
Specification Techniques for Data Abstractions

Barbara Liskov
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts

Stephen Zilles
IBM Research

San Jose, California

Abstract

The main purposes in writing this pa-
per are to discuss the importance of for-
mal specifications and to survey a number
of promising specification techniques.
The role of formal specifications both in
proofs of program correctness, and in pro-
gramming methodologies leading to programs
which are correct by construction, is ex-
plained. Some criteria are established
for evaluating the practical potential of
specification techniques. The importance
of providing specifications at the right
level of abstraction is discussed, and a
particularly interesting class of specifi-
cation techniques, those used to construct
specifications of data abstractions, is
identified. A number of specification
techniques for describing data abstrac-
tions are surveyed and evaluated with re-
spect to the criteria. Finally, direc-
tions for future research are indicated.

Key Words and Phrases: specifications,
specification techniques, data abstrac-
tions, proofs of correctness, programming
methodology.

I. Introduction

In the past, the advantages of formal
specifications have been outweighed by the
difficulty of constructing them for practi-
cal programs. However, recent work in pro-
gramming methodology has identified a pro-
gram unit, supporting a data abstraction,
which is both widely useful, and for which
it is practical to write formal specifica-
tions. Some formal specification tech-
niques have already been developed for de-
scribing data abstractions. It is the
promise of these techniques, some of which
are described later in the paper, which

This work was supported in part by the IBM
funds for research in Computer Science.

leads us to believe that formal specifica-
tions can soon become an intrinsic feature
of the program construction process. By
writing this paper, we hope to encourage
research in the development of formal
specification techniques, and their ap-
plication to practical program construc-
tion.

In the remainder of the introduction
we discuss what is meant by formal speci-
fications, and then explain some advan-
tages arising from their use. In Section
2, a number of criteria are presented
which will permit us to judge techniques
for constructing formal specifications.
Section 3 identifies the kind of program
unit, supporting a data abstraction, to
which the specification techniques de-
scribed later in the paper apply. Sec-
tion 4 discusses properties of specifica-
tion techniques for data abstractions and,
in Section 5, some existing techniques for
providing specifications for data ab-
stractions are surveyed and compared.
Finally, we conclude by pointing out areas
for future research.

Proofs of Correctness

Of serious concern in software con-
struction are techniques which permit us
to recognize whether a given program is
correct, i.e.,does what it is supposed to
do. Although we are coming to realize
that correctness is not the only desirable
property of reliable software, surely it
is the most fundamental: If a program is
not correct, then its other properties
(e.g., efficiency, fault tolerance) have
no meaning since we cannot depend on them.

Techniques for establishing the cor-
rectness of programs may be classified as
to whether they are formal or informal.
All techniques in common use today (de-
bugging, testing, program reading) are in-
formal techniques; either the investiga-
tion of the properties of the program is
incomplete, or the steps in the reasoning

72

place too much dependence on human ingenu-
ity and intuition. The continued exis-
tence of egrors in software to which such
techniques have been applied attests to
their inadequacy. Formal techniques, such
as the verification condition [1,2] and
fixed-point [3] methods, attempt to estab-
lish properties of a program with respect
to all legitimate inputs by means of a pro-
cess of reasoning in which each step is
formally justified by appeal to rules of
inference, axioms and theorems. Unfortu-
nately, these techniques have been very
difficult to apply, and have therefore not
yet been of much practical interest. How-
ever interest in formal techniques can be
expected to increase in the future; eco-
nomic pressure for reliable software is
growing [4] and the domain of applicabili-
ty of formal techniques is also growing
because of the development of programming
methodologies leading to programs to which
formal techniques are more readily ap-
plied. Indeed, application of proof tech-
niques to practical programs is being at-
tempted in the area of operating system
security [5,6,7], where the need for ab-
solute certainty about the correct func-
tioning of software is very great.

To study techniques which establish
program correctness, it is interesting to
examine a model of what the correctness of
a program means. What we are looking for
is a process which establishes that a pro-
gram correctly implements a concept which
exists in someone's mind. The concept can
usually be implemented by many programs --
an infinite number, in general -- but of
these only a small finite number are of
practical interest. This situation is
shown in Figure !. In current practice,
the concept is stated informally and, re-
gardless of the technique used to demon-
strate the correctness of a program (usu-
ally testing), the result of applying the
technique can be stated only in informal
terms.

With formal techniques, a specifica-
tion is interposed between the concept and
the programs. Its purpose is to provide a
mathematical description of the concept,
and the correctness of a program is estab-
lished by proving that it is equivalent
to the specification. The specification
will be provably satisfied by a class of
programs (again, often an infinite number
of which only a small finite number are of
interest). This situation is shown in
Figure 2.

Proofs of large programs do not con-
sist of a single monolithic proof with no
interior structure. Instead, the overall
proof is divided into a hierarchy of many
smaller proofs which establish the correct-
ness of separate program units. For each
program unit, a proof is given that it
satisfies its specification; this proof
makes use of the specifications of other
program units, and rests on the assumption

Figure 1.

concept

/ \
Pl " " " Pn

A concept and all programs
which implement the concept
correctly.

concept

specification

Ol Qm

Figure 2. A concept, its formal specifica-
tion, and all programs which can
be proved equivalent to the
specification.

that those program units will be proved
consistent with their specifications. ~
Thus a specification is used in two ways:
as a description against which a program
~s proved correct, and as a set of axioms
in the proof of other programs. At the top
of the proof hierarchy is a program unit
which corresponds to the entire program.
At the bottom is the programming language,
and the hierarchy is based onthe axioms
for the programming language and its prim-
itives.

The proof methodology can fail in two
ways. First, a proof may incorrectly es-
tablish some program (or program unit) P as
equivalent to the specification when, in
fact, it is not. This is a problem which
can be eliminated by using a computer as,
at least, a proof checker. (Observe that
one advantage of using formal specifications
is that theycan be processed by computer.)

The second way the methodology can
fail is if the specification does not cor-
rectly capture the meaning of a concept.
We will say a specification captures a con-
cept if every Qi in Figure 2 is some Pj in
Figure i. There is no formal way of estab-
lishing that a specification captures a
concept, but we expect to have gained from
using the proof methodology because (hope-
fully) a specification is easier to under-
stand than a program, so that "convincing
oneself" that a specification captures a
concept is less error-prone than a similar

i. Special techniques [3] must be used if
the prouram units are mutually recursive.

73

process applied to a program. Furthermore,
any distinction between concept and speci-
fication may be irrelevant because of the
hierarchical nature of the proof process.
If a program P is proved equivalent to its
specification, and every program using P is
proved correct using that specification,
then the concept which P was intended to
implement can safely be ignored.

Advantages of Formal Specifications

Proving the correctness of programs is
described above as a two step process:
first, a formal specification is provided
to describe the concept, and second, the
program is proved equivalent to the speci-
fication by formal, analytic means. Formal
techniques are not necessarily limited to
axiomatic methods. For example, it may
also be possible to develop testing method-
ologies that are based on a comparison of
the formal specification and the implemen-
tation. The output of a methodology would
be a set of critical test cases which, if
successfully executed, establish that the
program correctly implements the specifica-
tion. The formality of the specification
means that the computer can aid in the
proof process, for example, by checking
the steps of a program proof, or by auto-
matically generating test cases.

Clearly, the specification must be
present before a proof can be given. How-
ever, formal specifications are of inter-
est even if not followed by a formal proof
Formal specifications are very valuable in
conjunction with the idea of making code
"public" [8] in order to encourage pro-
grammers to read one another's code. In
the absence of a formal specification, a
programmer can only c~mpare a program he is
reading with his intuitive understanding
of what the program is supposed to do. A
formal specification would be better, since
intuition is often unreliable. With the
addition of formal specifications, code
reading becomes an informal proof tech-
nique; each step in the proof process now
rests on understanding a formal descrip-
tion rather than manipulating the de-
scription in a formal way. 2 As such, it
can be a powerful aid in establishing pro-
gram correctness.

Formal speoifications can also play
a major role while a program is'being con-
structed. It is widely recognized that a
specification of what a program is intend-
ed to do should be given before the pro-

2. The relationship between proofs and
understanding is a major motivating
factor in structured programming. For
example, the "go to" statement is elimi-
nated because the remaining control
structures are each associated with a
well-known proof technique, and therefore
the programs are intellectually manage-
able [9].

gram is actually coded, both to ai~ under-
standing of the concept involved, and to
increase the likelihood that the program,
when implemented, will perform the intended
function. However, because it is difficult
to construct specifications using informal
techniques, such as English, specifications
are often omitted, or are given in a
sketchy and incomplete manner. Formal
specification techniques, like the ones to
be described later in this paper, provide
a concise and well-understood specifica-
tion or design language, which should re-
duce the difficulty of constructing Speci-
fications.

Formal specifications are superior to
informal ones as a communication medium.
The specifications developed during the
design process serve to communicate the in-
tentions of the designer of a program to
its implementors, or to communicate be-
tween two programmers: the programmer im-
plementing the program being specified,
and the programmer who wishes to use that
program. Problems arise if the specifica-
tion is ambiguous: that is, fails for
some reason to capture the concept so that
two programs with different conceptual
properties both satisfy the specification.
Ambiguities can be resolved by mutual
agreement, provided those using the speci-
fication realize that an ambiguity exists.
Often this is not realized, and instead the
ambiguity is resolyed in different ways by
different people. Formal specifications
are less likely to be ambiguous than in-
formal ones because they are written in an
unambiguous language. Also, the meaning
of a formal specification is understood in
a formal way, and therefore ambiguities are
more likely to be recognized.

The above paragraphs have sketched a
program construction methodology that
could lead to programs which are correct by
construction. Formal specifications play
a major role in this methodology, which
differs from standard descriptions of
structured programming [9] primarily %n the
emphasis it places on specifications. ~
Specifications are first introduced by the
designer to describe the concepts he de-
velops in a precise and unambiguous way.
Each concept will be supported by a program
module. The specifications are used as a
communication medium among the designers
and the implementors to insure both that an
implementor understands the designer's in-
tentions about a program module he is
coding, and that two implementors agree
about the interface between their modules.
Finally, the correctness of the program is
proved in the hierarchical fashion de-
scribed earlier. The method of proof may
be either formal or informal, and the

3. see the paper by Hoare [i0] for a
structured programming example in which
specifications are emphasized.

74

proofs can be carried out as the modules
are developed, rather than waiting for the
entire program to be coded. Progress in
developing formal specification techniques
will enhance the practicality of applying
this methodology to the construc-
tion of large programs.

2. Criteria ~or,Evaluating
Spe~ffication Meth0ds

An approach to specification must
satisfy a number of requirements if it is
to be useful. Since one of the most im-
portant goals of specification techniques
is to permit the writing of specifications
for practical programs, the criteria de-
scribed below include practical as well as
theoretical considerations.

We consider that the first criterion
must be satisfied by any specification
technique:

(i) Formality. A specification method
should be formal, that is, specifications
should be written in a notation which is
mathematically sound. This criterion is
mandatory if the specifications are to be
used in conjunction with proofs of program
"correctness. In addition, formal specifi-
cation techniques can bestudied mathe-
matically, so that other interesting ques-
tions, such as the equivalence of two spec-
ifications, may be posed and answered.
Finally, formal specifications are capable
of being understood by computers, and auto-
matic processing of specifications should
be of increasing importance in the future.

The next two criteria address the
fundamental problem with specifications --
the difficulty encountered in using them.

(2) Constructibility. It must be pos-
sible to construct specifications without
undue difficulty. We assume that the
writer of the specification understands
both the specification technique and the
concept to be specified. Two facets of
the construction process are of interest
here: the difficulty of constructing a
specification in the first place, and
the difficulty in knowing that the spec-
ification captures the concept.

(3) Comprehensibility. A person trained
in the notation being used should be able
to read a specification and then, with a
minimum of difficulty, reconstruct the
concept which the specification is in-
tended to describe. Here (and in criteri~
on 2) we have a subjective measure in mind
in which the difficulty encountered in con-
structing or reading a specification is
compared with the inherent complexity (as
intuitively felt) of the concept being
specified. Properties of specifications
which determine comprehensibility are
size and lucidity. Clearly small specifi-
cations are • good since they are (usually)

easier to understand than larger ones.
For example, it would be nice if a specifi-
cation were substantially smaller than the
program it specifies. However, even if
the specification is large, it may still
be easier to understand than the program
because its description of the concept is
more lucid.

The final three criteria address the
flexibility and generality of the specifi-
cation technique. It is likely that tech-
niques satisfying these criteria will meet
criteria 2 and 3 well.

(4) Minimalit[. It should be-possible
using the speclfication method to construct
specifications which describe the interest-
ing properties of the concept and noth~
more. The properties which are of interest
must be described precisely and unambigu-
ously but in a way which adds as little ex-
traneous information as possible. In
particular, a specification must say what
function(s) a program should perform,-~
little, if anything, about how the function
is performed. One reason this criterion is
desirable is because it minimizes correct-
ness proofs by reducing the number of
properties to be proved. •

(5) Wide Ran@e of Applicability. Asso-
ciated with each specification technique
there is a class of concepts which the
technique can describe in a natural and
straightforward fashion, leading to speci-
fications satisfying criteria 2 and 3.
Concepts outside of the class can only be
defined with difficulty, if they can be
defined at all (for example, concepts in-
volving parallelism will not be describ-
able by any of the techniques discussed
later in the paper). Clearly, the larger
the class of concepts which may be easily
described by a technique, the more useful
the technique.

(6) Extensibilit[. It is desirable that
a minimal change In a concept result in
a similar small change in its specifica-
tion. This criterion especially impacts
the constructibility of specifications.

3. The Specification Unit

The quality of a specification (the
extent to which it satisfies the criteria
of the preceding section) is dependent in
large part on the program unit being spec-
ified. If a specification is attached to
too small a unit, for example, a single
statement, what the specification says may
be uninteresting, and furthermore there
will be more specifications than can con-
veniently be handled. (The specification
could express no more than the following
comment, sometimes seen in programs:
x := x + l;"increse x by i".) A specifi-
cation of too small a unit does not cor-
respond to any useful concept. What is
wanted is a specification unit which cor-

75

responds naturally to a concept, or ab-
straction, found useful in thinking about
the problem to be solved.

The most commonly used kind of ab-
straction is the functional or procedural
abstraction in which a parameterized ex-
pression or collection of statements is
treated as a single operation. The speci-
fication for a functional abstraction is
normally given by an in~out~ specifi-
cation which describes themapp~g of the
set ~ input values into the set of output
values.

Recent work in the area of program-
ming methodology, however, has identified
another kind of abstraction, the data ab-
straction. This comprises a group of re-
lated functions or operations that act
upon a particular class of objects, with
the constraint that the behavior of the °
objects can be observed only bY applica-
tions of the operations [ii].4 A typical
example of a data abstraction is a "push
down stack"; the class of objects consists
of all possible stacks, and the group of
operations includes the ordinary stack
operations, like push and pop, an opera-
tion to create new stacks, and an opera-
tion to test whether a stack is empty.

Data abstractions are widely used in
large programs, although the constraint on
observable object behavior has not always
been followed. ~ Some examples are seg-
ments, processes, files, and abstract de-
vices of various sorts, in addition to the
more ordinary stacks, queues, and symbol
tables. In each case the implementation
of the abstraction is given in the form of
a multi-procedure module [14]. Each pro-
cedure in the module implements one of
the operations; the module as a whole
may provide a single object (for example,
there is a single system data base), some
fixed maximum number of objects (for ex-
ample, there is a fixed maximum number of
segments), or as many objects as users
require (for example, a new stack is pro-
vided whenever a user asks for one).

The realization that a multi-proce-
dure module is important in system design
preceded the identification of the multi-
procedure module as an implementation of
a data abstraction. 6 It is illuminating

4. Morris has discussed some criteria
for determining what constitutes a suf-
ficient set of operations [12].

5. The constraint has been followed in
the Venus system [13].

6. It is an open question whether every
multi-procedure module implements a data
abstraction. We believe that the cor-
respondence holds. In the Venus system
[13], which was built entirely from such

to examine the arguments in favor of the
multi-procedure module as an implementation
unit. The procedures are grouped together
because they interact in some way: they
share certain resources (for example, a
data base which only they use, and possibly
some real resource, like the realntime
clock owned by the process abstraction in
[15]); and they also share information
(for example, about the format and meaning
of the data in the shared data base, and
the meaning of the states of the shared
resource). Considering the entire group
of procedures as a module permits all in-
formation about the interactions to be
hidden from other modules [16]: other
modules obtain information about the inter-
actions only by invoking the procedures in
the group [14]. The hiding of information
simplifies the interface between modules,
and leads directly to simpler specifica-
tions because it is precisely the inter-
face which the specifications must de-
scribe.

As an example of the problems which
arise when the data abstraction is ignored
and the operations in the group are given
input/output specifications independently
of one another, consider the following
specification for the operation push.
Assuming the push operation is a function,

push: stack X integer ÷ stack
the input/output specification must define
the information content of the output value
of push (the stack object returned bypush)
in terms of the input values of push (a
stack object and an integer). This can be
done by defining a structure for stack ob-
jects, and then describing the effect of
push in terms of this structure. A typical
stack structure might be (in Pascal [17])

type stack = record top: inte@er,
- - data: arr~ [1..100]

of integer
end

and then the meaning of
t := push(s,i)

could be stated (using notation developed
by Hoare [2])7

true {t := push(s,i)) (¥j) [l-<j-<s.top
= (t.data[j] = s.data[j]

& t.data[t.top] = i
& t.top = s.top + I)]

A similar specification could be given for
pop.

There are several things wrong with
such a specification. A serious flaw is

modules, every module did correspond to a
data abstraction.

7. This specification ignores the behavior
of push if the stack is full, that is if
s.top= 100.

76

that it does not describe the concept of
stack-like behavior, but instead specifies
a lot of extraneous detail. Concepts of
stack-like behavior -- for example, a
theorem stating that pop returns the value
most recently pushed on the ~tack -- can
only be inferred from this detail. The
inclusion of extraneous detail is undesir-
able for two reasons. First, the inven-
tor of the concept must get involved in
the detail (which is really implementa-
tion information), rather than stating the
concept directly. Second, the inclusion
of the detail detracts from the minimality
(as defined in the criteria) of the speci-
fication, and it is likely that a correct-
ness proof of an implementation of push
and pop based on a different representa-
tion for stack objects would be difficult.
Another problem is that the independence
of the specifications of push and pop is
illusory; a change in the specification
of one of them is almost certain to lead
to a change in the specification of the
other. For example, in addition to being
related through the structure chosen for
stack objects, the specifications of push
and pop are also related in their inter-
pretation of this structure: the decision
to have the selector "top" point to the
topmost piece of data in the stack (rather
than to the first available slot).

If a data abstraction such as stack
is specified as a single entity, much of
the extraneous detail (concerning the in-
teractions between the operations) can be
eliminated, and the effects of the opera-
tions can be described at a higher level.
Some specification techniques for data ab-
stractions as a unit use input/output
specifications to describe the effects of
the operations, but these specifications
are expressed in terms of abstract objects
with abstract properties instead of the
very specific properties used in the ex-
ample above. In other techniques, it is
not even necessary to describe the indi-
vidual operations separately, but instead,
the effects of the operations can be de-
scribed in terms of one another. As an
example, just to convey a feeling for
the latter approach, the effect of pop
might be defined in terms of push by

pop(push(s,v)) = v
which states that pop returns the value
most recently pushed.

In the remainder of the paper, we
will concentrate on specification tech-
niques for data abstractions. In doing
this we will not ignore input/output
specifications, since these form a part of
some of the techniques we will discuss,
but we will also discuss techniques, like
the one illustrated above, that are appli-
cable only to data abstractions. We limit
our attention in this way because the
specification techniques for data abstrac-
tions are all fairly recent, and have re-
ceived relatively little attention so far.
Also, the infor,~tion-hiding aspect of

data abstractions, discussed above, prom-
ises that specification techniques focused
on such units will satisfy the criteria
very well.

4. Properties of Specifications
of Data Abstractions

Although the specification techniques
to be described in the next section differ
from one another in many particulars, there
are also ways in which they are similar.
All the techniques must convey the same
information -- information about the mean-
ing of data abstractions -- and this in-
formation is conveyed in a mathematical
way. In this section, we discuss a mathe-
matical view of the specification tech-
niques, and~he information contained in
the specifications. We also discuss some
of the proSlems arising from discrepancies
between the mathematical and programming
views of data abstractions.

All the specification techniques for
data abstractions can be viewed as defining
something very like a mathematzcal disci-
pline; the discipline arises from the
specification of the data abstraction in
a manner not unlike the way in which
number theory arises from specifications,
like Peano's axioms, for the natural
numbers. The domain of the discipline --
the set on whiP'-is based -- is the
class of objects belonging to the data ab-
straction, and the operations of the data
abstraction are defined as mappings on
this domain. The theory of the discipline
consists of the theorems and lemmas deriv-
able from the specifications.

The information contained in a speci-
fication of a data abstraction can be
divided into a semantic part and a syntac-
tic part. Information about the actual
meaning or behavior of the data abstraction
is described in the semantic part; the
description is expressed using a vocabulary
of terms or symbols defined by the syntac-
tic part.

The first symbols which must be de-
fined by the syntactic part of a specifi-
cation identify the abstraction being de-
fined and its domain or class of objects.
Usually, an abstraction has a single class
of defined objects, and, in this case, it
is conventional to use the same symbol to
denote both the abstraction and its class
of objects. Thus the objects belonging to
the data abstraction, stack, are referred
to as stacks. (It is possible for an ab-
straction to have more than one class of
defined objects, but this presents no
mathematical difficulties, and we will not
consider it further [18].)

The remaining symbols introduced by
the syntactic part name the operations of
the abstraction, and define their function-
a]ity -- the domains of their input and

77

output values. An example is shown in
Figure 3, where the functionality of the
operations of the data abstraction, stack,
is described. (In Figure 3, the operation,
TOP, returns the value in the top of the
stack without removing it; ° POP removes
the value without returning it.)

Several interesting observations can
be made about this example. First, more
than one domain appears in the specifica-
tion in Figure 3. In practice, the spec-
ifications for almost all interesting data
abstractions include more than one domain.
Normally, only one of these (the class of
stacks in the example) is being defined;
£he remaining domains (integer in the ex-
ample) and their properties are assumed
to be known. Of course, the specifica-
tions must clearly distinguish between the
domains assumed to be known and the ones
to be defined.

C R E A T E ; --I,- S TACK

PUSH = S T A C K X INTEGER --4,-STACK

POP , S T A C K --~ STAC K

TOP = STACK --~ I N T E G E R

Figure 3 The operations of the stack abstraction
and their funct ional i ty .

A second observation is that, given
this distinction, the group of operations
can be partitioned into three blocks. The
first block, the primitive constructors,
consists of those operations that have no
operands which belong to the class being
defined, but which yield results in the
defined class. This block includes the
constants, represented as argumentless
operations (for example, the CREATE oper-
ation for stacks). The second block, the
combinational constructors, consists of
those operations (PUSH and POP in the ex-
ample) which have some of their operands
in and yield their results in the defined
class. The third block consists of those
operations (TOP for stacks) whose results
are not in the defined class.

A third observation is that the mathe-
matical description of the functionality of
an operation does not necessarily corre-
spond to the way the operation would be
programmed. One difference is that the
functions in the example have only one
output value, while in practice it is
often desirable for a program to return
more than one result. For example, one
might define a stack operation

POP2: STACK ~ STACK X INTEGER
which removes a value from a stack, and
returns both the new stack and the value.
This operation can be modeled mathemati-
cally by a pair of operations, one for
each result. For example, the result of
POP2 can be defined as the pair of results
from POP and TOP, where both are applied

simultaneously to the same stack value.
When such an association is mad e , the spec-
ification must clearly indicate the re-
lationship between the operation symbols.

A more serious discrepancy is that
the operations are viewed by the specifica-
tion as acting on time-invarient, mathe-
matical values, but the objects found in
most programming languages can be modified
in some way. These modifications are the
result of side-effects in some of the
applicable operations. For example, al-
though the PUSH operation used above is
purely functional, it would more likely be
implemented so that no result is returned,
and PUSH modifies (has a side effect upon)
an existing stack object.

The now conventional solution to this
difficulty is to factor a modifiable object
into two components: an object identity
(unique for each distinct object) and a
current state. The modifications affect
only the state component, so a given object
(over time) is represented by a sequence
of pairs of values in which the object
identity is always the same. Each opera-
tion with a side effect is defined by a
mapping which yields a new pair of values
representing the same object and a new
state.

There are two frequently occurring
cases in which the identity component of
an object can be omitted in the specifi-
cations. First, if there is only one ob-
ject, such as in the KWIC index example
described by Parnas [19], then the identi-
ty component is obviously redundant.
Second, if, as is the case in certain pro-
gramming languages, the identity of an ob-
ject is uniquely given by the symbolic
name or identifier that denotes the object,
then a separate identity component is un-
necessary. The symbolic name of an object
becomes its identity, and the use of a
new symbolic name implies that a new object
is introduced. 8 This approach is unsatis-
factory for the many languages in which a
given object may have two or more distinct
symbolic names; for example, an object
may be accessible both via a parameter and
a global name. Then the approach fails
because side effects will not appear under
both names (see, for example, [20]).

The semantic part of the specification
uses the symbols defined in the syntactic
part to express the meaning of the data
abstraction. Two different approaches are
used in capturing this meaning: either
an abstract model is provided for the
class of objects and the operations de-
fined in terms of the model, or the class
of objects is defined implicitly via de-
scriptions of the operations.

In following the abstract model

8. See, for example, Hoare's rule of
assignment [2].

78

approach, the behavior is actually defined
by giving an abstract implementation in
terms of another data abstraction or mathe-
matical discipline, one whose properties
are well understood. The data abstraction
being used as the model also has a number
of operations, and these are used to de-
fine the new operations. The complexity
of the descriptions deRends on how closely
the new operations match the old ones.
Sometimes they matchvery closely; at
other times the descriptions can be arbi-
trarily complex.

The approach of defining the objects
implicitly via descriptions of the opera-
tions is much closer to the way mathemati-
cal disciplines are usuaily defined. The
domain or class of OperationS is deter-
mined inductively. Usually it is the
smallest set closed under the operations.
Only those operations identified above as
constructors are used in defining this
closure. The closure is the smallest set
which contains the results of theprimi-
tive constructors and the results of the
combinational constructors when the ap-
propriate operands are drawn from the set.
For example, with stacks, the only primi-
tive constructor is the constant operation
CREATE which yields the empty stack, and
the class of stacks consists ~f the empty
stack and all stacks that result from
applying sequences of PUSH's and POP's to
it. One difficulty with the implicit def-
inition approach is that if the specif i -
cations are not sufficiently complete, in
the sense that all the relationships among
the operations are indicated, several dis-
tinct sets may be closed under the opera ~
tions. The distinct sets result from
different resolutions of the unspecified
relationships.

In the next section, specification
techniques employing both the abstract
model and the implicit definition
approaches will be discussed.

5. Specification Techniques

In this section we present a survey
of selected techniques for giving formal
specifications of data abstractions.
This survey is not complete, but it is
intended tQ be illustrative. We do not
describe the techniques in enough detail
for the reader to be able to immediately
apply them; indeed, achieving such a
description is a matter of research for
at least some of the techniques. Rather,
our intention is to introduce the most
promising formaltechniques, to indicate
their strengths and weaknesses, and to
provide pointers into the literature so
that more information can be obtained.

Of the many techniques by which a
data abstraction can be specified, most do
not meet the criteria set forth in Section
2 because they are either too informal, or

too low level. Thus, textual (English)
specifications and specifications in terms
of an implementation, such as the class
definitions of SIMULA 67 [21], will not
be considered. In addition, a number of
techniques developed for specifying the
semantics of programming languages --
though relevant in varying degree -- are
not considered because of their specialized
use. The techniques that are discussed
and which seem most promising are those
which use some form of abstraction to re-
duce the complexity of the specifications.

The techniques fall into five catego-
ries which are (in order of increasing
abstractness of the specifications): use
of a fixed domain of formal objects', such
as sets or graphs; use of an appropriate,
but otherwise arbitrary, known formal
domain; use of a state machine model;
use of an implicit definition in terms of
axioms; and use of an implicit definition
in terms of algebraic relations. Tech-
niques in the first two categories use the
abstract model approach, while those in
the remaining categories use the implicit
definition approach. Each of the catego-
ries is illustrated by one particular
technique chosen to be typical of the
category and, where possible, to be acces-
sible in the literature. Following the
description of the example, the technique
is evaluated with respect to the criteria
of Section 2. Finally, we summarize the
evaluations, and compare the categories
with one another.

Use of a Fixed Discipline

We begin by discussing specification
techniques in which a fixed language --
that of some established mathematical dis-
cipline -- is used for all specifications.
The given discipline is used to provide a
high level (abstract) imPlementation or
model of the desired data abstraction.
The class of objects is represented by a
subset of the mathematical domain and the
operations are defined in terms of the
operations on that domain. Although any
mathematical discipline (number theory,
analysis) might be used, practical usage
has been restricted primarily to graphs
[22,23,24], sets [25,26,27], and the
theory developed around the Vienna Defini-
tion Language [28].

As an example of using a fixed disci-
pline, we will consider Earley's use of
graphs in describing data structures [22].
Each instance of a data structure is rep-
resented by a graph or, as he called it,
a V-graph. These are constructed from
atoms, nodes and links. Atoms represent
data withno substructure. Links are
given labels, called selectors, and are
directed from nodes to nodes or atoms;
the only requirement on links is that two
links with the same selector can not ema-
nate from the same node. The selectors
can be any node or atom (strings, inte-

79

gers). Nodes have no significance other
than as place holders in the structure
being described; in our discussion, we
will display nodes as circles, except that
header nodes will be displayed as boxes.
For example, a r~presentation of a stack
holding the integers 2 and 25 is shown in
Figure 4; the structure has a single
header node, and the node labeled NIL is a
special terminator. The values stored in
the stack are accessible via the selector,
CONT.

Once a V-graph representation has
been chosen, two methods are available for
defining the operations. First, operations
may be defined by expressions written in
terms of primitive V-graph operations.
These operations provide the ability to
use the selectors to access and modify the
links and nodes. Thus, the stack opera-
tion TOP can be defined directly to access
the contents of the node selected by the
selector TOP.

A second definition method is used to
describe operations which modify the struc-
ture of the representing V-graphs. These
operations are defined by means of pictures
of V-graph transformations. The opera-
tions could be described by complicated
expressions in terms of the primitive op-
erations; however by using pictures, a
more minimal description, containing less
extraneous detail can be achieved. For ex-
ample, the stack operations PUSH, POP and
CREATE are defined via transformations.
First, an initial configuration is defined
to represent the empty stack produced by
CREATE; this is shown in Figure 5. Then,
PUSH and POP are defined by giving before
and after pictures for the corresponding
transformations. The lefthand V-graph
displays a pattern, in the form of a path
of selectors from a header node to other
nodes, to match against the operands of
the transformation. Some of the nodes in
the lefthand V-graph are given labels
which can be used to identify the new
position of these nodes in the rearrange-
ment defined by the righthand V-graph,
which represents the result of the trans-
formation. For example, Figure 6 de-
scribes the operation PUSH as follows:
For any arbitrary stack object, PUSH
causes a new node to be inserted between
the header node and the node previously
connected to it via the link labelled TOP;
the value being PUSHed will be on the CONT
link of the newly added node. Figure 7
displays the result of PUSHing 8 onto the
stack shown in Figure 4. A similar defi-
nition can be given for POP; it would
show POP to be the inverse of PUSH (the
arrow in Figure 6 would be reversed).

The technique of using a fixed disci-
pline to express the specifications satis-
fies many of the criteria set forth in
Section 2. Certainly, it can be made suf-
ficiently formal. For someone familiar
with the given discipline, the specifica-

Figure 4.

2 2 5

A V-graph representation for a
stack.

Figure 5. A V-graph representing the
initial stack configuration.

Figure 6. A V-graph specification for
PUSH.

[~.~(~ 0NT~CONT i L N E X T _NEXT NEXT

8 2 25

Figure 7. The V-graph resulting from
PUSHing 8 onto the stack shown
in Figure 4.

tions are usually easily understood and
easily constructed if they describe con-
cepts within the range of applicability of
the chosen discipline. Extensibility pre-
sents no problem provided that the repre-
sentation selected for the class of objects
of the abstraction is adequate to express
the properties of the extension. Even
proofs of correctness of the uses of the
specifications are simplified by using the
multitude of theorems which exist for es-
tablished disciplines.

However, techniques using a fixed dis-
cipline are deficient with respect to the
criteria of minimality and range of appli-
cability. Using such a technique to ex-
press specifications is similar to writing
programs in a programming language which
provides a single data structuring method9;

9. In fact, Earley defined a programming
language, VERS, in which V-graphs were the
data structuring method [22].

80

although a single method can be powerful
enough to implement all user-defined data
structures, it does not follow that all
data structures are implemented with equal
facility. Similarly we cannot expect that
all data abstractions can be specified
equally well in terms of a fixed disci-
pline. For example, the graphical repre-
sentation is very suitable for showing the
paths by which the content of a data
structure can be accessed. But, if the
access path is not relevant, such as when
testing whether an object is in a given
set, then the graphical representation
over specifies the desired structure;
that is, the abstract representation in-
troduces details which need not be pre-
served in an implementation capturing the
specifier's intentions. The use of extra
details violates the criterion of minimal-
ity and places a practical limit on the
range of applicability of a fixed disci-
pline.

Use of an Arbitrary Discipline

The unwanted representational detail
which results from using a fixed disci-
pline can be reduced by allowing the spec-
ifications to be written in any convenient
discipline. This approach is particularly
useful when the class of objects of the
desired data abstraction is a subset of
some established mathematical domain.
Hoare has used this approach to specify
sets [29,30] and certain subsets of the
integers [30]. The operations on the data
abstraction are defined by expressions in
the chosen discipline. For example, an
operation to insert an integer in a set
might be defined by:

insert(s,i) ~ s := s u i
where assignment is used to show that s is
updated with a side effect.

Many of the properties of specifica-
tions in which an arbitrary discipline is
chosen are the same as when a fixed dis-
cipline is used. Allowing the specifier
to choose a convenient discipline re-
moves some of the limitations of a fixed
discipline, but not all. Actually, the
number of disciplines available for use is
not large, and, in addition, if a complete-
ly free choice of discipline could be made,
it is doubtful that the resulting specifi-
cations would be comprehensible. Thus,
in reality, the specifier must choose
among a small number of disciplines; some
of these might be existing mathematical
disciplines, while others would be disci-
plines developed especially for use in
specifications. This situation is analo-
gous to writing programs in a language
providing several data structuring facili-
ties; programming experience indicates
that there will always be (problem ori-
ented) abstractions which cannot be ideally
represented by any of the data structuring
methods. Thus, it appears unlikely that
all data abstractions can be given minimal
specifications by choosing among a number

of disciplines.

Use of a State Machine Model

As was noted in Section 4, the class
of objects can be defined implicitly rather
than by means of an explicit model. If
the class of objects is viewed as states
of an abstract (and not necessarily finite)
state machine 10, then the class can be de-
fined implicitly by characterizing the
states of the machine. Parnas [31] has
developed a technique and notation for
writing such specifications. The basic
idea is to Separate the operations into
two groups: those which do not cause a
state change but allow some aspect of the
state to be observed -- the value returning
or V-operations -- and those which cause
a change of state -- the operate or O-oper-
ations. The O-operations correspond to
the constructors of Section 4. The speci-
fications are given by indicating the
effect of each O-operation on the result
of all the V-operations. This implicitly
determines the smallest class of states
necessary to distinguish the observable
variations in the values of the V-opera-
tions. It also determines the transitions
among these states caused by the O-opera-
tions.

We again use the integer stack data
abstraction as an example, and consider
the operations TOP and PUSH. TOP is a V-
operation which is defined as long as the
stack is not empty, and PUSH is an O-oper-
ation which affects the result of TOP.
Looking at just these two operations, the
state machine specifications might read
as shown in Figure 8, where DEPTH is
another V-operation whose definition is
not shown here, but which is intended to
reflect the number of integers on the
stack, and MAX represents the maximum
number of integers which can be stored on
the stack. Quotes around an operation
name are used to indicate its value before
the O-operation is executed.

This type of specification is differ-
ent from those previously considered be-
cause it is free of representational de-
tails. No extra information is introduced
if the specifications are expressed en-
tirely in terms of the names of operations,
types, and possibly some initial values
(like MAX in the definition of PUSH).
Thus, one might expect to achieve quite
reasonable minimality. In practice, how-
ever, it is not always easy to build a
simple description of the effect of an O-
operation. The problem is that certain
O-operations may have "delayed effects" on
the V-operations: some property of the
state will be observable bv the V-operation

10. In this case, the set of states of
the state machine is the set of time-
invarient mathematical values that we
discussed in Section 4.

81

only after some other o-operation has been
applied. For example, PUSH, has a delayed
effect on TOP, in that the former top-of-
stack element is no longer directly ob-
servable, by TOP, but will again be ob-
servable after POP is applied. Parnas used
an informal language to describe this de-
layed effect [3~]. Delayed effects can be
described formally by introducing "hidden
functions" to represent ~spects of the
state which are not immediately observable.
Users of the state machine model [6,7]
have made extensive use of such hidden
functions. However, adding hidden func-
tions can also add representational detail,
and thus detract from the minimality of
the specification.

V - o p e r a t i o n : TOP
possible values: integer ~ i n i t i a l l y undefined
p a r a m e t e r s , none
e f f e c t : error cal l i f ' D E P T H ' = 0

O - o p e r a t i o n = PUSH (a)
possib le va lues= none
p a r a m e t e r s = in teger a
e f f e c t : error ca l l i f ' D E P T H ' = MAX

else (T O P = a ; D E P T H = ' D E P T H ' - I - I)

F igure 8 A part ia l state machine specif icat ion
for the s tack abst rac t ion ,

The state machine specifications are
slightly deficient with respect to the
other criteria of Section 2. Because of
the problem of delayed effects, noted
above, they are sometimes difficult to
construct. Because the O-operations
which change the result of a V-operation
are totally separated from that V-opera-
tion, the specifications are sometimes
difficult to read. The separation also
affects extensibility since adding a new
V-operation may require updates to a
large portion of the O-operation specifi-
cations.

With respect to the criterion of
formality, we expect that state machine
specifications can be given an adequate
formalization but much work remains to be
done. In particular, it is necessary to
develop a formal (not necessarily effec-
tive) construction for the state machine
specified by a given set of specifica-
tions. This will necessitate d6fining
the language Which can be used to describe
the effects of an O-operation. In addi-
tion, work on developing the proof method-
ology to use with state machine specifica-
tions is needed. Price [6] has proved a
number of properties of a particular data
abstraction, but the methodology for
proving the correctness of an implementa-
tion still needs to be developed. Some
of the needed formalization is being done

in an ongoing project at SRI [7,32].

Use of Axiomatic Descriptions

An alternative to using state machines
to implicitly determine a data abstraction
is to give a list of properties possessed
by the objects and the operations upon
them. This approach can be formalized by
expressing the properties as axioms for
the data abstraction. Axiomatization has
been used by Hoare [2,33] to define the
built-in data types of a programminq lan-
guage. The techniquecan also be used to
give specifications for user-created data
abstractions.

An axiomatization of the integer stack
abstraction in which popping the top ele-
ment off the stack (POP) and examining the
top element (TOP) are separate operations,
is given in Figure 9. In this example,
STACK and INTEGER are predicates; STACK
is being defined, but INTEGER is assumed
to be defined elsewhere. The axioms are
written in a form analogous to Peano's
axioms for the natural numbers. Axioms 1
and 2 define the range of the applicable
operations. Axiom 3 is the induction ax-
iom which limits the class of stacks to
those that can be constructed with the
given operations. Axioms 4 and 5 insure
the distinctness of the results of the
PUSH operation. Axiom{ 6 and 7 define the
result of the TOP operation and axioms 8
and 9 define the result of POP. Axioms 7
and 9 capture the fact that neither TOP
nor POP may be legally applied to an empty
stack (the result of CREATE). II

I CREATE (STACK)

2. STACK(S) ~ INTEGER (1) m STACK (PUSH (S,I))
[POP(S) ~ STACKERROR ~ STACK (POP(S))] B

FTOP(S) ,~ rN.TEGERERROR ~ INTEGER (TOP(S)]
3 (VA) [A(CREATE) 6

(VS){Vl) [STACK(S) B INTEGER (L) B A($)
D A(PUSH (S,I)) 8 [S ~ CREATE3 A(POP(S))]]

;VS) [STACK (S) D A(S)]]

4 STACK(S) B INTEGER (1) m PUSH (S,I) ~ CREATE
5 STACK (S) 8~ STACK (S') B INTEGE R(1)

[PUSH($,I) = PUSH(S',I) D S:S']
6 STACK(S) B INTEGER(1)~ TOP(PUSH(S,I)) = I
7 TOP(CREATE) = JNTEGERERROR

8 STACK(S) 8 INTEGER(1)~POP (PUSH (S,I)) =S
9 POP(CREATE) = STACKERROR

Figure 9. An axiomatic specification
of the stack abstraction.

The axioms determine an abstract rep-
resentation for stacks in the following
manner. Consider the set of all legal ex-
pressions that can be constructed from the
given operations. This set of expressions

ii. In these axioms, we are using the
standard mathematical technique for making
a partial function total: the output
domain of the function is extended by one
special, recognizable value which will be
the result of the function in all cases
where it was previously undefined.

82

names every possible member of the class
of stacks. Some pairs of expressions may
name the same stack, however; for example,
both

PUSH(CREATE,7) and
POP (PUSH (PUSH (CREATE, 7) , 25))

denote the same stack. Therefore, the
class of stack objects is represented by
equivalence classes over the set of all
expressions. These equivalence classes
are determined (non-effectively, in
general) by the axioms.

If the axioms are sufficiently well
chosen, the equivalence classes are unique.
If not, then several sets of equivalence
classes may satisfy the axioms. If, for
example, axiom 4 is omitted, then two dis-
tinct sets of equivalence classes -- one
in which the result of PUSH is always dis-
tinct from the empty stack and one in
which it is not -- would both satisfy the
axioms.

The axiomatic specifications can al-
most always be minimal and widely applica-
ble, in part because there are so few
limitations on the form of the axioms.
In addition, the approach seems to support
extensibility, since, in most cases, it
suffices to add new axioms to describe
the extended concept, or at most, to
modify a few existing axioms. The formal-
ization of the axiomatic technique is
borrowed directly from existing mathemat-
ics. Proving the correctness of an imple-
mentation of a data abstraction specified
by axioms means showingthat the implemen-
tation is a model of the axioms.

The axiomatic approach is most seri-
ously deficient with respect to the cri-
teria of comprehensibility and construct-
ibility. As discussed in Section 4, the
approach does not directly define a model
for the class of objects; instead the
class is defined only implicitly. It is
sometimes difficult to see that the ax-
ioms really define the set of values of
interest. In addition, the possibility
that several very different sets of val-
ues may satisfy the axioms is disturbing.

Use of Algebraic Definitions

It is reasonable to expect that all
data abstractions one might be interested
in implementing on a computer would have
finitely constructible, countable domains.
In view of this, the first three axioms
in Figure 9 can be omitted, providing
suitable notation is developed to indicate
the group of applicable operations and
their functionality. Algebraic specifica-
tions [18] provide such a notation.

The algebraic specification technique
is based on a generalization of the alge-
braic construction known as a presentation.
A presentation of the stack abstraction is
shown in Figure i0. Only four axioms are
now needed (labeled with primes to avoid

confusion with the axioms in Figure 9).
Axioms i, 2 and 3 are replaced by the def-
inition of functionality; this is suffi-
cient to define the set of legal, finitely
constructible expressions in these opera-
tions. In the usual algebraic terminol-
ogy, the legal expressions are called
words. Next, it is necessary to specify
w l ~ of these expressions are to yield
equivalent results, through a set of
defining axioms referred to as relations
or relation schemata: this is don~ by
axioms i' through 4' (which correspond to
axioms 6 through 9 in Figure 9). The
construction which gives meaning to a pre-
sentation automaticall~ forces all ex-
pression pairs which cannot be shown to
be equivalent to be distinct. This sim-
plifies the expression of the specifica-
tions and is why axioms 4 and 5 are not
needed.

Almost all the comments about how
axiomatic definitions satisfy the criteria
apply equally well to algebraic defini-
tions. Algebraic and axiomatic defini-
tions are equally good with respect to
the criteria of minimality, wide range of
applicability, and extensibility. (Alge-
braic definitions are shorter than axiom-
atic ones, but they are not more minimal
because they express the same informa-
tion.) The algebraic approach can be
easily formalized by borrowing from ex-
isting mathematics; most results carry
over in a straightforward-manner, although
some generalization is needed totreat
several existing domains simuleaneously.
For algebraic specifications, proving the
correctness of an implementation means
showing that it defines an isomorphic
image of the presented algebra. This
isomorphism can be established implicitly
by showing that the defining axioms hold
in the implementation and that the mapping
is one-one [18,34].

The algebraic approach is superior
to the axiomatic approach with respect to
the criteria of constructibility and com-
prehensibility, because the approach is
more structured. However, algebraic spec-
ifications are still deficient with re-
spect to these criteria. Although use of
the algebraic approach precludes the pos-
sibility of more than one set of values

FunchonoiH y

CREATE : ~ STACK
PUSH STACK X INTEGER --m-STACK
TOP STACK ~INTEGER U INTEGERERROR
POP STACK - ~ S T A C K USTACKERROR

A x i o m s :

I' T O P (P U S H (S , [)) : [

2' TOP (CREATE) = INTEGERERROR

3' POP(PUSH (S , I)) = S

4 ' P O P (C R E A T E) = STACKERROR

Figure I0 An algebraic specif ical ion of the slack abstract ion.

83

satisfying the axioms, it is still possible
that the set of values defined is not the
one intended. We believe this difficulty
can be eased if a methodology is developed
which can be applied to constructing and
understanding such specifications. Some
progress in this direction has been made
[18,35], but more work is needed.

Summary of Analyses

The analyses given in this section in-
dicate that there is no single specifica-
tion technique that is universally better
than the others. One major difference
among the techniques is the extent to which
they exhibit a representational bias, that
is, the extent to which the spec~'~ations
suggest a representation or implementation
for the abstractions being defined. The
representational bias of a technique deter-
mines, in large measure, its range of ap-
plicability. Techniques having a repre-
sentational bias will be limited primarily
to those abstractions which are naturally
expressed in the representation; however,
within the range, specifications will be
fairly easy to construct and comprehend,
and reasonably minimal. Those techniques
which make use of an existing mathematical
discipline to specify an abstract model for
the class of defined objects have a repre-
sentational bias. Such techniques will be
preferred for abstractions which fit nicely
into the discipline (for example, where the
objects of the abstraction are elements of
an existing domain).

The techniques providing an implicit
definition of the class of objects have no
representational bias, and will clearly be
preferable for those abstractions not well
matched to an existing discipline. They
may sometimes be preferred even when one of
the abstract model approaches could be used.
The abstract model approaches tend to
suggest an implementation for the abstrac-
tion, and this may be undesirable, not
because it precludes very different imple-
mentations, but because it may be hard
for the implementor to find a different
but better implementation.

All the implicit definition tech-
niques, with their lack of representa-
tional bias, have a wide range of appli-
cability, but they vary in the extent to
which they satisfy the criteria of
minimality, constructibility, and compre-
hensibility. The difficulty in the state
machine approach of coping with delayed
effects reduces the minimality and con-
structibility of the specifications, though
not necessarily the comprehensibility. The
introduction of hidden V-functions may im-
pact the free choice of an implementation,
since the implementor may feel the need to
implement these hidden functions, which is
not necessary. Algebraic andaxiomatic
specifications are more minimal than state
model specifications, but they may be more
difficult to construct and understand.

The state machine technique appears
to be least satisfactory with respect to
the criterion of extensibility, because
introducing a new V-operation is likely to
necessitate changes to the definitions of
many O-operations. However, the criterion
of extensibility, based on the n6tion of
a "small" change to the concept, is really
quite vague. Perhaps a small change is
one requiring only a minor modification to
the specification. Also, the different
specification techniques may tolerate dif-
ferent kinds of changes, and this could be
a factor in choosing a technique.

The criterion of formality is not en-
tirely satisfied by any of the techniques,
although the state machine model is the
least formalized. There are two important
aspects to formalization: First, the syn-
tax and semantics of the language in which
the specifications are written must be
fully defined. Defining the semantics in-
volves more than just defining the meaning
of each symbol; a construction (it may be
non-effective) of the defined class of ob-
jects from the specification must also be
provided. This is only difficult in the
implicit definition approaches; in the
abstract model approaches the specifica-
tion describes the objects explicitly.
Second, a methodology for proving that an
implementation satisfies a specification
must be provided. Additional work on
formalization would expand the usefulness
of the techniques. Unless a technique is
adequately formalized, it will be diffi-
cult, if not impossible, to train people
to use it correctly and coherently.

We conclude by discussing one previ-
ously unmentioned aspect of specification
techniques: the extent to which they
capture all interesting properties of a
data abstraction. For example, consider
the treatment of errors in the various
specification techniques. In some tech-
niques, errors arecompletely ignored.
In others, notably the axiomatic and
algebraic techniques, the presence of
errors is acknowledged, but not in a par-
ticularly illuminating way. The solution
of adding an extra error element to the
output domain, while mathematically sound,
does not provide the kind of information
that a user of the abstraction requires.
A more realistic approach is taken by the
state machine technique; here, error
cases are prominently displayed, different
errors can be given meaningful names (al-
though this was not shown in the example),
and even the order in which errors will be
recognized by a given operation can be
specified. It is noteworthy that this
technique is based on a model of the way
errors will be handled in running programs;
such a model may be necessary if errors
are to be specified in a realistic manner.
The treatment of errors is not the only
example where the specification techniques
are deficient (e.g., performance require-
ments are also missing). Much more work

84

is needed to identify the interesting prop-
erties of data abstractions, and to develop
the specification techniques to express
those properties.

6. Conclusions

A major premise of this paper has been
that formal specifications should come to
play a fundamental role in the construction
of reliable software. Two reasons were
given for this: (i) The growing economic
pressure for reliable programs indicates
that increased effor.t in this direction is
justified, and (2) The recognition of a
new kind of module -- the multi-procedure
module -- has led to the identification of
a specification unit for which specifica-
tions are practical. This kind of module
is helpful in the construction of software,
because it permfts data abstractions to be
used in building programs. Since data is
the fundamental concern of programs, we
can expect the use of data abstractions to
be widespread.

To indicate the form such specifica-
tions might take, Section 5 discussed
several specification techniques. The
techniques discussed were promising in that
they did succeed in describing data ab-
stractions at a reasonably abstract level.
However, none of the techniques are ready
to be applied to practical programs.
Some techniques have not yet been put on a
firm mathematical basis (although we be-
lieve that all the techniques surveyed are
capable of being adequately formalized).
Other techniques ignore a fundamental
aspect of data abstractions: how to cope
with errors and exceptions. Finally, none
of the techniques has been applied widely
enough that its expressive power can be
evaluated. Recent uses of the state
machine technique of Parnas to specify
operating systems [7] or parts thereof [6]
may indicate that that technique is suit-
able for systems of interesting size, but
the complexity of at least one of those
specifications [6] indicates the specifi-
cation technique requires further refine-
ment. It is reasonable to expect defi-
ciencies in the other specification tech-
niques to emerge when they are likewise
applied to large programs.

Some deficiencies in the techniques
are already apparent. The range of ap-
plicability of the various techniques is
often smaller than we would like; ex-
amples were discussed in Section 5. Since
the range of applicability is different
for the different techniques, we may expect
that using a combination of techniques when
describing a large program would be a
profitable approach. However, there are
programs whose meaning cannot be captured
by any of the described techniques. For
example, specifications using the tech-
niques cannot be given for programs involv-
ing parallel activity. We chose not to

survey work going on in developing specifi-
cation techniques to handle parallelism
because the work is very recent and quite
preliminary. However, one promising
approach uses data abstractions as the
specification units [36].

The specification techniques discussed
in this paper can adequately describe mod-
ules -- the blocks out of which systems
are built -- but it is not clear that they
can describe the entire system. For ex-
ampl@, Parnas has shown how a KWIC system
can be modularized [16], and each module
was described using his specifications,
but the specification of the system as a
whole was given in English. It seems un-
likely that an entire system can be viewed
as a single, top-level module, so perhaps
a different kind of specification technique
is desirable here.

Even if we are not able to describe an
entire system using the specification tech-
niques, the ability to define most of the
modules used in constructing a system in a
precise, formal way would be a major
advance in the construction of reliable
software. The specification techniques
discussed in this paper are all quite re-
cent; much is being accomplished by con-
centrating on the data abstraction as a
specification unit. This general area
appears to be a very promising one for
further study: work in applying existing
techniques to large programs, in extending
and formalizing existing techniques, and'in
proposing new techniques, for both sequen-
tial and parallel programs, is of the ut-
most importance.

Acknowledgements: The authors greatfully
acknowledge the helpful suggestions made by
Jack Dennis and the referees.

i.

2.

3.

4.

5.

Re ferences

R.W. Floyd, Assigning Meaning to Pro-
grams, Proceedings of Symposia in Ap-
plied Mathematics, V. XIX, Mathematical
Aspects of Computer Science, American
Mathematical Society, Providence, R.I.,
1967, p. 19-32.

C.A.R. Hoare, An Axiomatic Basis for
Computer Programming, Comm. ACM, V. 12,
No. i0 (Oct. 1969), p. 576-580, 583.

Z. Manna, S. Ness, and J. Vuilemin,
Inductive Methods for Proving Proper-
ties of Programs, Comm. ACM V. 16, No.
8 (August 1973), p.~l-~.

B. Boehm, Software and its impact:
quantitative assessment, Datamation
V. 19, No. 5 (May 1973), p. 48-59.

M. Schroeder, Certification of Computer
Systems, Pro~ MAC Pro@ress Report ii,
Massachusetts Instlt~'~'~te of Technology~-

85

6.

7.

8.

9.

i0.

ii.

12.

13.

14.

15.

16.

Cambridge, Massachusetts, to be
published.

17.

W.R. Price, Implications of a virtual
memory mechanism for i~plementing
protection in a fam--Tly of operating
s[stems. Department of Computer
Science, Carnegie-Mellon University,
Pittsburgh, Penn•, 1973.

• 18.

P.G. Neumann, et al, On the design of
a provably secure operating system.
Proceedings, International Workshop
on Protection in Operation Systems,
I-RIA-~ Rocque'---------~co--~rt~ France,-TgT~-
p. 161-175.

F.T. Baker, Chief Programmer Team
Management of Production Programming,
IBM Systems Journal, V. 2, No. 1
(Jan. 1972), p. 56-73.

E.W. Dijkstra. Notes on structured
programming. Structured Programming,
A.P.I.C. Studies in Data Processing
No. 8, Academic Press, New York 1972,
p. 1-81.

C.A.R. Hoare, Proof of a'Program:
FIND, Comm. ACM, V. 14, No. i. (Jan.
1971), p. 39-45.

B. Liskov and S. Zilles. Programming
with abstract data types, Proceedings
of ACM SIGPLAN Conference on Very
High Level Languages, SIGPLAN Notices
V. 9, No. 4 (April 1974~, p. 50-59.

J.H. Morris, Toward More Flexible
Type Systems, Proceedings, Programming
Symposium, Paris, April 9-11, 1974,
Lecture Notes in Computer Science 19,
Springer - Verlag, New York, p. ~7~-
384.

B.H. Liskov, The Design of the Venus
Operating System, Comm. ACM, V. 15,
No. 3 (March 1972)~. 1 4~-149.

B.H. Liskov, A design methodology for
reliable software systems, Proceedings
of the AFIPS 1972 FJCC, V. 41 (1972),
p. YgY-iV~.

E.W. Dijkstra, The structure of the
'THE' -- multiprogramming system,
Comm. ACM V. ii, No. 5 (May 1968),
p. 341-346•

D.L. Parnas, Information distribution
aspects of design methodology, Pro-
ceedin~s of the IFIP Congress, August
1971.

N. Wirth, The programming language
PASCAL, Acta Informatica, V. 1 (1971),
p. 35-63.

S.N. Zilles, Data al@ebra: A spec-
ification technl~--~ue for dat~ struc-
tures------'-~ P--h.D. Thesis f---~rthco-----mlng~----~

Project MAC, Massachusetts Institute
of Technology, Cambridge, Mass., 1975.

19. D.L. Parnas, On the criteria to be
used in decomposing systems into mod-
ules, Comm. ACM, V. 15, No. 12 (Decem-
ber 1972~, p. 1053-1058.

20. R.M. Burstall, Some techniques for
proving correctness of programs which
alter data structures, Machine Intel-
li@ence [, D. Michie (ed. ,~erican
Elsevier, New York, 1972.

21. O.J. Dahl, B. Myhrhaug, and K. Nygaard,
The SIMULA 67 Common Base Language,
~llca~n S-22, Norwegian Computing
Center, Oslo, 1970.

22. J. Earley, Toward an understanding of
data structures, Comm. ACM, V. 14,
No. i0 (October 197~, p~617-627.

23. A.W. Holt, Mem-theor[, a mathematical
method for the description and analy-
sls o-~---~d1"~'~cret----e finite information -

ems, Applied Data Research, Inc.,

24. C. Christensen, An example of the
manipulation of directed graphs in
the AMBIT/G programming language, In
Interactive Systems for Applied Mathe-
matics, Klerer and Rel-~felds~ds.~,
Academic Press, New York, 1968.

25. J. Earley, Relational level data
structures for programming languages,
Acta Informatica, V. 2 (1973), p. 293-
309.

26. J.B. Morris, ~ Comparison of Madcap
and SETL, Los Alamos Sci. Lab., •
University of California, Los Alamos,
N. Mexico (1973).

27. J. Schwartz, O_n Programmin 9, An Inter-
i_m Report on the SETL Project, Com-
puter Science Department, Courant
Institute of Math. Sci., New York
University (1973).

28. A. Birman, On proving correctness of
microprograms, IBM J. Research and
Development, V. 18 ~May 1974), p. 250-
267.

29. C.A.R. Hoare, Proof of a structured
program: 'The sieve of Erastosthenes',
Computer J., V. 15, No. 4 (November
1972), p.--321-325.

30. C.A.R. Hoare, Proof of correctness of
data representations, Acta Informatica,
V. 1 (1972), p. 271-281.

31. D.L. Parnas, A technique for the spec-
ification of software modules with
examples, Comm. ACM. V. 15, No. 5
(May 1972)T p. 330-336.

86

32. P.G. Neumann, Toward a methodology for
designing ~ systems and verifying
their properties, Gesellschaft fur
Informatik, Berlin, 1974.

33. C.A.R. Hoare and N. Wirth, An axioma-
tic definition of the programming
language PASCAL, Acta Informatica,
V. 2 (1973), p. 335-355.

34. S.N. Zilles, Algebraic Specification
of Data Types, Project MAC Progress
Report i_~, Massachusetts Institute
of Technology, Cambridge, Mass., to
be published.

35. J. Donahue, J.D. Gannon, J.V. Guttag,
J.J. Horning, Three Approaches to
Reliable. Software-. Language ues~De~n,
Dyadlc Specification, Complimentary
Semantics, Technical Report C.S.R.G.
45, Computer Systems Research Group,
University of Toronto, Toronto,
Canada (January 1975).

36. C. Hewitt and I. Greif, Actor seman-
tics of PLANNER-73, Proceedings of
the Second ACM Symposium o_n_ Principles
of Programming Languages, Palo Alto,
California, January 20-22, 1975, p.67-
77.

87

