MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo 119

Three Excerpts from the 1973-74 Project MAC Progress Report

I. =Algebrdajic Specification of.Data Types pg. 1

" IL:

III.

(8. Ni Zilles)

The Binding Model pg. 13
(D. A, Henderson, Jr.)

Data Flow Computer Architecture Pg- 24
(J. B. Dennis and J. E, Rumbaugh)

This work was supported by the National Science Foundation
under research grant Gi-34671,

March 1975
(Corrected Jjuly 19755

X. Algebraic Specification of Data Typas

The realization of an abstract data by a cluster in CLU [8) provides a
natural basis for structuring a proof of program correctness. The abstract
data type is specified by assertions (axioms) that capture all properties
of objects and operations of the data type on which uses of the data type
depend. Then a proof of correctness for a program using the cluster consists
of two parts: The cperations of the cluster are proved to establish tha
axioms of fhe data type; and the axioms are used to prove assertions that ex~
Press correcktness of the program,

Since the bodies of cluster operations may utilize further abstract types
realized by other qlusters that establish corresponding sets of axioms, the
str?cture of a proof of correctnesa is hierarchical. 50 long as the problem
to be solved by a program can be structured as a hierarchy of abstractions
implemented by clusters, the proof of correctneas grows linearly with th
complaxity (depth of the hierarchf_of—abstractiuﬁa) of-thé-program. |

Steve Zilles has developed an algebraic theory of data type specification

‘that provides a formal basig for constructing sets of axioms for abstract data

_types and proving correctness of clusters of operations that implement date typee

{12]. Firsf, the specification of the data type is given in purely algebraic
terms and then the derivation of the axioms for the data type is given.

In this work, a data type is viewed as a heterogeneous algebra [2]. A
heterogeneous algebra ig an algebra defined over more than one set of objects
and is given by specifying the family of gets or domains, and the operatious
defined on them, For the intset data type the domains are the set of objects of the
data type, the set integer of integers and the set boolean of truth values.

The operator: symbola and the functionality of the operations they denote ara;

CREATE: - set
INSERT: set X integer — set
REMOVE: get X integer - set

HAS; set X' integer - boolean

Each operation of a heterogeneous algebra is defined by associating a function
(or "multiplication table") of the_correct functionality with its operator
symbol. A gpecification of a heterogeneous algebra must determine the domains
over which the algebra 1s defined and the nultiplication tables for the operator
symbols. Two heterogeneous algebras will be called similar if they are defined
over the same domains and the same get of cperator symbols are used in each.

The technique for specification used in this work is to give an algebraic
BEgSSgtatiog for the desired heterogeneous algebra, A presentation
consists of three parts: a set of operator symbols, a set of generator gymbols
and a set of defining relations. The operator symbols name the operations of the
algebra to be defined., The generator symbols denote objects in domains of the
algebra.

Using intset as an example, rhe operators will be CREATE, INSERT, REMOVE,
and HAS. The generators will be 0, 1, 2, ... for the integer domain, and Erue,
false for the boolean domain. No generators for the set domain will be needed.

Consider the set of all symbolic expresaions formed from the operators and
generator symbols, punctuated with parentheses and commas 30 as to denote com-
positions of operations in the usual manmer. Some examples of expressions, which

in algebraic terminology are called words, are

€y = INSERT(INSERT(CREATE, 2), 3)
¢, = INSERT(INSERT(CREATE, 3), 2)
€3 = REMOVE(INSERT(CREATE, 1), 3)

The set of expressions can be made into a heterogeneous algebra, the word
algebra, by defining each operation to yield the expression formed by formally
applying the corresponding operator symbel to the expresslons that are its
operands. Thisg algebra 1s, in general, too large. Several distinct
expressions may denote the game object of the desired data type algebra,

It is the function of the defining relations to indfeate which expressiong
denote the same object and, thereby, express the properties the desired algebra
Ls to satisfy. Each defining relation consists of a pair of symbolic expressions
which denote the game object. In the case of intset the pair (gl, 32) is a
defining relation because both expreasions denote the set {2, 33.

Although the set of defining relations for interesting abstract data typea

is generally infinite, it may be finitely represented by relation schemata. A

set of relation schemata for the intset data type follows:

1. INSERT(INSERT(E, D, 1)=1f 1 = J then INSERT(s, i) _
else INSERT({INSERT(s, i), i)
2. REMOVE(INSERT(s, 1), j) = if 1 = j then REMOVE(s, 3)
. else INSERT(REMOVE(s, §), i)

3. REMOVE (CREATE, j)- = CREATE

4. HASCINSERT(s, 1), j) =4if 1 = j then true
else HAS(s, j)
5. HAS {CREATE, j) = false

Schemata 1, 2 and 3 define relationg on expressions denoting elements of the
set domain. Each relation is generated by substituting dppropriate exprassions
for the set variable S, and the integer variables i and j, Since there are no
cperators which produce integer results, only integer generator szymbolg are
substituted for i and j. The conditionala=on the right hand dide mean that
alternativa expressions are specified according to the outcome of the primitive
identity predicate on integer generators { and j» In particular, that e, and e,
are related 1s shown by schema 1 with £ = 2, § =3 and g = CREATE, Relation
schemata 4 and 5 define relations on expressions denoting boolean values.

From a given Presentation, the heterogeneoys algebra is constructed by
defining a set of congruence relations, one for each domain, over the word
algebra, and representing the objects of each domain by the congruence classes
in that domain, A congruence relation is an equivalence relation in whieh the
regults of applying any operation to two tuples of pairwise equivalent operands
are equivalent; that is, the equivalence classes are preserved by the operations
of the word algebra. The congruence relations used are tha smalleat congruence
relations which contain all the defining relatious of the presentation. Thig
means that two expressions are equivalent if and only if there ig a sequence of
expregaions such thar the first and last expressions are the expressions in
question, and every pair of adjacent expressions in the seguence can be shown to
be equivalent using some defining relation,

This construction leads to two theorems on which the utility of algebraic

presentations in specifying abstract data types rests,

Iheorem 1: A presentation defines an élgebra that is unique up to isomorphism,
and any equivalence which holds in this algebra can be derived from the

defining relations.

Theorem 2: Suppose A is an algebra presented with generators X and defining
relations ¢, and B iz an algebra similar to A. Let M be a map
M:X - B such that every element of B can be obtained from the images
of X under M using the operations of B. Then B is a homomorphic image
of A if the images of the defining relations ¢ under the map M are all

equivalences in B.

Both of these thecrems follow from the conatruction described above. Their
primary importance is in proving that two algebras are igomorphic and therefore
equivalent. This is the basis for demonstrating the correctness of an imple-
mentation of an abstract data type as a CLU cluster.

To use algebraic techniques for showing correctness, it is First necessary

to congtruct an algebra, the concrete almgebra, on the representations used in

the implementation. This comstruction is deseribed below: ;To establish a
homomorphic ' mapping from the abstract algebra.onto the concrete one it suffices:
to show that the defining relatiops are equivalences when projected into the
concrete algebra, If the mapping can be shown to be one-one (injective), it is
an isomorphism. Once isomorphism is established, Theorem 1 shows that the
defining relations also characterize the concrete algebra and programs using
aperations of the cluster may be proved correct by using these relations as
axioms of the data type.

To this point, the specifications were given in purely algebraic terms.
The most commonly used method of proof -- the verification condition method -- is
based on having an axiomatization of the data typea. The defining relations of
a presentation form a partial axiomatization of the data type; they indicate which
expressions are equal. Thé axioms suffice to show any property which depends only

on showing the equivalence of expressions. The missing axioms are those which

indicate which expreasions yield unequal results. These are unnecessary in the

-f-

algebraic presentation because the construction of the algebra insures that
unless two expressions are equal as a result of the defining relations they
will be unequal.

Unfortunately, it is 4in: general no slmple matter to construct the axioms
which indicate inequalities among the expressions. This 1s because the
algebraic construction isg non-effective (in the recursive function sense) and
therefore the content of the congruence classes is unknown. In a number of
practical cases, however, it is possible to develop an effective procedure for
plcking a canonical representative of each equivalence clasg. A cancnical
representative is any element of the class for which there is an effective pro-
cedure for showing its equivalence to ail other members of the claga. A formula
which displays or generates all the canonical representatives is called a
canonical form. When s;ch a form exists, it is then possible to conatruct the
axions for inequivalence, As we shall gee below; the exisrence of a canonic
form also simplifies the proof that a homomorphic mapping 18 one-one and,
therefore, delfines an isomorphiam. For the intset example, the axioms for

inequivalence are:

(Vs, 1): INSERI(s, 1) # CREATE
(Vs,1a', 1): “1(a £ 8') A (s #'INSE_‘.RT(S', 1)) A (s' £ INSERT(s, 1))

implies INSERT(s, i) # INSERT(s', 1)

Very little need be done to def{ne an algebra over the repregentation
used in a CLU cluster, The objects are represented by the chosen representatiom
and the operations are defined by their effects upon that representation, The
only problem is the existence of side effecta in the operations. This problem
can be gsolved by making the result of operations with side effects by a tuple of
values; one for a functional result if any, and one for each operand which is

changed by the operation. Symbolict indiced orinames can he given to the components

of the result for purposes of distinguishing them,

Asguming that CLU is given an axiomatic definition [7], the verifi-
cation condition method of proof can be used to establish input/output asser-
tions for the clugter operations. These are expressed in terms of the repre-
sentation and become axioms for the operations of the concrete algebra. These
axiomg are then used to proﬁe that the defining relations are gatisfied.

As an example of the procedure for proving the correctnesa of an
lmplementation, consider the implementation of the intset data type by the
cluster in Figure 1. ; The chosen representation for a value of abstract type
1s an array of integers in which an integer is an array element if and only if
the integer is a member of the abstract get. It will be convenient to formalize
this choice by a predicate In{s, 1) which tests whether the integer is is rep-

Tesented in the array =: '

In(s, i) = (21) [0 < j < HIGH(s) & s[3i] = 1]

In this HIGH(s) is the largest index i for which s{i] exists.

Not all integer arrays will be valid intset representations, Specifically,
the operations of the intset cluster are coded so that each integer occurs
4t most once as an element in a representing array. This condition is an
invariant of the chosen vapresentation and will be depoted I(s):

I(s) = (Wi, j) [0 g i < HIGH(s) & 0 < j < HIGH(s)

=1 =Jvsli] #s[j]]

The code for the imsert operation acts through its gide effect on :hg
argument of Intset type:
insert = oper(s: cvk, i: int);

if search(s, i) < rep §$ high(s) then return;

rep § extendh(s, i);

return;
e—

end insert;
E— |

-8~

intaet = cluster is create, inaert, remove, hag, equal, COpy;

create = oper() returns vt ;
I': rep :== rep$ create(0);
teturn r;
- —

end create;
o

insert = m(s: eve, i: 1’.=n£);
i___£ search(s, 1) < m$high(s) gﬂhe_n' return;
t_‘__g;__gﬁextendh(s, i);
return;

end ingert;
-1

search = oper(s: rep, 1:int) tgturns fnt;:
22 3¢ Lng == xep $low(s) Lo zep $high(a) by 1 go
if 1 = 8[j] then retura i
return rep $high(s) + 1;
m search:;

Temove = oper(s: cve, i:;.‘gj;
j: 21__5 ‘== gearch(s,);
if 3 < rep $ high(s) then
begtn
8[J] :== s[rep $ high(s)];
rep $ retracth (s)
end;
Teturn;

end remove;

has = opmé—:ﬁc‘\;t, {iitii:'j_i'-eturns boolean;
1 AT e ——] L —— - -9 p——
if search(s, 1) ¢ rep $ high(s)

then return true

elae return false;
end has;

end intser
—

Figure 1. The intset cluster.

Using the rule for procedures recently developed by Hoare [7], the proof rule is

P;NSERT’(s,i) [insert(s,i)]P

and the corresponding axiom (Input/output assertion) for the behavior of
INSERT' is
(Ya, 1) [I(s) = I(INSERT'(s, 1)) & In(INSERT (s, 1), 1) &
(V1) [1 # 1 = In(INSERT'(s, 1), §) = In(s, 1
INSERT' is the name of the operation in the concrete algebra. The prime is
used to distinguish the abstract and concrete operations which are further
distinguished from the cluster operations by capitalization,

Likewise, from the code for the has oparation

has = oper{s: cve, L@ ng) rokurns boolean
if search(s, 1) ¢ rep $ high(s)

then return true
"'—""""_—-=-

else return false;
L —— =)

end has;
the axiom for the concrete operation HAS' is derived:
(vs, 1) [I(s) = HAS'(s, 1) = In(s,)]

Axioms for the remaining concrete operations CREATE' and REMOVE' may be
aimilarly derived,

For simplicity, we will aésume that the integer and boolean domains
of the abstract algebra are fsomorphic to the integer and boolean types of CLU
and this mapping defines the mapping of the operators into the concrete algebra.
Then to establigh the fsomorphism of the two algebras, it suffices to ghow that
the sets are isomorphic to the set representations. It is not sufficient to
view the representation domain as consisting of all arrays that can be generated

by composing operations of the cluster because in general many distinct arrays

represent the same set. The order in which the integers occur does not matter.

-1¢-

. Thus the elements of the rep domain of the concrete algebra must be equivalence

classes of integer arrays determined by the equality relation Eq(sl, 32):

Eq(sys 8,) = (71) [In(sy, 1) = InGs,, 1)]

t is neceasary to show that the cluster operations preserve these equivalence
clagses but ance that ig done, all that remains to establish a homomarphic
mapping is to show the defining relations are satisfied. Aa an example, we

give the proof for schema 4 under the hypothesis 1 # j.

Theorem:
(vs, 1, J) [i # J = HAS' (INSERT'(s, i), §) = HAS ' (s, §)]

Proof:

() i £ j hypothesis

(2) 1) §#ioInGs, j)= In(INSERT' (a, i), 3)
from axiom for INSERT!

(3) In(s, j) = In(INSERT' (s, 1), j)
Modus Ponens (1}, {2)

(4) HAS'(s, j) = In(s, j)

from axiom for HAS®
4

(3) HAS'(INSERT'(s, i}, 3) = In(INSERT'(s, i), i
substitution ¢f TNSERT' {a, 1) for s in &)

il

[

(6) HAS'(INSERT (s, i), il = HAS' (s, 1)

using the equivaleunces in (3), &), and (5)
(7) 14 j = HAS' (INSERT' (a, L), 1) = HAs'(q, 1)

by the deduction theorem on 1y - (&)

Steps 2 and 4 of this Proof require that the invariant I(s) of representa-

tions held, That I{s) holds for all elements of the rep domain of the concrete
algebra is easily proved by induction using the axioms for the concrete 0peratlons

“since each representation ig generated from the empty array by some finite ge-

quence of operations.

-11-

The final step in the proof procedure is to show that the homomor phism
is an igomorphism. This includes showing that distinet objects in the
abstract algebra are mapped to unequal representations in the concrete algebra.
This is most easily done when a set of representative expressions -- a get of
expressions such that every expression ig known to be equivalent to some
expression in the set -- is known. Then, if each of these expregsions is
mapped to a distinct class of the Tepresenting array, the get of representative
eXpressions form a canonical get of expredsions and the mapping is one-~one and
an isomorphism. The representative expressions for expressions denoting integer

sets have the form

INSERT(... INSERT(CREATE, L) ooy 1)

where 11 < 12 < 'f- < in

That the corresponding representations of :Hé.concrete“AigeBra are distinec
follows easily from the axiom for INSERT', and the axiom for CREATE'which
simply states that the empty array represents the empty get.

With tha demonstration of isomorphism, correctness of the intset ciuster
is established and the relation schemata may be used as axioms of the intset
data type for proving assertions about programs using operations of the cluster,
without further coencern for their implementation. |

Begides providing a specification in ter&s of which the correctness of a
cluster can be proven, algebraic spacifications have other useful properties.
They can be tailored to specify just those properties on which a particular program
depends, thereby allowing the greatest posgible freedom in the choice of repra-

sentgtion. They are suitable input to the implementation generator of am auto-

matic programming fystem, especially where a canonical form is known. Quesgtions

Z12-

such as whether two sets of specifications are equivalent can ba answered by

proving that the algebras defined are isomorphic. And finally, families of

algébras can be constructed by adding operations and relations to some fixed set

of relations and operations. Algebras seem to provide a basis for a powerful

theory of data types.

«13-

+

IT. The Binding Model

A programming sygstem Supports a community of programmers ang permits them
to make use of each other's programs. Such a system is said to be modular if
programs can be constructed within the aystem from existing programs without
knowledge of the internal operation of those existing programs. For a programming
system to be modular, several criteria must be met: chere must exist mechanisms
which permit any program to be used by any :other: each Program must have access
to all programs and data they need to realize rheir behavior (programs must be

self-sufficient): the behavior of a program must be independent of which program

invokes it (propgrams must be non-digeriminatory); and Programs muat not conflict
with one another when uged together (any collection of programs must be compatible).

For various reasons, existing programming systems are not medular,

To study how these criteria might be fulfilled in a general purpose pro-
gramming system, D. Austin Henderson has developed an abstract model -- the
Binding Model -- which provides a' semantic base for the construction and expli-
cation of modular programming systems [6], The Binding Model has been defined
formally using the Vienna Definition Language,

The value of the Binding Model has been established in two ways: Firatly,
examples have been used to demonstrate that common constructs of programming

languages and operating systems are realizable in the madel. Secondly, if has

been shown thag_iwn kiﬁds of degirable apecial behavior can be given formal
definitions in the model, and that there are large, structurally-defined
classes of programs which satisfy these definitions,

For this report, we define one kind of aspecial behavior -- repeatability --

and discuss how our intuitions about repeatability are formalized in terms of the

Binding Model.

-14-

The Binding Model is a set of atates and a gtate-transition rule which

maps each state into a successor stata. Each state is composed of two parts:
a directed graph of items and a record of the prograss of a pbrocess in the

evaluation of a task, Initial atates of the model are those in which no evaluation

has taken place; final states are those in which the task has been completed by
the process,

Items are nodes of the directed graphs that are states of the model, and
are of eight types. Logicalg, integers, symbols, and keys are unstructured items:
they are nodes of a state from which no edges emanate and are depicted as in
Fig. 2a.

Sheaveg are {items having structure. Sheaves can be regarded as collections
of other iteme in the graph and are depicted as in Fig. 2by'c., The items: .-~
of a sheaf are named by any unstructured items.

Cells are items used to represent variables -- objects subject to change.
In any state, each cell 1s the origin of ocne arc of the graph (Fig. 2d).

The item on which this arc ends is called the celll!s contents.
Functionals represent "programs" in the model. A functional has a set of

instructions, called its control structure, and a set of associations between

identifiers appearing in the control structure and items of the graph. The
assoclations are called bindings, and the set of bindings 1s called the functional's

environment. :Figure’.Ze depictara a funceional which computes the sum of two

integer items, one of which -- the one bound to the identifier a2 -- is fixed,

The task of the Proceas in the Binding Model is a functianal. The
process part of a state records the position of the process in its evaluation
of the control structure of the functional. The enviromment of the functional

i3 used to e@dsociate values wirh the identifiers of the control structure.

-15-

- {a) unstructured itemg

logicajg “integers Symbolis keyg
true L “here® o=
false =37 “there», o

(b) a gheas

{c) a bundle .

“first® “rest=

(e} a functional

Figure 2 Ttem t¥pes in the Binding Model

-15=

The state transitionms of the Binding Model advance the process by per-
forming successive steps in the "evaluation" of the functional which is the task
of the process. The basic computatlon steps are the evaluation of primitive
operations which perform such operations as addition of Integers, selecting a
component of a sheaf, or changing the content of a cell, Figure 3 gives'a- -
textual representation for the control atructure of a functional, We assume
that the enviromment im which this control structure is evaluated has zero and
one bound to the imtegers 0 and 1, and n bound to some integer. Five forms of

control structure are illustrated in this example: A declaration such as

o

let 5 be add {one, £1) in (CS)

means the primitive operation add{one, tl} 18 to be performed uging ag

operands the values bound to one and tl in the environment. The result defines
a binding for t5 which is appended to the environment, and the control Structure
{CS) 1s evaluated using the new enviromment. The four other forms illuatrated

express conditional evaluation: 1f t2 then (CS) else CS), iteration: repeat CS},
. s é

sequential evaluation: begin (CS); ... ; (CS) end, and return of result: return t3.
The primitive operations used in Filgure 3-are:sr. -
new-cell -- cakes a single item and creates a new cell with that item
‘as its contents. The result ia the new cell.
contentd -- takes a:céll; the result ia the contents of the cell.
less~than -- takes two integers; the result is the logical item true

if the first integer is less than the second, otherwise the result

is the legical item false.

-17-
’ @' 8dd -- takes two integers; the result is the integer which 1is their
sum,
update -- takes a cell and any {tem 2nd makes the item the new contents

of the cell; no result 1g raturned.

In general, application of a functional requires two steps: First, the
identifiers of the functional must be bound to items. This is done through
repeated use of the bind primitive operation which creates from an existing
functional a new one whose environment has one more aggociation, Then the re-
sulting functional {s evaluated using the evaluate primitive, which causes a
hew activation to be set up consisting of the control gtructure and enviromment
of the functional and a record of "poaition of evaluation" in the control
Structure containing the evaluate primitive.

Evaluation of the new control structure proceeds until a return primitive
is reachedf The return specifies s list of items which become the results of

the evaluate primitive in the calling activation, and its evaluation is resumed.

Thus at any time, the position of the process 1s recorded by a stack of
partially-completed activations of functionals, When the atack becomes empty the
model 1s congidered ko have reached a final state.

Because the model is intended to support the creation of programs, it pro-
vides a means of translatihg representations of control structures into functionals
with no associations in their environments. The install primitive takes a control
structura representation, and yields a functional having no bindings in its en-
vironment.

In 2 programming system constructed using the Binding Model as a base, pro-

gram modules would be functionals of the Binding Model, Binding ia the means of

providing for uge of ome module by another. Functionals are self-sufficient, and
any set of them are compatible, Consequently, a programming aystem defined in

terms of the Binding Model satisfies our criteria for modularity.

-18-

The functionalg of the Bindin, el can exhipit 4 great variety of
behavior, Because several function 1ay have bindingg to shared Structures
¢ontaining cells, applicationg of Tunctionals can lead to camplex interactiong

that mzke: the behavior of a functi sna] difficult ro describe or undergtand.

in some Way that makesg their behavi oy eagier to characteriza. A convenient classg

of functionala are those whose behaviortcan be deacribed with no mention of time;

it will produce equivalent outpury. Such a functiong] 18 said to be Iepaatable.
Consider, for example, the functio | whose contropl structure is that Riven in
Fig. 3, and whose environment hag B0 and one bound tg @ and 1, respectively,
This functional hasg as input the Integer bound to n: irg Qutput ig gp integer
which is the sum of the integersg up to and including the integer bound to n.

This functional will alwayg yield the same output if invoked with the game lnput,
It i3 therefore Traepeatable,

A formal definition of repeatabilfty myge Bive precige meaning to "equivalent
inputs" ang "equivalent outputs" for gi11 items that MAY occur ag Inputs angd outputg
of functionala, including sheaves, cellg and functionals, To do this some
terminology ig necesgary,

An item ig said to directlz encloge any ftem to which an edge of the graph

by following zerq Or more edges of the graph starting at thar time. The clogure

of an {tem i3 the get of items which it encloges, Because the contents of 5

Structured items) may enclipge aelf-raferances. In additiun, a functiong]
‘E

e

¢

—
ly-]
Ind

sum be new-cell (zero} in

ll

—
]
ing

count be new-cell [zerg) in

re Eeat

II

p—

et tl1 be contents [count) in

t2 be legs-than {tl, n) in

Rl
Iz |
rt
ot
[)

t

|5

=

—

% 1
“r 124

t3 be contents {sum] in
t4 22 add {onej "tl} in
let €5 be add (t4, t3] 1

begin

count = t4;

ll
E

sum = t£5
end

alge let t3 be contents [sum} in

return t3
S—

Figure 3. Computing the sum of the first n integers,

20

may update cells encloaed by its input items, producing side-affects.

Moreover, a functional enclosed by an input item may be evaluated by the
functional receiving the input; it would seem that the functional Teceiving the
input should not be congidered nonrepeatable if its i1l behavior originates
from ill behavior of a functional enclosed in ies input,

It has proven possible to formulate a definition of repeatabilicy in rhe
Binding Model that agrees with our intuitions about repeatability. The necessary
concepts develop as follows:

First we define when two {tems (possibly in distinet Binding Model gtates)
are gimilar: Ttems x and ¥y are gimilar if there exists a relacion between the
closure of x and the closure of y under which: (1) items x and ¥y are related, and
(2) each pair of related items match, and, if they are structured, the corre-
gponding d{rectly enclosed 1items are related, and (3) the cells of the closures
of x and y are related One-to-one. This relation is gaid to establish that
items x and y are similar, It formalizes the idea that the closures of
"equivalent" items mst "look alike" and that the sharing patterns for cells
must be the same, Figure & shows some prairs of gimilar items.

One might suggest that a functional he called repeatcable if simf{lar inputs
produce gimilar outputs, However, this definition would fail to express our
intuition when side effects are presenc: Suppose a functional takes as inputs
two cells named a and b, and consider two cases: (1) cells a and b are distinct
and have the same integer 1 as their contents; and (2) cells a and b are the
same cell {not distimct items} which containg 1. Although the two sets of input
items are pairwiza similar, the behavior of the functional may be different, for
example, {f the funetional updates one of itg inputs,

This problem is remedied by using a generalized notion of similar thare

congiders the closures of 2ll input irems and output items jointly, We define

-21-~

(a) b)

L
e

"false’ "true""false” "true"
{c)

(d)
"true' false" " "true" ‘false”
1 2 i 112
4 4 4
y
(e} .
® fcar
||carll

Figure 4, Pairs of similar ftems.

a similarity to be a relation on sets A and B of items from two (poasibly
different) states; for each item x in A or B there must be an item vy in B

or A such that the relation establishes that x and y are gimilar., There are

no unrelated items in the domains of a similarity; and all pairs of related items
are established by the similarity to be similar,

A collection of named items is called a package. Inputs and outputs of
functionals can be viewed as pakcages by naming the items in the inputs with the
identifiere to which they are to be bound, and by naming the items in outputs
with the names "result-1," "result-2," and so forth. The notion of similar can
be extended to packages by demanding that a single relation exist which establishes
the similarity of correspendingly named items of two packages,

Two sets of items (the items of two packages, for example) are said to be

covered by a similarity, 1f the domains of the similarity contain, respectively,

the closures of the two sets of items. Let u and v be input packages ta a
functional f and let ¥ be a similarity - that covers u and v. If x and y are
output packages resulting from evaluation of f for input packages u and v,

and G is a similarity that covers {u, 2} and fv, vy}, then f is said to extend

the similarity of u and v. Thus we might consider a functional to bas repeatable
if it extends any similerity covering a pair of input packages to a gimilarity
that covers the input and corresponding output packages. But there is one mora
problem to be solved: We need a way to absolve a functional of regponsibility

for bad behavior originating from a nonrepeatable functional eﬁcloaed by an input
item. A natural condition to impose 1g that a functional have repeatable behavior
whenever all functionals enclosed by its input items are repeatable, However,
the paradoxes arising from the circularity of this definition (2 functional may

be enclosed by its own input) are difficult to counter.

-23=

We have taken the simpler approach of identifying a gimply characterized
class of functionals which avoids the circularity, A functional iz said to be
limited if its control Structure has no occurrences of the primitive operatora

new-key, identical and install. An item is said to be proper if each functional

it encloses ig limited. The proper functionals can be shown to extend
similarities that cover Proper inputs and cover the functional itself; under
these conditions the results yielded are also proper.

Thus our completed defizition of repeatable is: a functional ig repeatable

if it extends gimilarities on proper inputs. (Note that the functional to which

the definition is applied need not be covered by the similarity.) An immediate
consequence of the result stated in the previous paragraph is that proper
functionals which enclose no cells are repeatable. For example, the functional
constructed from the control structure represented in Fig. 3 by binding"ggzggg:i
and one ko the Integer items ¢ and 1 is proper and cell-free, Consequently it
iz repeatable.

Another clagg of specilally-behaved functionals are thoge which are repeatable
when viewed as functions from sequences of inputs to sequences of ocutputs. The
doctoral thesis [6] includes discussion of the intuitions and formalization of

this notion of "sequence-repeatability, '

-2

IIT. Data Flow Computer Architecture.

The concept of data flow opens up attractive new approaches to the
architecture of stored program computers. In lest yvear's report [9] we
described an unugual structure for a processor for the stream-oriented com-
putations that characterize a number of important signal processing applica-
tions such as waveform generation, modulation and filtering. Recently, w=
have discovered how the principles embodied in this Elementary Data Flow
Processor can be generalized and applied in a Basic Data Flow Processor that
impleﬁents conditional and iteration constructs and incorporates a two-level
physical memory hierarchy. Further development of these architectural concepts
to achieve an exact realization of a complete data flow language appears pos-
sible, and is i#e principal goal of our continuing research program in computet
architecture.

The Elementary Processor has the structure showm in Fig. 5. There are. .

four major sections:

Instruction Cells

Arbitration Network
Operation Units

Distribution Network

The sections communicate by packet transmission using omnly the channels shown
in the figure. Each instruction corresponds to an operator of the data flow
program, and resides in an Imstruction Cell awaiting arrival of its operands.

An instruction together with its operanda form an instruction packet that flows

through the Arbitration Network and is directed to an appropriate Operation Unit
according to the instruction's operation code. The regult values produced by
Operation Units are paired with destination addresses from the instruction to

form result packets that are sent through the pistribution Network to deliver

-25-

Qperation
. i
Units

@%sult fnstruction
packets packets

Distribution | , instruction | , | Arbitration

» »
Network . Cells * Network

Figure 5. The elementary data flow processor,

-26-

‘operand values to other instructions. Interestingly, the address fields of
instructions tell the processor where to deliver the results of an operation
instead of where to fetch operands. The Arbitration and Distribution Metworks
behave like sorting networks -- the former sorts Iinstruction packets by
operation code; the latter gorts result packets by destination addresa.
Petailed logic designs have been developed for each section of the Ele-
mentary Processor [4], and its per formance and applicability are being
analyzed to determine the desirability of constructing a prototype machine.
The Basic Data Flow Processor extends the language of the Elementary
Processor £o include déciders, baolean operitors; gates and merge nodés as
well as operators and links. The level of data flow language is precisely the
formal data flow schemas used in our theoretical studies, and corresponds
in expressive power to the formal while programs of Asheroft and Manna [1].
The structure of the Basic Processor is shown in Fig. 6. To handle dé- (-
cistons whose results are truth values, the Elementary Processor is augmented

with Decision Unita. The Decigion Units produce control packets congigting of

a truth value and a destination address which flow through the control network to
reach the Instruction Cell that containg the destination operand register.

At the Instruction Cell, the truth value is either a boolean operand if the
Cell repreaents a boolean operator, or the truth value instructe the cell to
accept or reject the next arriving data value. In this way the gating of op-
erand values ig incorporated into the Instruction Cells of the processor

In contrast with the Elementary Processor in which all instructions are
equally active, activity of a basic data flow program shifts among program parts
according to the outcomes of decigions, Thus it is na longer efficient to hold
all instructions of the data flow program in the Instruction Cells of i thee PFo=-
cessor. Accordingly, an Instruction Memory 1is included in the machine and the

Instruction Cells are organized to act as a cache, retaining the most active

-27-

Y

Operation
Units

Decision

Figure 6.

Distribution

Network

Control

Network

Units

H-‘“‘~hﬁ_~h

. Instruction

¢ " Cells

L

Arbitration

Network

e e
4 i

k

Instruction

Memory

/

Basic data flow processor with two-level memory.

-28-

inatructions of the data flow program.
The functional structure of the Basic Data-Flow Processor is degeribed
in a paper by Dennis and Misunas [5]. The Basic Processor demongtrates how

the Elementary Processor can be augmented with a decision capability and a

multi-level memory capability and i3 a significant step im generalizing the

concepts to a complete data flow language.

In doectoral reéé;r;h, James Rumﬁ#ugh [11] has expiﬁred a more direct ap-
proach to the design of a highly parallel machine for programs expressed in a
data flow representation equal in expressive power to the data flow procedure
language discussed in Dennis [3].. The machine has the structure shown in
Fig. 77. The principal working elements of the machine are the Activation
Processors, each of which 1s at any time given exclusive responsibility for
the progress of one activation of a data flow procedura. Since procedure
activations in these data flow programs have no side effects, distinct activa-
tions can always be executed simultaneously by separate activation processors
without need for synchronization. The Program Memory holds the coded Lext of
each procedure of a data flow program. The coded text defines the initial
contents of the local memory when an activation processor is assigned by the
Scheduler te 2 newly initiated procedure activation. The Swap Memory holds
Local Memory iﬁages of activations that have ceaged activity {are dormant) and
are awaiting completion of other activations invoked by apply instructions.

The Scheduler handles the allocation of Activation Processors to procedure
acktivations and the passing of argument and result valueg between -activatdonsz.
Assignment of an available processor is required when an Activation Processor
executes an apply instruction in its Cell/Ref Functional Unit, or an activation
terminates and the activation from which it was invoked i{s dormant. An Acti-

vation Erocessor {3 released for reassignment by the Scheduler only when the

29

l Activation Processor 1 -
-
o e Cali/Ret [. J
rogram oca FU -
K}.—_— ’ J =
Memory : Memory |
Swap Structure Scheduler
FU |l
Swap Net " Activation Processor 2
le— Call
._ . CaII/Ret |"
Memory) ' .L Lacal List
Memory
Structure
FU
Structure Controller
Structure , Structure
Mem) Allocator
Mt Structure Controller 2 —

—

channel type

queue: first in, First out

® request: calls and returns alternate

{> retrieval: a request that does not change
state of target module

Figure 7. Structure of a data flow machine.

=30~

procedure activation terminates (and its result value is returned to the
calling activation through the Scheduler), and when the activation becomes
dormant waiting for a return value. Since the number of invocations gen-
erated may exceed the number of activation processors, the Scheduler containg
a Call List of potential activations waiting for allocation of processors,

Data structures in the language of this machine are trees whose nodes
denote substructures, and such that the arcs emanating from any node are
labelled by a sequence of integers starting with 1. This is the same clags of
structured data cbject? uged in the Symbol machine [18). The basic operations

on data structureg are versions of the select and append operations diascussed

in Dennisr [3]. The select operation obrains the component. of a structure
indexed by a given integer; the append operation produces a new structured value
obtained by substituting a given value for a specified component of a given data
structure.

The data structures accessed during a procedure activation may be arbi-
trarily large, and cannot generally be held in the Local Memory of an Activation
Processor, Moreover, a large data structure may be accessible to several con-
current activations and it is best not ro make unnecessary copies. For these
reasong, data structures are held in a Structure Memory and accessed through
requests processed by Structure Controller units. Fach data atructure node is
represented in a segment in Structure Memory identified by a unique address;
thig address is the representation of a structured value in the Activation
Processors. The Structure Allocator unit controls the allocation of Structure
Memory locations to data structure nodes. Since rhe allowed operationg on data
structures do not permit existing data structures to be altered, formation of

cyclic data structures is impossible, and the reference count mechanigm can be

- =31-
used by the Structure Allocator to determine when segments of Structure Memory
become free.

The structure of an Activation Processor {3 shown in Fig. ‘8. The -

Local Memory consists of three parts: the Instruction Memory that holds the
instructions of the data flow procedure assigned to the processor; the Operand
Memory that holds values carried by the conceptnal tokens on the arcs of the

data flow procedure; and the Fnahle Memory that holds an enable count for each
instruction. The enable count is simply the number of remaining operand

values required before the instruction is enabled for execution. When the number
becomes O the instrucrion a2ddress is entered in the Activity Queue.

The Activity Queue, Decoder, Dispatcher, the several Functional (mits (FU),
and the Updater form a circular Pipeline gystem that can process many instructions
concurrently., The execution of each instruction involves one traverse of the
circuit. The Decoder takes an address from the Activity Queue and forms an
instruction packet by fetching the instruction from Instryuction Memory and the
operand values called for by the instruction from Operand Memory. The Dispatcher
delivers the instruction packet to the appropriate Functional Unit according to
the opcnde of the instruction. Tha Upé;ter receives each result value of instruc-
tion'executioﬁ'togethermﬁitﬁ the : address of the Operand'MEmory location which is the
degtination of the value, and the addresé of the instruction whose enable count
should be decremented. The Updater performs‘these actiong and notes whether
the successor instruction has become enabled (ull operands present -- epable count
zero), If sa, the instruction address is entered in the Activity Queue.

The number of concurrent activities in an Activation Processor is initially 1,
increases with execution of a wye instruction which produces two result values
that are copiles of its single operand, and decreases when two results become

operands for ome instruetion, for example, the add instruction. The Activity

-32-

"10663201d UOTITATIOR UR IO 2JINIINILG ‘g 2814

T

way ajgeuy

Kiowapy r

puesadpy

Rljeiuoy amonng | 19|npayog -
L
punen
Auanoy
e 19y nd nid
PNg pnng eo 19y
¥
n4d PPY — n4d _..—Q_mm@@n_) 0:@30
Ananoy
Y
J8yojedsig - JjapolaeQ

Aiowsia

uoroNIsu|

AIowBy B30T

-33-

Counter maintains this count of activities on the basis of gsignala from the
Updater, the Wye Functional Unit and the Structure Functional Unit which
handles wye instructions with structured operand values. An apply instruction
(which calls for initiation of a new procedure activation) is procesged by the
Call/Ret Functional Unit. Since the. new activation may run a/long time before
terminating, the activity count is decremented at initiation and incremented
at termination,

An activity count of zero means that either the activation has terminated,
or the activation is dormant pending termination of an inferior activation.

In eithar case the Scheduler is notified that the Activatien Processor is
available for reallocation. TIn the case of termination, the Scheduler re-
allocates the calling activation to an available Activation Processor if it ig
dormant, and passes the returned value to its Call/Ret Unit.

All instructions that access or operate on structured values are passed to
a Structure Controller for execution. Thig is done so that correct reference
counts can be maintained. In particular, a wye ingtruction for a structured

value must increment the associated reference count,

-34-

References

1. Ashcroft, E., and Z. Manna. The translation of 'go to' programs to
'while' programs. Information Proceesing 71, North-Holland Publishing
Co., Ameterdam 1972, 250-255,

2. Birkoff, G., and J. D. Lipson. Heterogeneous algebras. Jd. of Combinatorial
Theory 8 (1970), 115-133.

3. Denniz, J. B, First Version of a Date Flow PtocedyP& Language.

Computation Structures Croup Memo 93-1, Project MAC, M.I.T., August 1974,

.. Dennig, J. B., and D. P. Misunas. A computer architecture For highly
parallel signal processing. Proceedings of the ACM 1974 National Confer-
ence, ACM, New York, November 1974, 402-409.

5. Dennis, J. B,, and D. P. Misunas. A preliminary architecture for g basic
data flow processor. Proceedings of the Second Annual Symposium on Computer
Architecture, IEEE, New York, January 1975, 126-132,

6. Hendersoen, D. A,, Jr. The Binding Model: A Semantic Base for Modular Pro-
gramming Systems. Project MAC Technical Report, M.I.T., forthcoming.

7. Hoate,"C. A. R., Procedures and parameters: an axiomatic approach.
Symposium on Semantics of Algorithmic Languages (E. Engeler, Ed.), Lecture
Notes in Mathematics 188, Springer-Verlag, 1971, 102-116.

8. Ttakov, B, A Note on CLU. Computation Structures Group Memo 112,
Project MAC, M.I.T., November 1974.

9. Progress Report 1872-19732- IPR3X, PProdect. MAC, iMiT1T. 5777,

10. Richards, H., Jr,, and C. Wright, Jr. Introduction to the SYMBOL-2R pPrO-

gramming language. Proceedings of a o5ium on High-Level-Language
Computer Architecture, STGPLAN Notices 8, 11 (November 1973), .27-33

t1. Rumbaugh, J. E. A Parallel Distributed Machine Architeckyre for a Data

Flow Base Language. FPh.D Thesis, Department of Electrical Engineering,

M.I.T., in preparation.

12. Zilles, S. N. Date Algebra: A Specification Technique for Data Structures.

Ph.D Thesis, Department of Electrical Engineering, M.I.T., in preparation.

