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Abstract 

The main purposes in writing this pa- 
per are to discuss the importance of for- 
mal specifications and to survey a number 
of promising specification techniques. 
The role of formal specifications both in 
proofs of program correctness, and in pro- 
gramming methodologies leading to programs 
which are correct by construction, is ex- 
plained. Some criteria are established 
for evaluating the practical potential of 
specification techniques. The importance 
of providing specifications at the right 
level of abstraction is discussed, and a 
particularly interesting class of specifi- 
cation techniques, those used to construct 
specifications of data abstractions, is 
identified. A number of specification 
techniques for describing data abstrac- 
tions are surveyed and evaluated with re- 
spect to the criteria. Finally, direc- 
tions for future research are indicated. 
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specification techniques, data abstrac- 
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I. Introduction 

In the past, the advantages of formal 
specifications have been outweighed by the 
difficulty of constructing them for practi- 
cal programs. However, recent work in pro- 
gramming methodology has identified a pro- 
gram unit, supporting a data abstraction, 
which is both widely useful, and for which 
it is practical to write formal specifica- 
tions. Some formal specification tech- 
niques have already been developed for de- 
scribing data abstractions. It is the 
promise of these techniques, some of which 
are described later in the paper, which 
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leads us to believe that formal specifica- 
tions can soon become an intrinsic feature 
of the program construction process. By 
writing this paper, we hope to encourage 
research in the development of formal 
specification techniques, and their ap- 
plication to practical program construc- 
tion. 

In the remainder of the introduction 
we discuss what is meant by formal speci- 
fications, and then explain some advan- 
tages arising from their use. In Section 
2, a number of criteria are presented 
which will permit us to judge techniques 
for constructing formal specifications. 
Section 3 identifies the kind of program 
unit, supporting a data abstraction, to 
which the specification techniques de- 
scribed later in the paper apply. Sec- 
tion 4 discusses properties of specifica- 
tion techniques for data abstractions and, 
in Section 5, some existing techniques for 
providing specifications for data ab- 
stractions are surveyed and compared. 
Finally, we conclude by pointing out areas 
for future research. 

Proofs of Correctness 

Of serious concern in software con- 
struction are techniques which permit us 
to recognize whether a given program is 
correct, i.e.,does what it is supposed to 
do. Although we are coming to realize 
that correctness is not the only desirable 
property of reliable software, surely it 
is the most fundamental: If a program is 
not correct, then its other properties 
(e.g., efficiency, fault tolerance) have 
no meaning since we cannot depend on them. 

Techniques for establishing the cor- 
rectness of programs may be classified as 
to whether they are formal or informal. 
All techniques in common use today (de- 
bugging, testing, program reading) are in- 
formal techniques; either the investiga- 
tion of the properties of the program is 
incomplete, or the steps in the reasoning 
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place too much dependence on human ingenu- 
ity and intuition. The continued exis- 
tence of egrors in software to which such 
techniques have been applied attests to 
their inadequacy. Formal techniques, such 
as the verification condition [1,2] and 
fixed-point [3] methods, attempt to estab- 
lish properties of a program with respect 
to all legitimate inputs by means of a pro- 
cess of reasoning in which each step is 
formally justified by appeal to rules of 
inference, axioms and theorems. Unfortu- 
nately, these techniques have been very 
difficult to apply, and have therefore not 
yet been of much practical interest. How- 
ever interest in formal techniques can be 
expected to increase in the future; eco- 
nomic pressure for reliable software is 
growing [4] and the domain of applicabili- 
ty of formal techniques is also growing 
because of the development of programming 
methodologies leading to programs to which 
formal techniques are more readily ap- 
plied. Indeed, application of proof tech- 
niques to practical programs is being at- 
tempted in the area of operating system 
security [5,6,7], where the need for ab- 
solute certainty about the correct func- 
tioning of software is very great. 

To study techniques which establish 
program correctness, it is interesting to 
examine a model of what the correctness of 
a program means. What we are looking for 
is a process which establishes that a pro- 
gram correctly implements a concept which 
exists in someone's mind. The concept can 
usually be implemented by many programs -- 
an infinite number, in general -- but of 
these only a small finite number are of 
practical interest. This situation is 
shown in Figure !. In current practice, 
the concept is stated informally and, re- 
gardless of the technique used to demon- 
strate the correctness of a program (usu- 
ally testing), the result of applying the 
technique can be stated only in informal 
terms. 

With formal techniques, a specifica- 
tion is interposed between the concept and 
the programs. Its purpose is to provide a 
mathematical description of the concept, 
and the correctness of a program is estab- 
lished by proving that it is equivalent 
to the specification. The specification 
will be provably satisfied by a class of 
programs (again, often an infinite number 
of which only a small finite number are of 
interest). This situation is shown in 
Figure 2. 

Proofs of large programs do not con- 
sist of a single monolithic proof with no 
interior structure. Instead, the overall 
proof is divided into a hierarchy of many 
smaller proofs which establish the correct- 
ness of separate program units. For each 
program unit, a proof is given that it 
satisfies its specification; this proof 
makes use of the specifications of other 
program units, and rests on the assumption 
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Figure 2. A concept, its formal specifica- 
tion, and all programs which can 
be proved equivalent to the 
specification. 

that those program units will be proved 
consistent with their specifications. ~ 
Thus a specification is used in two ways: 
as a description against which a program 
~s proved correct, and as a set of axioms 
in the proof of other programs. At the top 
of the proof hierarchy is a program unit 
which corresponds to the entire program. 
At the bottom is the programming language, 
and the hierarchy is based onthe axioms 
for the programming language and its prim- 
itives. 

The proof methodology can fail in two 
ways. First, a proof may incorrectly es- 
tablish some program (or program unit) P as 
equivalent to the specification when, in 
fact, it is not. This is a problem which 
can be eliminated by using a computer as, 
at least, a proof checker. (Observe that 
one advantage of using formal specifications 
is that theycan be processed by computer.) 

The second way the methodology can 
fail is if the specification does not cor- 
rectly capture the meaning of a concept. 
We will say a specification captures a con- 
cept if every Qi in Figure 2 is some Pj in 
Figure i. There is no formal way of estab- 
lishing that a specification captures a 
concept, but we expect to have gained from 
using the proof methodology because (hope- 
fully) a specification is easier to under- 
stand than a program, so that "convincing 
oneself" that a specification captures a 
concept is less error-prone than a similar 

i. Special techniques [3] must be used if 
the prouram units are mutually recursive. 
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process applied to a program. Furthermore, 
any distinction between concept and speci- 
fication may be irrelevant because of the 
hierarchical nature of the proof process. 
If a program P is proved equivalent to its 
specification, and every program using P is 
proved correct using that specification, 
then the concept which P was intended to 
implement can safely be ignored. 

Advantages of Formal Specifications 

Proving the correctness of programs is 
described above as a two step process: 
first, a formal specification is provided 
to describe the concept, and second, the 
program is proved equivalent to the speci- 
fication by formal, analytic means. Formal 
techniques are not necessarily limited to 
axiomatic methods. For example, it may 
also be possible to develop testing method- 
ologies that are based on a comparison of 
the formal specification and the implemen- 
tation. The output of a methodology would 
be a set of critical test cases which, if 
successfully executed, establish that the 
program correctly implements the specifica- 
tion. The formality of the specification 
means that the computer can aid in the 
proof process, for example, by checking 
the steps of a program proof, or by auto- 
matically generating test cases. 

Clearly, the specification must be 
present before a proof can be given. How- 
ever, formal specifications are of inter- 
est even if not followed by a formal proof 
Formal specifications are very valuable in 
conjunction with the idea of making code 
"public" [8] in order to encourage pro- 
grammers to read one another's code. In 
the absence of a formal specification, a 
programmer can only c~mpare a program he is 
reading with his intuitive understanding 
of what the program is supposed to do. A 
formal specification would be better, since 
intuition is often unreliable. With the 
addition of formal specifications, code 
reading becomes an informal proof tech- 
nique; each step in the proof process now 
rests on understanding a formal descrip- 
tion rather than manipulating the de- 
scription in a formal way. 2 As such, it 
can be a powerful aid in establishing pro- 
gram correctness. 

Formal speoifications can also play 
a major role while a program is'being con- 
structed. It is widely recognized that a 
specification of what a program is intend- 
ed to do should be given before the pro- 

2. The relationship between proofs and 
understanding is a major motivating 
factor in structured programming. For 
example, the "go to" statement is elimi- 
nated because the remaining control 
structures are each associated with a 
well-known proof technique, and therefore 
the programs are intellectually manage- 
able [9]. 

gram is actually coded, both to ai~ under- 
standing of the concept involved, and to 
increase the likelihood that the program, 
when implemented, will perform the intended 
function. However, because it is difficult 
to construct specifications using informal 
techniques, such as English, specifications 
are often omitted, or are given in a 
sketchy and incomplete manner. Formal 
specification techniques, like the ones to 
be described later in this paper, provide 
a concise and well-understood specifica- 
tion or design language, which should re- 
duce the difficulty of constructing Speci- 
fications. 

Formal specifications are superior to 
informal ones as a communication medium. 
The specifications developed during the 
design process serve to communicate the in- 
tentions of the designer of a program to 
its implementors, or to communicate be- 
tween two programmers: the programmer im- 
plementing the program being specified, 
and the programmer who wishes to use that 
program. Problems arise if the specifica- 
tion is ambiguous: that is, fails for 
some reason to capture the concept so that 
two programs with different conceptual 
properties both satisfy the specification. 
Ambiguities can be resolved by mutual 
agreement, provided those using the speci- 
fication realize that an ambiguity exists. 
Often this is not realized, and instead the 
ambiguity is resolyed in different ways by 
different people. Formal specifications 
are less likely to be ambiguous than in- 
formal ones because they are written in an 
unambiguous language. Also, the meaning 
of a formal specification is understood in 
a formal way, and therefore ambiguities are 
more likely to be recognized. 

The above paragraphs have sketched a 
program construction methodology that 
could lead to programs which are correct by 
construction. Formal specifications play 
a major role in this methodology, which 
differs from standard descriptions of 
structured programming [9] primarily %n the 
emphasis it places on specifications. ~ 
Specifications are first introduced by the 
designer to describe the concepts he de- 
velops in a precise and unambiguous way. 
Each concept will be supported by a program 
module. The specifications are used as a 
communication medium among the designers 
and the implementors to insure both that an 
implementor understands the designer's in- 
tentions about a program module he is 
coding, and that two implementors agree 
about the interface between their modules. 
Finally, the correctness of the program is 
proved in the hierarchical fashion de- 
scribed earlier. The method of proof may 
be either formal or informal, and the 

3. see the paper by Hoare [i0] for a 
structured programming example in which 
specifications are emphasized. 
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proofs can be carried out as the modules 
are developed, rather than waiting for the 
entire program to be coded. Progress in 
developing formal specification techniques 
will enhance the practicality of applying 
this methodology to the construc- 
tion of large programs. 

2. Criteria ~or,Evaluating 
Spe~ffication Meth0ds 

An approach to specification must 
satisfy a number of requirements if it is 
to be useful. Since one of the most im- 
portant goals of specification techniques 
is to permit the writing of specifications 
for practical programs, the criteria de- 
scribed below include practical as well as 
theoretical considerations. 

We consider that the first criterion 
must be satisfied by any specification 
technique: 

(i) Formality. A specification method 
should be formal, that is, specifications 
should be written in a notation which is 
mathematically sound. This criterion is 
mandatory if the specifications are to be 
used in conjunction with proofs of program 
"correctness. In addition, formal specifi- 
cation techniques can bestudied mathe- 
matically, so that other interesting ques- 
tions, such as the equivalence of two spec- 
ifications, may be posed and answered. 
Finally, formal specifications are capable 
of being understood by computers, and auto- 
matic processing of specifications should 
be of increasing importance in the future. 

The next two criteria address the 
fundamental problem with specifications -- 
the difficulty encountered in using them. 

(2) Constructibility. It must be pos- 
sible to construct specifications without 
undue difficulty. We assume that the 
writer of the specification understands 
both the specification technique and the 
concept to be specified. Two facets of 
the construction process are of interest 
here: the difficulty of constructing a 
specification in the first place, and 
the difficulty in knowing that the spec- 
ification captures the concept. 

(3) Comprehensibility. A person trained 
in the notation being used should be able 
to read a specification and then, with a 
minimum of difficulty, reconstruct the 
concept which the specification is in- 
tended to describe. Here (and in criteri~ 
on 2) we have a subjective measure in mind 
in which the difficulty encountered in con- 
structing or reading a specification is 
compared with the inherent complexity (as 
intuitively felt) of the concept being 
specified. Properties of specifications 
which determine comprehensibility are 
size and lucidity. Clearly small specifi- 
cations are • good since they are (usually) 

easier to understand than larger ones. 
For example, it would be nice if a specifi- 
cation were substantially smaller than the 
program it specifies. However, even if 
the specification is large, it may still 
be easier to understand than the program 
because its description of the concept is 
more lucid. 

The final three criteria address the 
flexibility and generality of the specifi- 
cation technique. It is likely that tech- 
niques satisfying these criteria will meet 
criteria 2 and 3 well. 

(4) Minimalit[. It should be-possible 
using the speclfication method to construct 
specifications which describe the interest- 
ing properties of the concept and noth~ 
more. The properties which are of interest 
must be described precisely and unambigu- 
ously but in a way which adds as little ex- 
traneous information as possible. In 
particular, a specification must say what 
function(s) a program should perform,-~ 
little, if anything, about how the function 
is performed. One reason this criterion is 
desirable is because it minimizes correct- 
ness proofs by reducing the number of 
properties to be proved. • 

(5) Wide Ran@e of Applicability. Asso- 
ciated with each specification technique 
there is a class of concepts which the 
technique can describe in a natural and 
straightforward fashion, leading to speci- 
fications satisfying criteria 2 and 3. 
Concepts outside of the class can only be 
defined with difficulty, if they can be 
defined at all (for example, concepts in- 
volving parallelism will not be describ- 
able by any of the techniques discussed 
later in the paper). Clearly, the larger 
the class of concepts which may be easily 
described by a technique, the more useful 
the technique. 

(6) Extensibilit[. It is desirable that 
a minimal change In a concept result in 
a similar small change in its specifica- 
tion. This criterion especially impacts 
the constructibility of specifications. 

3. The Specification Unit 

The quality of a specification (the 
extent to which it satisfies the criteria 
of the preceding section) is dependent in 
large part on the program unit being spec- 
ified. If a specification is attached to 
too small a unit, for example, a single 
statement, what the specification says may 
be uninteresting, and furthermore there 
will be more specifications than can con- 
veniently be handled. (The specification 
could express no more than the following 
comment, sometimes seen in programs: 
x := x + l;"increse x by i".) A specifi- 
cation of too small a unit does not cor- 
respond to any useful concept. What is 
wanted is a specification unit which cor- 
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responds naturally to a concept, or ab- 
straction, found useful in thinking about 
the problem to be solved. 

The most commonly used kind of ab- 
straction is the functional or procedural 
abstraction in which a parameterized ex- 
pression or collection of statements is 
treated as a single operation. The speci- 
fication for a functional abstraction is 
normally given by an in~out~ specifi- 
cation which describes themapp~g of the 
set ~ input values into the set of output 
values. 

Recent work in the area of program- 
ming methodology, however, has identified 
another kind of abstraction, the data ab- 
straction. This comprises a group of re- 
lated functions or operations that act 
upon a particular class of objects, with 
the constraint that the behavior of the ° 
objects can be observed only bY applica- 
tions of the operations [ii].4 A typical 
example of a data abstraction is a "push 
down stack"; the class of objects consists 
of all possible stacks, and the group of 
operations includes the ordinary stack 
operations, like push and pop, an opera- 
tion to create new stacks, and an opera- 
tion to test whether a stack is empty. 

Data abstractions are widely used in 
large programs, although the constraint on 
observable object behavior has not always 
been followed. ~ Some examples are seg- 
ments, processes, files, and abstract de- 
vices of various sorts, in addition to the 
more ordinary stacks, queues, and symbol 
tables. In each case the implementation 
of the abstraction is given in the form of 
a multi-procedure module [14]. Each pro- 
cedure in the module implements one of 
the operations; the module as a whole 
may provide a single object (for example, 
there is a single system data base), some 
fixed maximum number of objects (for ex- 
ample, there is a fixed maximum number of 
segments), or as many objects as users 
require (for example, a new stack is pro- 
vided whenever a user asks for one). 

The realization that a multi-proce- 
dure module is important in system design 
preceded the identification of the multi- 
procedure module as an implementation of 
a data abstraction. 6 It is illuminating 

4. Morris has discussed some criteria 
for determining what constitutes a suf- 
ficient set of operations [12]. 

5. The constraint has been followed in 
the Venus system [13]. 

6. It is an open question whether every 
multi-procedure module implements a data 
abstraction. We believe that the cor- 
respondence holds. In the Venus system 
[13], which was built entirely from such 

to examine the arguments in favor of the 
multi-procedure module as an implementation 
unit. The procedures are grouped together 
because they interact in some way: they 
share certain resources (for example, a 
data base which only they use, and possibly 
some real resource, like the realntime 
clock owned by the process abstraction in 
[15]); and they also share information 
(for example, about the format and meaning 
of the data in the shared data base, and 
the meaning of the states of the shared 
resource). Considering the entire group 
of procedures as a module permits all in- 
formation about the interactions to be 
hidden from other modules [16]: other 
modules obtain information about the inter- 
actions only by invoking the procedures in 
the group [14]. The hiding of information 
simplifies the interface between modules, 
and leads directly to simpler specifica- 
tions because it is precisely the inter- 
face which the specifications must de- 
scribe. 

As an example of the problems which 
arise when the data abstraction is ignored 
and the operations in the group are given 
input/output specifications independently 
of one another, consider the following 
specification for the operation push. 
Assuming the push operation is a function, 

push: stack X integer ÷ stack 
the input/output specification must define 
the information content of the output value 
of push (the stack object returned bypush) 
in terms of the input values of push (a 
stack object and an integer). This can be 
done by defining a structure for stack ob- 
jects, and then describing the effect of 
push in terms of this structure. A typical 
stack structure might be (in Pascal [17]) 

type stack = record top: inte@er, 
- -  data: arr~ [1..100] 

of integer 
end 

and then the meaning of 
t := push(s,i) 

could be stated (using notation developed 
by Hoare [2])7 

true {t := push(s,i) ) (¥j) [l-<j-<s.top 
= (t.data[j] = s.data[j] 

& t.data[t.top] = i 
& t.top = s.top + I)] 

A similar specification could be given for 
pop. 

There are several things wrong with 
such a specification. A serious flaw is 

modules, every module did correspond to a 
data abstraction. 

7. This specification ignores the behavior 
of push if the stack is full, that is if 
s.top= 100. 
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that it does not describe the concept of 
stack-like behavior, but instead specifies 
a lot of extraneous detail. Concepts of 
stack-like behavior -- for example, a 
theorem stating that pop returns the value 
most recently pushed on the ~tack -- can 
only be inferred from this detail. The 
inclusion of extraneous detail is undesir- 
able for two reasons. First, the inven- 
tor of the concept must get involved in 
the detail (which is really implementa- 
tion information), rather than stating the 
concept directly. Second, the inclusion 
of the detail detracts from the minimality 
(as defined in the criteria) of the speci- 
fication, and it is likely that a correct- 
ness proof of an implementation of push 
and pop based on a different representa- 
tion for stack objects would be difficult. 
Another problem is that the independence 
of the specifications of push and pop is 
illusory; a change in the specification 
of one of them is almost certain to lead 
to a change in the specification of the 
other. For example, in addition to being 
related through the structure chosen for 
stack objects, the specifications of push 
and pop are also related in their inter- 
pretation of this structure: the decision 
to have the selector "top" point to the 
topmost piece of data in the stack (rather 
than to the first available slot). 

If a data abstraction such as stack 
is specified as a single entity, much of 
the extraneous detail (concerning the in- 
teractions between the operations) can be 
eliminated, and the effects of the opera- 
tions can be described at a higher level. 
Some specification techniques for data ab- 
stractions as a unit use input/output 
specifications to describe the effects of 
the operations, but these specifications 
are expressed in terms of abstract objects 
with abstract properties instead of the 
very specific properties used in the ex- 
ample above. In other techniques, it is 
not even necessary to describe the indi- 
vidual operations separately, but instead, 
the effects of the operations can be de- 
scribed in terms of one another. As an 
example, just to convey a feeling for 
the latter approach, the effect of pop 
might be defined in terms of push by 

pop(push(s,v)) = v 
which states that pop returns the value 
most recently pushed. 

In the remainder of the paper, we 
will concentrate on specification tech- 
niques for data abstractions. In doing 
this we will not ignore input/output 
specifications, since these form a part of 
some of the techniques we will discuss, 
but we will also discuss techniques, like 
the one illustrated above, that are appli- 
cable only to data abstractions. We limit 
our attention in this way because the 
specification techniques for data abstrac- 
tions are all fairly recent, and have re- 
ceived relatively little attention so far. 
Also, the infor,~tion-hiding aspect of 

data abstractions, discussed above, prom- 
ises that specification techniques focused 
on such units will satisfy the criteria 
very well. 

4. Properties of Specifications 
of Data Abstractions 

Although the specification techniques 
to be described in the next section differ 
from one another in many particulars, there 
are also ways in which they are similar. 
All the techniques must convey the same 
information -- information about the mean- 
ing of data abstractions -- and this in- 
formation is conveyed in a mathematical 
way. In this section, we discuss a mathe- 
matical view of the specification tech- 
niques, and~he information contained in 
the specifications. We also discuss some 
of the proSlems arising from discrepancies 
between the mathematical and programming 
views of data abstractions. 

All the specification techniques for 
data abstractions can be viewed as defining 
something very like a mathematzcal disci- 
pline; the discipline arises from the 
specification of the data abstraction in 
a manner not unlike the way in which 
number theory arises from specifications, 
like Peano's axioms, for the natural 
numbers. The domain of the discipline -- 
the set on whiP'-is based -- is the 
class of objects belonging to the data ab- 
straction, and the operations of the data 
abstraction are defined as mappings on 
this domain. The theory of the discipline 
consists of the theorems and lemmas deriv- 
able from the specifications. 

The information contained in a speci- 
fication of a data abstraction can be 
divided into a semantic part and a syntac- 
tic part. Information about the actual 
meaning or behavior of the data abstraction 
is described in the semantic part; the 
description is expressed using a vocabulary 
of terms or symbols defined by the syntac- 
tic part. 

The first symbols which must be de- 
fined by the syntactic part of a specifi- 
cation identify the abstraction being de- 
fined and its domain or class of objects. 
Usually, an abstraction has a single class 
of defined objects, and, in this case, it 
is conventional to use the same symbol to 
denote both the abstraction and its class 
of objects. Thus the objects belonging to 
the data abstraction, stack, are referred 
to as stacks. (It is possible for an ab- 
straction to have more than one class of 
defined objects, but this presents no 
mathematical difficulties, and we will not 
consider it further [18].) 

The remaining symbols introduced by 
the syntactic part name the operations of 
the abstraction, and define their function- 
a]ity -- the domains of their input and 
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output values. An example is shown in 
Figure 3, where the functionality of the 
operations of the data abstraction, stack, 
is described. (In Figure 3, the operation, 
TOP, returns the value in the top of the 
stack without removing it; ° POP removes 
the value without returning it.) 

Several interesting observations can 
be made about this example. First, more 
than one domain appears in the specifica- 
tion in Figure 3. In practice, the spec- 
ifications for almost all interesting data 
abstractions include more than one domain. 
Normally, only one of these (the class of 
stacks in the example) is being defined; 
£he remaining domains (integer in the ex- 
ample) and their properties are assumed 
to be known. Of course, the specifica- 
tions must clearly distinguish between the 
domains assumed to be known and the ones 
to be defined. 

C R E A T E  ; --I,- S TACK 

PUSH = S T A C K  X INTEGER --4,-STACK 

POP , S T A C K  --~ STAC K 

TOP = STACK --~ I N T E G E R  

Figure 3 The operations of the stack abstraction 
and their funct ional i ty .  

A second observation is that, given 
this distinction, the group of operations 
can be partitioned into three blocks. The 
first block, the primitive constructors, 
consists of those operations that have no 
operands which belong to the class being 
defined, but which yield results in the 
defined class. This block includes the 
constants, represented as argumentless 
operations (for example, the CREATE oper- 
ation for stacks). The second block, the 
combinational constructors, consists of 
those operations (PUSH and POP in the ex- 
ample) which have some of their operands 
in and yield their results in the defined 
class. The third block consists of those 
operations (TOP for stacks) whose results 
are not in the defined class. 

A third observation is that the mathe- 
matical description of the functionality of 
an operation does not necessarily corre- 
spond to the way the operation would be 
programmed. One difference is that the 
functions in the example have only one 
output value, while in practice it is 
often desirable for a program to return 
more than one result. For example, one 
might define a stack operation 

POP2: STACK ~ STACK X INTEGER 
which removes a value from a stack, and 
returns both the new stack and the value. 
This operation can be modeled mathemati- 
cally by a pair of operations, one for 
each result. For example, the result of 
POP2 can be defined as the pair of results 
from POP and TOP, where both are applied 

simultaneously to the same stack value. 
When such an association is mad e , the spec- 
ification must clearly indicate the re- 
lationship between the operation symbols. 

A more serious discrepancy is that 
the operations are viewed by the specifica- 
tion as acting on time-invarient, mathe- 
matical values, but the objects found in 
most programming languages can be modified 
in some way. These modifications are the 
result of side-effects in some of the 
applicable operations. For example, al- 
though the PUSH operation used above is 
purely functional, it would more likely be 
implemented so that no result is returned, 
and PUSH modifies (has a side effect upon) 
an existing stack object. 

The now conventional solution to this 
difficulty is to factor a modifiable object 
into two components: an object identity 
(unique for each distinct object) and a 
current state. The modifications affect 
only the state component, so a given object 
(over time) is represented by a sequence 
of pairs of values in which the object 
identity is always the same. Each opera- 
tion with a side effect is defined by a 
mapping which yields a new pair of values 
representing the same object and a new 
state. 

There are two frequently occurring 
cases in which the identity component of 
an object can be omitted in the specifi- 
cations. First, if there is only one ob- 
ject, such as in the KWIC index example 
described by Parnas [19], then the identi- 
ty component is obviously redundant. 
Second, if, as is the case in certain pro- 
gramming languages, the identity of an ob- 
ject is uniquely given by the symbolic 
name or identifier that denotes the object, 
then a separate identity component is un- 
necessary. The symbolic name of an object 
becomes its identity, and the use of a 
new symbolic name implies that a new object 
is introduced. 8 This approach is unsatis- 
factory for the many languages in which a 
given object may have two or more distinct 
symbolic names; for example, an object 
may be accessible both via a parameter and 
a global name. Then the approach fails 
because side effects will not appear under 
both names (see, for example, [20]). 

The semantic part of the specification 
uses the symbols defined in the syntactic 
part to express the meaning of the data 
abstraction. Two different approaches are 
used in capturing this meaning: either 
an abstract model is provided for the 
class of objects and the operations de- 
fined in terms of the model, or the class 
of objects is defined implicitly via de- 
scriptions of the operations. 

In following the abstract model 

8. See, for example, Hoare's rule of 
assignment [2]. 
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approach, the behavior is actually defined 
by giving an abstract implementation in 
terms of another data abstraction or mathe- 
matical discipline, one whose properties 
are well understood. The data abstraction 
being used as the model also has a number 
of operations, and these are used to de- 
fine the new operations. The complexity 
of the descriptions deRends on how closely 
the new operations match the old ones. 
Sometimes they matchvery closely; at 
other times the descriptions can be arbi- 
trarily complex. 

The approach of defining the objects 
implicitly via descriptions of the opera- 
tions is much closer to the way mathemati- 
cal disciplines are usuaily defined. The 
domain or class of OperationS is deter- 
mined inductively. Usually it is the 
smallest set closed under the operations. 
Only those operations identified above as 
constructors are used in defining this 
closure. The closure is the smallest set 
which contains the results of theprimi- 
tive constructors and the results of the 
combinational constructors when the ap- 
propriate operands are drawn from the set. 
For example, with stacks, the only primi- 
tive constructor is the constant operation 
CREATE which yields the empty stack, and 
the class of stacks consists ~f the empty 
stack and all stacks that result from 
applying sequences of PUSH's and POP's to 
it. One difficulty with the implicit def- 
inition approach is that if the specif i - 
cations are not sufficiently complete, in 
the sense that all the relationships among 
the operations are indicated, several dis- 
tinct sets may be closed under the opera ~ 
tions. The distinct sets result from 
different resolutions of the unspecified 
relationships. 

In the next section, specification 
techniques employing both the abstract 
model and the implicit definition 
approaches will be discussed. 

5. Specification Techniques 

In this section we present a survey 
of selected techniques for giving formal 
specifications of data abstractions. 
This survey is not complete, but it is 
intended tQ be illustrative. We do not 
describe the techniques in enough detail 
for the reader to be able to immediately 
apply them; indeed, achieving such a 
description is a matter of research for 
at least some of the techniques. Rather, 
our intention is to introduce the most 
promising formaltechniques, to indicate 
their strengths and weaknesses, and to 
provide pointers into the literature so 
that more information can be obtained. 

Of the many techniques by which a 
data abstraction can be specified, most do 
not meet the criteria set forth in Section 
2 because they are either too informal, or 

too low level. Thus, textual (English) 
specifications and specifications in terms 
of an implementation, such as the class 
definitions of SIMULA 67 [21], will not 
be considered. In addition, a number of 
techniques developed for specifying the 
semantics of programming languages -- 
though relevant in varying degree -- are 
not considered because of their specialized 
use. The techniques that are discussed 
and which seem most promising are those 
which use some form of abstraction to re- 
duce the complexity of the specifications. 

The techniques fall into five catego- 
ries which are (in order of increasing 
abstractness of the specifications): use 
of a fixed domain of formal objects', such 
as sets or graphs; use of an appropriate, 
but otherwise arbitrary, known formal 
domain; use of a state machine model; 
use of an implicit definition in terms of 
axioms; and use of an implicit definition 
in terms of algebraic relations. Tech- 
niques in the first two categories use the 
abstract model approach, while those in 
the remaining categories use the implicit 
definition approach. Each of the catego- 
ries is illustrated by one particular 
technique chosen to be typical of the 
category and, where possible, to be acces- 
sible in the literature. Following the 
description of the example, the technique 
is evaluated with respect to the criteria 
of Section 2. Finally, we summarize the 
evaluations, and compare the categories 
with one another. 

Use of a Fixed Discipline 

We begin by discussing specification 
techniques in which a fixed language -- 
that of some established mathematical dis- 
cipline -- is used for all specifications. 
The given discipline is used to provide a 
high level (abstract) imPlementation or 
model of the desired data abstraction. 
The class of objects is represented by a 
subset of the mathematical domain and the 
operations are defined in terms of the 
operations on that domain. Although any 
mathematical discipline (number theory, 
analysis) might be used, practical usage 
has been restricted primarily to graphs 
[22,23,24], sets [25,26,27], and the 
theory developed around the Vienna Defini- 
tion Language [28]. 

As an example of using a fixed disci- 
pline, we will consider Earley's use of 
graphs in describing data structures [22]. 
Each instance of a data structure is rep- 
resented by a graph or, as he called it, 
a V-graph. These are constructed from 
atoms, nodes and links. Atoms represent 
data withno substructure. Links are 
given labels, called selectors, and are 
directed from nodes to nodes or atoms; 
the only requirement on links is that two 
links with the same selector can not ema- 
nate from the same node. The selectors 
can be any node or atom (strings, inte- 
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gers). Nodes have no significance other 
than as place holders in the structure 
being described; in our discussion, we 
will display nodes as circles, except that 
header nodes will be displayed as boxes. 
For example, a r~presentation of a stack 
holding the integers 2 and 25 is shown in 
Figure 4; the structure has a single 
header node, and the node labeled NIL is a 
special terminator. The values stored in 
the stack are accessible via the selector, 
CONT. 

Once a V-graph representation has 
been chosen, two methods are available for 
defining the operations. First, operations 
may be defined by expressions written in 
terms of primitive V-graph operations. 
These operations provide the ability to 
use the selectors to access and modify the 
links and nodes. Thus, the stack opera- 
tion TOP can be defined directly to access 
the contents of the node selected by the 
selector TOP. 

A second definition method is used to 
describe operations which modify the struc- 
ture of the representing V-graphs. These 
operations are defined by means of pictures 
of V-graph transformations. The opera- 
tions could be described by complicated 
expressions in terms of the primitive op- 
erations; however by using pictures, a 
more minimal description, containing less 
extraneous detail can be achieved. For ex- 
ample, the stack operations PUSH, POP and 
CREATE are defined via transformations. 
First, an initial configuration is defined 
to represent the empty stack produced by 
CREATE; this is shown in Figure 5. Then, 
PUSH and POP are defined by giving before 
and after pictures for the corresponding 
transformations. The lefthand V-graph 
displays a pattern, in the form of a path 
of selectors from a header node to other 
nodes, to match against the operands of 
the transformation. Some of the nodes in 
the lefthand V-graph are given labels 
which can be used to identify the new 
position of these nodes in the rearrange- 
ment defined by the righthand V-graph, 
which represents the result of the trans- 
formation. For example, Figure 6 de- 
scribes the operation PUSH as follows: 
For any arbitrary stack object, PUSH 
causes a new node to be inserted between 
the header node and the node previously 
connected to it via the link labelled TOP; 
the value being PUSHed will be on the CONT 
link of the newly added node. Figure 7 
displays the result of PUSHing 8 onto the 
stack shown in Figure 4. A similar defi- 
nition can be given for POP; it would 
show POP to be the inverse of PUSH (the 
arrow in Figure 6 would be reversed). 

The technique of using a fixed disci- 
pline to express the specifications satis- 
fies many of the criteria set forth in 
Section 2. Certainly, it can be made suf- 
ficiently formal. For someone familiar 
with the given discipline, the specifica- 

Figure 4. 

2 2 5  

A V-graph representation for a 
stack. 

Figure 5. A V-graph representing the 
initial stack configuration. 

Figure 6. A V-graph specification for 
PUSH. 

[~.~(~ 0NT~CONT i L N E X T  _NEXT NEXT 

8 2 25 

Figure 7. The V-graph resulting from 
PUSHing 8 onto the stack shown 
in Figure 4. 

tions are usually easily understood and 
easily constructed if they describe con- 
cepts within the range of applicability of 
the chosen discipline. Extensibility pre- 
sents no problem provided that the repre- 
sentation selected for the class of objects 
of the abstraction is adequate to express 
the properties of the extension. Even 
proofs of correctness of the uses of the 
specifications are simplified by using the 
multitude of theorems which exist for es- 
tablished disciplines. 

However, techniques using a fixed dis- 
cipline are deficient with respect to the 
criteria of minimality and range of appli- 
cability. Using such a technique to ex- 
press specifications is similar to writing 
programs in a programming language which 
provides a single data structuring method9; 

9. In fact, Earley defined a programming 
language, VERS, in which V-graphs were the 
data structuring method [22]. 
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although a single method can be powerful 
enough to implement all user-defined data 
structures, it does not follow that all 
data structures are implemented with equal 
facility. Similarly we cannot expect that 
all data abstractions can be specified 
equally well in terms of a fixed disci- 
pline. For example, the graphical repre- 
sentation is very suitable for showing the 
paths by which the content of a data 
structure can be accessed. But, if the 
access path is not relevant, such as when 
testing whether an object is in a given 
set, then the graphical representation 
over specifies the desired structure; 
that is, the abstract representation in- 
troduces details which need not be pre- 
served in an implementation capturing the 
specifier's intentions. The use of extra 
details violates the criterion of minimal- 
ity and places a practical limit on the 
range of applicability of a fixed disci- 
pline. 

Use of an Arbitrary Discipline 

The unwanted representational detail 
which results from using a fixed disci- 
pline can be reduced by allowing the spec- 
ifications to be written in any convenient 
discipline. This approach is particularly 
useful when the class of objects of the 
desired data abstraction is a subset of 
some established mathematical domain. 
Hoare has used this approach to specify 
sets [29,30] and certain subsets of the 
integers [30]. The operations on the data 
abstraction are defined by expressions in 
the chosen discipline. For example, an 
operation to insert an integer in a set 
might be defined by: 

insert(s,i) ~ s := s u i 
where assignment is used to show that s is 
updated with a side effect. 

Many of the properties of specifica- 
tions in which an arbitrary discipline is 
chosen are the same as when a fixed dis- 
cipline is used. Allowing the specifier 
to choose a convenient discipline re- 
moves some of the limitations of a fixed 
discipline, but not all. Actually, the 
number of disciplines available for use is 
not large, and, in addition, if a complete- 
ly free choice of discipline could be made, 
it is doubtful that the resulting specifi- 
cations would be comprehensible. Thus, 
in reality, the specifier must choose 
among a small number of disciplines; some 
of these might be existing mathematical 
disciplines, while others would be disci- 
plines developed especially for use in 
specifications. This situation is analo- 
gous to writing programs in a language 
providing several data structuring facili- 
ties; programming experience indicates 
that there will always be (problem ori- 
ented) abstractions which cannot be ideally 
represented by any of the data structuring 
methods. Thus, it appears unlikely that 
all data abstractions can be given minimal 
specifications by choosing among a number 

of disciplines. 

Use of a State Machine Model 

As was noted in Section 4, the class 
of objects can be defined implicitly rather 
than by means of an explicit model. If 
the class of objects is viewed as states 
of an abstract (and not necessarily finite) 
state machine 10, then the class can be de- 
fined implicitly by characterizing the 
states of the machine. Parnas [31] has 
developed a technique and notation for 
writing such specifications. The basic 
idea is to Separate the operations into 
two groups: those which do not cause a 
state change but allow some aspect of the 
state to be observed -- the value returning 
or V-operations -- and those which cause 
a change of state -- the operate or O-oper- 
ations. The O-operations correspond to 
the constructors of Section 4. The speci- 
fications are given by indicating the 
effect of each O-operation on the result 
of all the V-operations. This implicitly 
determines the smallest class of states 
necessary to distinguish the observable 
variations in the values of the V-opera- 
tions. It also determines the transitions 
among these states caused by the O-opera- 
tions. 

We again use the integer stack data 
abstraction as an example, and consider 
the operations TOP and PUSH. TOP is a V- 
operation which is defined as long as the 
stack is not empty, and PUSH is an O-oper- 
ation which affects the result of TOP. 
Looking at just these two operations, the 
state machine specifications might read 
as shown in Figure 8, where DEPTH is 
another V-operation whose definition is 
not shown here, but which is intended to 
reflect the number of integers on the 
stack, and MAX represents the maximum 
number of integers which can be stored on 
the stack. Quotes around an operation 
name are used to indicate its value before 
the O-operation is executed. 

This type of specification is differ- 
ent from those previously considered be- 
cause it is free of representational de- 
tails. No extra information is introduced 
if the specifications are expressed en- 
tirely in terms of the names of operations, 
types, and possibly some initial values 
(like MAX in the definition of PUSH). 
Thus, one might expect to achieve quite 
reasonable minimality. In practice, how- 
ever, it is not always easy to build a 
simple description of the effect of an O- 
operation. The problem is that certain 
O-operations may have "delayed effects" on 
the V-operations: some property of the 
state will be observable bv the V-operation 

10. In this case, the set of states of 
the state machine is the set of time- 
invarient mathematical values that we 
discussed in Section 4. 
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only after some other o-operation has been 
applied. For example, PUSH, has a delayed 
effect on TOP, in that the former top-of- 
stack element is no longer directly ob- 
servable, by TOP, but will again be ob- 
servable after POP is applied. Parnas used 
an informal language to describe this de- 
layed effect [3~]. Delayed effects can be 
described formally by introducing "hidden 
functions" to represent ~spects of the 
state which are not immediately observable. 
Users of the state machine model [6,7] 
have made extensive use of such hidden 
functions. However, adding hidden func- 
tions can also add representational detail, 
and thus detract from the minimality of 
the specification. 

V - o p e r a t i o n :  TOP 
possible values:  integer ~ i n i t i a l l y  undefined 
p a r a m e t e r s ,  none 
e f f e c t  : error  cal l  i f  ' D E P T H '  = 0 

O - o p e r a t i o n =  PUSH (a)  
possib le  va lues=  none 
p a r a m e t e r s =  in teger  a 
e f f e c t :  error  ca l l  i f  ' D E P T H '  = MAX 

else ( T O P = a  ; D E P T H  = ' D E P T H ' - I - I  ) 

F igure 8 A part ia l  state machine specif icat ion 
for the s tack  abst rac t ion ,  

The state machine specifications are 
slightly deficient with respect to the 
other criteria of Section 2. Because of 
the problem of delayed effects, noted 
above, they are sometimes difficult to 
construct. Because the O-operations 
which change the result of a V-operation 
are totally separated from that V-opera- 
tion, the specifications are sometimes 
difficult to read. The separation also 
affects extensibility since adding a new 
V-operation may require updates to a 
large portion of the O-operation specifi- 
cations. 

With respect to the criterion of 
formality, we expect that state machine 
specifications can be given an adequate 
formalization but much work remains to be 
done. In particular, it is necessary to 
develop a formal (not necessarily effec- 
tive) construction for the state machine 
specified by a given set of specifica- 
tions. This will necessitate d6fining 
the language Which can be used to describe 
the effects of an O-operation. In addi- 
tion, work on developing the proof method- 
ology to use with state machine specifica- 
tions is needed. Price [6] has proved a 
number of properties of a particular data 
abstraction, but the methodology for 
proving the correctness of an implementa- 
tion still needs to be developed. Some 
of the needed formalization is being done 

in an ongoing project at SRI [7,32]. 

Use of Axiomatic Descriptions 

An alternative to using state machines 
to implicitly determine a data abstraction 
is to give a list of properties possessed 
by the objects and the operations upon 
them. This approach can be formalized by 
expressing the properties as axioms for 
the data abstraction. Axiomatization has 
been used by Hoare [2,33] to define the 
built-in data types of a programminq lan- 
guage. The techniquecan also be used to 
give specifications for user-created data 
abstractions. 

An axiomatization of the integer stack 
abstraction in which popping the top ele- 
ment off the stack (POP) and examining the 
top element (TOP) are separate operations, 
is given in Figure 9. In this example, 
STACK and INTEGER are predicates; STACK 
is being defined, but INTEGER is assumed 
to be defined elsewhere. The axioms are 
written in a form analogous to Peano's 
axioms for the natural numbers. Axioms 1 
and 2 define the range of the applicable 
operations. Axiom 3 is the induction ax- 
iom which limits the class of stacks to 
those that can be constructed with the 
given operations. Axioms 4 and 5 insure 
the distinctness of the results of the 
PUSH operation. Axiom{ 6 and 7 define the 
result of the TOP operation and axioms 8 
and 9 define the result of POP. Axioms 7 
and 9 capture the fact that neither TOP 
nor POP may be legally applied to an empty 
stack (the result of CREATE). II 

I CREATE (STACK) 

2. STACK(S) ~ INTEGER (1) m STACK (PUSH (S,I)) 
[POP(S) ~ STACKERROR ~ STACK (POP(S))] B 

FTOP(S) ,~ rN.TEGERERROR ~ INTEGER (TOP(S)] 
3 (VA) [A(CREATE ) 6 

(VS){Vl) [STACK(S) B INTEGER (L) B A($) 
D A(PUSH (S,I)) 8 [S ~ CREATE3 A(POP(S))]] 

;VS) [STACK (S) D A(S)]] 

4 STACK(S) B INTEGER (1) m PUSH (S,I )  ~ CREATE 
5 STACK (S) 8~ STACK (S') B INTEGE R(1) 

[PUSH($,I) = PUSH(S',I) D S:S' ]  
6 STACK(S) B INTEGER(1)~ TOP(PUSH(S,I)) = I 
7 TOP(CREATE) = JNTEGERERROR 

8 STACK(S) 8 INTEGER(1)~POP (PUSH (S,I)) =S 
9 POP(CREATE) = STACKERROR 

Figure 9. An axiomatic specification 
of the stack abstraction. 

The axioms determine an abstract rep- 
resentation for stacks in the following 
manner. Consider the set of all legal ex- 
pressions that can be constructed from the 
given operations. This set of expressions 

ii. In these axioms, we are using the 
standard mathematical technique for making 
a partial function total: the output 
domain of the function is extended by one 
special, recognizable value which will be 
the result of the function in all cases 
where it was previously undefined. 
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names every possible member of the class 
of stacks. Some pairs of expressions may 
name the same stack, however; for example, 
both 

PUSH(CREATE,7) and 
POP (PUSH (PUSH (CREATE, 7) , 25) ) 

denote the same stack. Therefore, the 
class of stack objects is represented by 
equivalence classes over the set of all 
expressions. These equivalence classes 
are determined (non-effectively, in 
general) by the axioms. 

If the axioms are sufficiently well 
chosen, the equivalence classes are unique. 
If not, then several sets of equivalence 
classes may satisfy the axioms. If, for 
example, axiom 4 is omitted, then two dis- 
tinct sets of equivalence classes -- one 
in which the result of PUSH is always dis- 
tinct from the empty stack and one in 
which it is not -- would both satisfy the 
axioms. 

The axiomatic specifications can al- 
most always be minimal and widely applica- 
ble, in part because there are so few 
limitations on the form of the axioms. 
In addition, the approach seems to support 
extensibility, since, in most cases, it 
suffices to add new axioms to describe 
the extended concept, or at most, to 
modify a few existing axioms. The formal- 
ization of the axiomatic technique is 
borrowed directly from existing mathemat- 
ics. Proving the correctness of an imple- 
mentation of a data abstraction specified 
by axioms means showingthat the implemen- 
tation is a model of the axioms. 

The axiomatic approach is most seri- 
ously deficient with respect to the cri- 
teria of comprehensibility and construct- 
ibility. As discussed in Section 4, the 
approach does not directly define a model 
for the class of objects; instead the 
class is defined only implicitly. It is 
sometimes difficult to see that the ax- 
ioms really define the set of values of 
interest. In addition, the possibility 
that several very different sets of val- 
ues may satisfy the axioms is disturbing. 

Use of Algebraic Definitions 

It is reasonable to expect that all 
data abstractions one might be interested 
in implementing on a computer would have 
finitely constructible, countable domains. 
In view of this, the first three axioms 
in Figure 9 can be omitted, providing 
suitable notation is developed to indicate 
the group of applicable operations and 
their functionality. Algebraic specifica- 
tions [18] provide such a notation. 

The algebraic specification technique 
is based on a generalization of the alge- 
braic construction known as a presentation. 
A presentation of the stack abstraction is 
shown in Figure i0. Only four axioms are 
now needed (labeled with primes to avoid 

confusion with the axioms in Figure 9). 
Axioms i, 2 and 3 are replaced by the def- 
inition of functionality; this is suffi- 
cient to define the set of legal, finitely 
constructible expressions in these opera- 
tions. In the usual algebraic terminol- 
ogy, the legal expressions are called 
words. Next, it is necessary to specify 
w l ~  of these expressions are to yield 
equivalent results, through a set of 
defining axioms referred to as relations 
or relation schemata: this is don~ by 
axioms i' through 4' (which correspond to 
axioms 6 through 9 in Figure 9). The 
construction which gives meaning to a pre- 
sentation automaticall~ forces all ex- 
pression pairs which cannot be shown to 
be equivalent to be distinct. This sim- 
plifies the expression of the specifica- 
tions and is why axioms 4 and 5 are not 
needed. 

Almost all the comments about how 
axiomatic definitions satisfy the criteria 
apply equally well to algebraic defini- 
tions. Algebraic and axiomatic defini- 
tions are equally good with respect to 
the criteria of minimality, wide range of 
applicability, and extensibility. (Alge- 
braic definitions are shorter than axiom- 
atic ones, but they are not more minimal 
because they express the same informa- 
tion.) The algebraic approach can be 
easily formalized by borrowing from ex- 
isting mathematics; most results carry 
over in a straightforward-manner, although 
some generalization is needed totreat 
several existing domains simuleaneously. 
For algebraic specifications, proving the 
correctness of an implementation means 
showing that it defines an isomorphic 
image of the presented algebra. This 
isomorphism can be established implicitly 
by showing that the defining axioms hold 
in the implementation and that the mapping 
is one-one [18,34]. 

The algebraic approach is superior 
to the axiomatic approach with respect to 
the criteria of constructibility and com- 
prehensibility, because the approach is 
more structured. However, algebraic spec- 
ifications are still deficient with re- 
spect to these criteria. Although use of 
the algebraic approach precludes the pos- 
sibility of more than one set of values 

FunchonoiH y 

CREATE : ~ STACK 
PUSH STACK X INTEGER --m-STACK 
TOP STACK ~INTEGER U INTEGERERROR 
POP STACK - ~ S T A C K  USTACKERROR 

A x i o m s :  

I' T O P ( P U S H ( S , [ ) )  : [ 

2' TOP (CREATE) = INTEGERERROR 

3' POP(PUSH ( S , I ) ) =  S 

4 '  P O P ( C R E A T E )  = STACKERROR 

Figure I0 An algebraic specif ical ion of the slack abstract ion. 
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satisfying the axioms, it is still possible 
that the set of values defined is not the 
one intended. We believe this difficulty 
can be eased if a methodology is developed 
which can be applied to constructing and 
understanding such specifications. Some 
progress in this direction has been made 
[18,35], but more work is needed. 

Summary of Analyses 

The analyses given in this section in- 
dicate that there is no single specifica- 
tion technique that is universally better 
than the others. One major difference 
among the techniques is the extent to which 
they exhibit a representational bias, that 
is, the extent to which the spec~'~ations 
suggest a representation or implementation 
for the abstractions being defined. The 
representational bias of a technique deter- 
mines, in large measure, its range of ap- 
plicability. Techniques having a repre- 
sentational bias will be limited primarily 
to those abstractions which are naturally 
expressed in the representation; however, 
within the range, specifications will be 
fairly easy to construct and comprehend, 
and reasonably minimal. Those techniques 
which make use of an existing mathematical 
discipline to specify an abstract model for 
the class of defined objects have a repre- 
sentational bias. Such techniques will be 
preferred for abstractions which fit nicely 
into the discipline (for example, where the 
objects of the abstraction are elements of 
an existing domain). 

The techniques providing an implicit 
definition of the class of objects have no 
representational bias, and will clearly be 
preferable for those abstractions not well 
matched to an existing discipline. They 
may sometimes be preferred even when one of 
the abstract model approaches could be used. 
The abstract model approaches tend to 
suggest an implementation for the abstrac- 
tion, and this may be undesirable, not 
because it precludes very different imple- 
mentations, but because it may be hard 
for the implementor to find a different 
but better implementation. 

All the implicit definition tech- 
niques, with their lack of representa- 
tional bias, have a wide range of appli- 
cability, but they vary in the extent to 
which they satisfy the criteria of 
minimality, constructibility, and compre- 
hensibility. The difficulty in the state 
machine approach of coping with delayed 
effects reduces the minimality and con- 
structibility of the specifications, though 
not necessarily the comprehensibility. The 
introduction of hidden V-functions may im- 
pact the free choice of an implementation, 
since the implementor may feel the need to 
implement these hidden functions, which is 
not necessary. Algebraic andaxiomatic 
specifications are more minimal than state 
model specifications, but they may be more 
difficult to construct and understand. 

The state machine technique appears 
to be least satisfactory with respect to 
the criterion of extensibility, because 
introducing a new V-operation is likely to 
necessitate changes to the definitions of 
many O-operations. However, the criterion 
of extensibility, based on the n6tion of 
a "small" change to the concept, is really 
quite vague. Perhaps a small change is 
one requiring only a minor modification to 
the specification. Also, the different 
specification techniques may tolerate dif- 
ferent kinds of changes, and this could be 
a factor in choosing a technique. 

The criterion of formality is not en- 
tirely satisfied by any of the techniques, 
although the state machine model is the 
least formalized. There are two important 
aspects to formalization: First, the syn- 
tax and semantics of the language in which 
the specifications are written must be 
fully defined. Defining the semantics in- 
volves more than just defining the meaning 
of each symbol; a construction (it may be 
non-effective) of the defined class of ob- 
jects from the specification must also be 
provided. This is only difficult in the 
implicit definition approaches; in the 
abstract model approaches the specifica- 
tion describes the objects explicitly. 
Second, a methodology for proving that an 
implementation satisfies a specification 
must be provided. Additional work on 
formalization would expand the usefulness 
of the techniques. Unless a technique is 
adequately formalized, it will be diffi- 
cult, if not impossible, to train people 
to use it correctly and coherently. 

We conclude by discussing one previ- 
ously unmentioned aspect of specification 
techniques: the extent to which they 
capture all interesting properties of a 
data abstraction. For example, consider 
the treatment of errors in the various 
specification techniques. In some tech- 
niques, errors arecompletely ignored. 
In others, notably the axiomatic and 
algebraic techniques, the presence of 
errors is acknowledged, but not in a par- 
ticularly illuminating way. The solution 
of adding an extra error element to the 
output domain, while mathematically sound, 
does not provide the kind of information 
that a user of the abstraction requires. 
A more realistic approach is taken by the 
state machine technique; here, error 
cases are prominently displayed, different 
errors can be given meaningful names (al- 
though this was not shown in the example), 
and even the order in which errors will be 
recognized by a given operation can be 
specified. It is noteworthy that this 
technique is based on a model of the way 
errors will be handled in running programs; 
such a model may be necessary if errors 
are to be specified in a realistic manner. 
The treatment of errors is not the only 
example where the specification techniques 
are deficient (e.g., performance require- 
ments are also missing). Much more work 
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is needed to identify the interesting prop- 
erties of data abstractions, and to develop 
the specification techniques to express 
those properties. 

6. Conclusions 

A major premise of this paper has been 
that formal specifications should come to 
play a fundamental role in the construction 
of reliable software. Two reasons were 
given for this: (i) The growing economic 
pressure for reliable programs indicates 
that increased effor.t in this direction is 
justified, and (2) The recognition of a 
new kind of module -- the multi-procedure 
module -- has led to the identification of 
a specification unit for which specifica- 
tions are practical. This kind of module 
is helpful in the construction of software, 
because it permfts data abstractions to be 
used in building programs. Since data is 
the fundamental concern of programs, we 
can expect the use of data abstractions to 
be widespread. 

To indicate the form such specifica- 
tions might take, Section 5 discussed 
several specification techniques. The 
techniques discussed were promising in that 
they did succeed in describing data ab- 
stractions at a reasonably abstract level. 
However, none of the techniques are ready 
to be applied to practical programs. 
Some techniques have not yet been put on a 
firm mathematical basis (although we be- 
lieve that all the techniques surveyed are 
capable of being adequately formalized). 
Other techniques ignore a fundamental 
aspect of data abstractions: how to cope 
with errors and exceptions. Finally, none 
of the techniques has been applied widely 
enough that its expressive power can be 
evaluated. Recent uses of the state 
machine technique of Parnas to specify 
operating systems [7] or parts thereof [6] 
may indicate that that technique is suit- 
able for systems of interesting size, but 
the complexity of at least one of those 
specifications [6] indicates the specifi- 
cation technique requires further refine- 
ment. It is reasonable to expect defi- 
ciencies in the other specification tech- 
niques to emerge when they are likewise 
applied to large programs. 

Some deficiencies in the techniques 
are already apparent. The range of ap- 
plicability of the various techniques is 
often smaller than we would like; ex- 
amples were discussed in Section 5. Since 
the range of applicability is different 
for the different techniques, we may expect 
that using a combination of techniques when 
describing a large program would be a 
profitable approach. However, there are 
programs whose meaning cannot be captured 
by any of the described techniques. For 
example, specifications using the tech- 
niques cannot be given for programs involv- 
ing parallel activity. We chose not to 

survey work going on in developing specifi- 
cation techniques to handle parallelism 
because the work is very recent and quite 
preliminary. However, one promising 
approach uses data abstractions as the 
specification units [36]. 

The specification techniques discussed 
in this paper can adequately describe mod- 
ules -- the blocks out of which systems 
are built -- but it is not clear that they 
can describe the entire system. For ex- 
ampl@, Parnas has shown how a KWIC system 
can be modularized [16], and each module 
was described using his specifications, 
but the specification of the system as a 
whole was given in English. It seems un- 
likely that an entire system can be viewed 
as a single, top-level module, so perhaps 
a different kind of specification technique 
is desirable here. 

Even if we are not able to describe an 
entire system using the specification tech- 
niques, the ability to define most of the 
modules used in constructing a system in a 
precise, formal way would be a major 
advance in the construction of reliable 
software. The specification techniques 
discussed in this paper are all quite re- 
cent; much is being accomplished by con- 
centrating on the data abstraction as a 
specification unit. This general area 
appears to be a very promising one for 
further study: work in applying existing 
techniques to large programs, in extending 
and formalizing existing techniques, and'in 
proposing new techniques, for both sequen- 
tial and parallel programs, is of the ut- 
most importance. 
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