MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo 131

An Example of Programming With Abstract Data Types
by

Jack B. Dennis

(A paper published in SIGPLAN Notices, Special Issue
on Programming Language Design, July 1975)

This redearch was supported by the Advanced Research
Projects Agency of the Department of Defense and wag
monitored by the Office of Naval Research under con-
tract number NOO0l4-75-C-0661,

September 1975

SIGPLAN Notices 25 1975 July

An Example of Programming With Abstract Data Types

"Jack B. Dennis
Massachusetts Tnstitute of Technology
Cambridge, Massachusetts

Concepts of goed program Structure can and should be reflected in the
design of prograrming languages, Thus we have two criteria for use by lan-
guage designers: First, work in the area of formal proof of Program correctness

the programmer may expresg a problem solution -- ip particular, the data types
of the language should provide a convenient mateh to the abgtractions of the
problem. A programming language should provide tools for building abstractions
that are natural for the .problem at hand,

These two design criteria are being applied to the concept of data type in

the design of the programming language CLU being developed by Professor Liskov
and colleagues at MITfl] :

L would like to show how the concept of abstract data type ~- ag realized
in CLU -- can simplify the construction of provably correet programs. To thig
end we will consider the development of a Program by 'stepwise refinement" in
PASCAL and in CLU. The problem to be golved is the séquence problem studied by
Niklaus wirth[2]:

On the ser containing the integers 1, 2 and 3, construct a sequence’ of
length N containing no adjacent equal subsequences,

The strategy of solution is to generate a series of candidare sequences such that:
= Every sequence thar could be a Good Bequence is generated.
= It is easy to check that a candidate is a Good sequence.

We start with an inirial candidate =- the empty sequence -- and form new candi-
dates (Figure 1) by means of two operatlons: Extend and Change,

* (empty))E *121 SE
* 1)E 1211 J c
11
Je 3
® 12)E_ :
E - Extend

* Good sequence Change

Figure 1. Comnstructlon of candidates,.

SIGPLAN Notices

26 1975 July

- "Extend" appends a 'l' to a candidate

= "Change" increments the last element:
(If the last element is '3', it is deleted and "Change" is applied to
the truncated sequence,) :

Since a Good candidate cannot be formed by extending a not CGood candidate,
"Extend” is only applied to Good candidates -- those marked by an asterisgk,
Testing that a new candidate is Good only requires testing for adjacent equal
subsequences that include the last element.

The first version of a solution expressed as a Pagcal function {s:
function generate(N: integer):

var L: 0...N; good: boolean ;

var X: "Candidate";

begin L := 0; good := true;
repéat if good then "Extend X"
else "Change X";
good ;= "X Checks";
until good and (L = N);
generate := X
end
The integer "L" keeps track of the length of the candidate "X"; the boolean

"good" indicates whether "X" denotes a Good Sequence. In this version, the*
representation for a "Candidate" ig.not specified and the operations Extend,

‘Change, and Check remain to be elaborated.

The second version refleces the decision to represent the current candidate

- by an array of integers.

function generate (N: integer):

var L: 0..N; good: boolean;

¥ar X: array [1,.8] of integer;
[procedure declarations]

begin L := 0; good := true;
repeat if good then extend else change;
check ’ -
tntil good and (L =),
generate :m X:

[«
=
L

|

SIGPLAN Notices 27 1975 July

Corresp0ndingly, the abstract operationg are implemented as Pascal procedures,
This methodology of refinement has some drawbacks :

= In the process of refinement fmportant information about structure
is lost, .

- The relevance of the variables "L" and "good™ to the operations on
candidates is not evident from the program text,

In CLU, stepwige refinement starts with a top~level program written in
terms of operations on an abstract data type “"candidate",

generate = procedure (N; integer) returns (candidate);

X: candidate := candidateSinitial ();
repeat if candidatejcheck (X)
Eggg'candidate$extendtx)
else candidate$change (X)
until (candidateslength(x) =N} & candidate$check (X);
return (X);

end generate;

The operations are:
Initial create the initifal candidare

Extend :} generate all acceptable candidates

Change
Check check if a Good candidate
Length yvields the number of elements aof a candidate

The next step {s to imglement the "candidate" data type by writing a sep-
arate program module called a clugter. The pracedure module "generate' ig not
changed. The header of the cluster (Figure 2) indicateg that “"candidate" 1g
the name of the abstrract data type implemented by the ¢luster, and that operations
initial, extend, change, check and length are defined on objects of the abgtract
type. The next line stateg that the data type "saq" (sequence) has been chosen
as the representation for candidates. The operations of the candidate cluster are
wWritten in terms of tha operations on objects of type sequence:

= Initial returns the empty sequence,

~ Extend appends g "1,

The special symbol evt (convert) means the nbjeét passed is of abstract type out-
side, and of the Tepresenting type inside the operation, '

SIGPLAN Notices ' 78 1975 July

candidate = cluster is initial, extend, change, check, length;

rep = seq;
initial = oper O returns(cvt); check = oper(x: cvt) returna {boolean);
return (seq$empty (}); , good: boolean := true;
end infitial; ' ' L: integer := seqS$length(x):
. i: integer := 1;
extend = 9_29!_(3:: ﬂ;_): Hh.uﬂ gﬂod L (2*1 < L) .d_o
seq$append (x, 1); begin pood := deqdequal {
return; : seqisub(x, L - 2%1 + 1, L, - 1),
end extend; ' seqfsub(x, L - £ + 1, L));
' L i=1+1
change = gper(x: cvt); end:
clid,
repeat begin return good;
n := seq¥last{x); end check;
ink
seqdshrink(x) length = oper (x: cvt) returns (integer);
end

, xeturn(seqdlength (x));
until ' v(n=3);
— end length;
seq$append(x,n+l);

return; end candidate;

end change;
Flgure 2. The candidate cluster.

The representing type, sequenced, 1s another abstract data type. Since it is
not a basic data type in CLU, it must be implemented by a second separately
written cluster,

seq = cluster is empty, last, sppend, shrink,
8ud, length, equal;

Lep = array of integer;
empty = oper () returns (cvt);
append = gper(s: eve; i: integer)
last = oper(s: cvt) returns (lnteger)

SIGPLAN Notices ' 29 1975 July

As shown,; thia clugter might use an array of integers to represent a
Sequence, and would then contain the definition of the operations empty, ap-
pend, etc, as manipulations of arrays.

Thus, we have solved the Séquence problem using a hierarchy of data
types: candidates; gequences; arrays. The torrectness of each module of the
program may be established independently:

= Procedure generate -- This is proved on the basis of its text and the
behavioral properties of candidates,

= The properties of candidates are proved from the text of the candidate
cluster using the properties (or axioms) of sequences,

~ Similarly, the properties of gequences are derived from the properties
of arrays using the text of the seq cluster.

Some examples of assertions about candidates for use in proving generate
are given below. We have abbreviated the Oparations on candidates uging T for
Initial, E for Extend, C for Change and T for Check. Good i3 the property that
a candidate containg no adjacent equal subsequences. Reach is the property that
2 candidate is generated by a series of E's and C's,

1. Gooed(1): Reach (1)
Good(E(x)) implies Reach(E(x))

2. Reach(x) implies
Reach{C(x)) ¢

Good (E(x)) iff T(E{x))

("]
.

Reach (x) impliea i
Good (C(x)) 1fF T(C{x))

4. Good(x) implies Reach (x)

Asgertion (1) gtates that the tnitrial candidate is both reachable and good,
Assertion (2) characterizes those candidates that are reachable. Assertion (3}
States the sufficiency of Check-ing to establigh Goodness of candidates formed
using Extend and Change, and (4) states that no Good candidate will be overlooked.

Thus a language that Supports the concept of abstrack data type improves the
clarity of the completed program. It also provides a basis for hierarchical
pProof of correctress.

Features to support abstract data types are a strong candidate for incly-
sion in future programming languages.

Referencas

(1] Liskov, Barbara, "A Note bn CLU," Computation Structures Group Memo 112,
MIT Project MAC, Cambridge, Mass., November, 197k,

[2] wirtn, Niklaus. Systematic Programming: an Introduction. Prentice~Hall, 1973.

