through the network gimultanecusly, and each is directed
into a queue for an appropriate Functional Unit (Figure 10)., Since there are

many inputs and only a small number of outputs, we must provide conflict reso-
lution with arbitration wnits. An arbitration unit passes the first packet to

arrive at one of its inputs to its output. If two packets arrive dimultaneously,
the unit chooses one to pass through on a round-robin basis. The switching of
each packet to an appropriate Functional Unit based on its operation code is
provided by switch units. A portion of the final part of the Arbitration Net-
work is dedicated to each Functional Unit, creating a queue of instructions of

a specific type.



-9.

(4).

£

Figure 7. The basic FFT operator.



Figure 8,

-10=- -

Revised representation of the four-
point FFT,



-11-

FFT] Cell 0/1 ] Cell m/1

Cell O
data
packet
o1 o
£ {R }
FFT,0/1,m/1})
"2 o —
operation
packet
]
va lue § stage

Figure 9. Execution of an FFT instruction.



~12-

Functional

Init 0
data operation
packets packets

Functional

Unic 1

Memory
P —

Distribution Arbitration
Network Cell O Network

Figure 10. Structure of the elementary data-flow processor.




“13-

A Distribution Nétwork ig struétured {n a similar manner to provide a path

from each Functional Unit to each Memory reglster. Switch units direct each

data packet toward the appropriate regilster according to the destination ad-

dress of the packet. A few arbitration units provide conflict reaolution be-
tween the several inputs,

Due to the large number of inpute to the Arbitration Network, we wish to
transfer data between the Memory Cells and the Arbitration Network in serial
format to reduce the number of wires necessary. However, in order to maintain
a high rate of packet flow at the output ports, we wish to transfer packets to
the Functional Units in parallel Format, For this reason, serial-to-parallel
conversion iz done gradually as a packet travels through the Arbitration Net-
work. Parallel-to-serial conversion is performed in.rherDistribution Netiork
for.similamereasons.

The structure of the FFT algorithm provides for a large number of Cells
to be enabled simultaneously, and hence, for a great deal of concurrent activ-
ity within the networks. 1In order to determine the processing time for a 1024
point FFT, we mugt examine the effect of this activity within the networks.
upon the processing time of an individual inatruction, which is sffected by the
delay it encounters in pasding through each network.

The minimun time necessary for a packet to travel through the Arbitration
Network is foumnd by considering its passage through the network without any
cenflict. This time is given by the summation over the gtages it must travel
through of the time required to transfer & packet through each atage:

minimm delay = :E {do. bits serial + 1) (bit transfer time)
stages

The transfer time for a stage is equal to the number of bits passing through
the stage in serial plus one for a signal to indicate that the packet is
ready to be transferred times the time necessary to transfer a bit. A similar
equation applies to delay in the Distribution Network.

Let us examine the delay within a specific Arbitration Network (Figure
11}. This network has three stages and seven arbitration units. Packets trav-
el through Stage 0 in four-bit serial format and are gradually converted to a



-14-

Stage

Number 0 1 Z
Serial

Bits & 2 1
Passage 5t It 2t
Time

Figure 11. Structure of an elementary Arbitration Network,



«15-

more parallel format, passing through stége 1l in two-bit serial and stage 2 in
one-bit serial format. As noted before, the passage kime For a packet through
each gtage is equal to the number of serial bits plus one times the bit trans-

fer time; let us call it ¢, For this structure, these figures are 5t, 3t, and 2t,
respectively. The minimum delay through the network is equal to rhe summation of
the stage delays, or 10t.

In. order ~to find “the: ... maximum delay a packet can encounter in passing
through the Arbitration Network, we must consider a network which has a packet
present at every node in a machine in which every Memory Cell is enabled,
placing a packet on each input to the Arbitration Network (Figure 12)}. TIf we
-consider the maximum delay which can be encountered by a packet, say the tri-
angular one, we find that it arises only when all other packets in the network
and at the inputs of the network pass through the output before ocur triangular
friend does, In order for this to happen, not only must the triangular packet
lose every conflict, but every packet on the path he will follow to the output
must also lose every comflict. Thus, finding the maximum delay involves ex-
amining how many packets will flow through each stage before the triangular one.

For this network the worst case packet will be the l4th through stage 2,
the 6th through atage 1, and the 2nd through stage 0. If we multiply the num-
Ber of packets passing through each stage times the delay in that stage, we
find that:

maximum delay = 2(5t) + 6(3t) + 14 (2¢)
= 56t

Thﬁs, there is a factor of six degredation in passage time between the minimum
and maximum packet delays for this network.

ﬁowever, when a délé}wziaég—ga-tﬁe‘haiiﬁﬁm occﬁfg; it occurs because
the network is being very highly utilized, and thus we are trading gspecific
performance for overall performance of the machine.

Let us consider a 1000 Cell wmachire, 512 of which are being used for
the computation of a 1024 point FFT. Also, let us assume that t is equal to
150 nsec. This is a rather conservative figure; one certainly will be able
to complete a ready/acknowledge cycle in 15 TTL gate delays. Without getting
into the structure of the networks and the tradeoffs involved, a reasonable
get of delays i3 presented below:




\VARVARVERV,

Figure 12.

=16~

>

Example of a2 full Arbitration Network.



-17-

Best QCage:
Delay in Arbitration Network =,5: uged, (8 stagea)
Delay in Distribution Network = § Lsec. (6 stages)
Delay in Functifonal Unit =_5_ usec.
15 p=ec,

However, we are not interested in the best case figures as much as the

worst case ones, which turn out to be:

Wors; Case:

Delay in Arbitration Network = 100 ysec,
Delay in Distribution Network = 20 psec.
Delay in Functional Unit = 5 pusac,

125 usec.

There i3 an increased delay in the Distribution Network due to the presence of
a few arbitration units to Tresolve conflicts between the various inputs.

125 paseconds seems like 2 long time to process cone instruction. But 1f we
think for a second, we remember that by the definition of the worat case delay,
all other Memory Cells plus a large number of other packets have pasaed through
the networks and Functional Units in this time. Thus, in 125 usec. all 512
Cells of the FFT computation have been executed at least once. If we mulciply
this worst case delay by the number of atages (Iog21024 or 10), we ger a worst
case figure of 1.25 milliseconds for the computation of the entire FFT. Thig
is a figure which 1g very highly competitive with therprocessing times of cur-

rent FFT processors.

Ei;mining'Eﬁé_guﬁﬁdprorta of the Arbitration Network (Figure 13), we sece
that an operation packet can be aent to a Functional Unit every 300 nanoseconds,
that is, ata rate of 3.3 million instructions per second (MIPS). Assuming that

each'séSES“SE*EEE"EIEéiiﬁé&‘?unctionai‘ﬁhié operates in less than 300 nano-
seconds, we can conclude that 3 FFT Functiondl Units are necesdary to main-
tain the rate just developed.

Now, not only are we processing sach FFT in a maximm time of 1,25
milliseconds, but there are 488 other Cells in the machine available to per-
form other computation. They might be occupied {n doing some filtering, data
manipulation, or another FFT. The uge of these Cells does not affect the com-
Putation time pecessary for the FFT since it was assumed that they were ac- -

tive for purposes of computing the worst case delay.



-18-

Funetional
Init 0

Arbitration :

Network a
Functional
Unit by

Packet Transfer

Time = 300 ns. per port
(2t)

(3.3 MIPS)

Figure 13.

Packet transfer rate to Functional Units.



-19~

I want to empﬁaaize”thatltﬁééé worst case figures provide an extreme up~
per bound on the time necessary for the computation. Tt is difficult to imag-
ine a case in which all Memory Cells are enabled and the networks are full.
Thus, the actual computation time should be significantly lower than the worst

case figure.

Concluding Remarks

There will be thoze who will not be satisfied with this execution time

and who will wish to perform their transforms even faster, There are several
ways of increasing the performance of the architecture to accomplish this,
First, another Functional Umit can be added. This addition requires that the
packet format within the networks be changed so packets travel in more. parallel
versions. This change will then &;EEEE_EEEH-worst case delay time, decredsing
the processing time for.a stage: of ithe: transform.

Another way of speeding up execution involves changing technologies, The
figures just presented were based on & TTL Implementation. A change to ECL,
for example, should allow approximately a five-fold decrease in execution time,
yielding a maximum procesdsing time of 250 microseconds for the 1024 point FFT.

It turns out that all ts not quite as rosy as.I have just depicted it.
There is a deadlock problem caused by the fact that information flows only in
Ehz'_diﬁétia“‘iﬁhém&e_ﬁmﬁz architecture just déscribed, an {ndtfiic-
tion does not know whether its destination registers are free or not, so it
just assumes they are, and it {s possible.far a number of packeta destined for
the same fegister to be in the Diétributiun Network simultaneously. These pack-
ets will ocecupy nodes of the network and blo¢ck access-to.other registerd ;arc
of the Memory. The solution to thie problem involves introducing control signals

which are sent by an oberator to imnediately preceeding dhérators ta notify
them that its operand regiaters are empty. This change does not affaect the
time required for an FFT computation, and the figures I have Jjust generatad
are sti1ll valid for a deadlock-free version,

Unfortunately, as yet, we have no cost figures for the machine. However,
we are hopeful that the cost will be rather low due to the highly modular
nature of the design and its apparent suitability for am LST implementacion.



-20-

References
[Elflences

L.

10,

11.

Adams, D, A, A Computation Model With Data Flow Sequencing.
Technical Report €S 117, Computer Science Department, Schaol of Hu-
manities and Scilences, Stanford University, Stanford, Calif., December 1968,

Bahrs, A, Operation patterns (An extenaible model of an extensible language).
Symposium on Theoretical Frogramming, Novosibirsk, USSR, August 1972 (preprint).

Dennia, J. B. First version of a data flow pracedure language. Lecture
Notes in Computer Science 19 (G. Goos and J. Hartmanis, Eds.), Springer-
Verlag, New York, 1974, 362-376.

Dennis, J. B., and J. B. Fosseen, Introduction to Data Flow Schemas.
November 1973 (submitted for publication).

Dennis, J. B., and D. P, Misunas. A computer architecture for highly
parallel signal processing, Proceedings of the ACM 1974 National Conference,
ACM, New York, November 1974, 402-409,

Dennis, J. B., and D. P. Misunas. A preliminary architecture for a bagie
data~flow processor. Proceedingy of the Second Annual Symposium on Computer
Architecture, IEEE, New York, January 1975, 126-132.

Gold, B., and . M. Rader. Digital Processing of Signals. McGraw-Hill,
New York, N. Y., 1969, 173-196,

Karp, R. M., and R. E. Miller. Properties of a model for parallel compu-
tations: determinacy, termination, queueing, SIAM 3. aof Appl. Math, 14
(November 1956), 1390-1411.

Kosingki, P. R. A data flow language for operating systems programming.
Proceedings of ACM SIGPLAN-SICOPS Interface Meeting, SIGPLAN Notices 8, 9
(September 1973), 89-94.

Misunas, D. P. Deadlock avoidance in a data-flow architecture. Proceedin 8
of the Milwaukee Symposium on Automatic Computation and Control, IEEE,
New York, April 1975,

Rodriguez, J, E. A Graph Model for Parallel Computation, Report TR-64,
Projeect MAC, M.I.T., Cambridge, Mass., September 1969.




