LABORATORY FOR MASSACHUSETTS
INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

e)

Implementation Schemes for Data Flow Procedures

Computation Structures Group Memo 138-1
May 1976
(revised February 1977)

Glen Seth Miranker

This research was supported in part by the National Science Foundation under grant
DCR75-04060.

— | | J

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

1.
2.
3.

5.

5.
6.
7.
a.
9.

Contents

Intl‘ﬂdﬁctlnn....-...-....-.-.........

2

Procedura Invocation and Activation Newes. « .« « » « « « « = « 3

.HOPBEIIbur‘atGScMIOI.. S F 4 4 % B 8 ¥ P E B W B e # w u m

R-Inc;tidnaouﬂavlaitnd...................
Nomes and Loading. = « « & 4 4 4 ¢ ¢ o ¢ o o s e s v v o o «
One Last Change. . + & =« ¢ & &+ = ¢ o o a o 2 2 s o o = o s »
Pracadure Veriables and Acknouladge Signals.
Corrictnan.'......‘..................

comlu.'nnl L] - L] - - - a * - * - - - ” - - L} - L] - - - - L} L4

11
22

.23

26
27

29
31

1. Introduction
7 Oats flow schemas have proved to be an effective model of parallel
computation ([18). Important questions sbout parelisl computations such as
determinacy and proper termination h§vn basn shoun to he ensuerable for data
flow schemas by straightforuard syntactic analysies on the schemata thamselves
(171, (251, 1121. Furthermore, the translatabl|ity of 'high‘ lavel® block
structurad language into dats flow language is feanible [1]1. Thus an enceding
of data fiow schemas would appesr to be a suitable base language for a |
parallal processor, since such @ processor wouid then be abis ta smecute
parallel programs that have all the desirable characteristics of this class of
program achanas:
1. High degree of parallellsw
2. Syntactic tests for detsrminacy
3. Generality - graat exprassive pousr
4. Translatability - Though no practical transiator from a
high level language to data fiow has baen bullt, ceartainiy
the feasibllity of such tranelation proceduras has been
denonstrated. (25]
5. Modularity
Some encouraging preliminary work has besn dona toward the design of a
data flou procassor (4] [B]. However, impiementation of certain faatﬁran of
the bawe |anguage have proven difficult. Procedure application has basn a
particularly thorny probiem. The basic difficulty with procedurs invocatl_o'n
on current data fiou machines ia that the encoding of the schewas sxecuted bu
the machines are inherentiy impure. That is for mach acter in the schema the
data values on their input arcs are stored ulth the actor itself.
Consequently, establishment of a procedure’s activation reguires not aimply’

creating a unique data area for the activation, but actually setting up a new

3

copy of the.codc. The problem is further cowplicatad by the fact that
computatichs ineluding distinct activations (such as those arising from
recusive calls} of a glven procedurs proceed in paraiiel. Several
implamentation schesss for procedurs are presented below. The discuesion to
follon assumes that the reader Is familiar with the data flon language, [7] as
uell as the basic data flow processor (5]. Thie processor uill be modi fied
slightly to accomodate procedure invecation. This particular machine was
chosen because it is representative of the class of data flow processors
currently being studied in the Computation Structurss Group at M I T,
Furthermors, of the machines In this class it ln the simplest processar with
sufficient powsr to support the implamentation scheme for proceduras ectlvatlpn
to be dascribed. Also the ideas prasentad below are directiy applicabie to
the most advanced data flow procassor currently proposed [20]. In order ro
handie procedures we must add one more part tﬁ the virtual! memory system of

4

the machine - a relscerion box.

2. Procedure Invocation and Activation Names

There are several ways of invoking a procedure in data fiow language

that are consistent with the data flow model. The simpiest method |s a single
argument APPLY actor: '

4

The effect of APPLY P s simply described. Uhen a data token & arrives on ,t'hc
input arc a copy of the data flou graph for P ia made and « is absorbed from
the the Input arc of N and a copy is placed on the ocutput arc of the input
tink of procedure P. As each of the k outputes for this activation of P e
produced, it is passed from |ts output link to the corresponding output link
of the APPLY and hence to a successor cell of N. fFur- convenience 1n
discussion, sach call in a& data fiow program is assumed to have a name,
indicated next to the cell In figures as <name>:. Tha .nm of an actor .ls
actually used In the data flow processor to identlfy it. For example, to routs
Ir._nult Pachets to It or ta retrieve it from wemory.) To be syntactically
correct, P must have one input Iink, and k output |inke.

The structurs of the machine to be used for the follouwing
inplementation of single argument/single output APPLY ls similar to that
desrcibed in [5]. In particular, the mechine which is shoun in figure
2 has a tuo level memory structure. The IM functioning as a cache for

the cella of the program storsd in tha PMS.

{DISTRIBUTION
NETHORK

~

L]

FUNCTIONAL
UNIT
)
. .
»
FUNCTIONAL ¢
UNIT '
INSTRUCTION y
KEMORY . | ARBITRATION
nc CELLS NETHORK
| | /
| e n & r—_ 'ﬁ . & B

RELOCATION
BOX

PACKEY
NMENMORY
SYSTEM

Figure 2

CONTROL

NETHORK

Machine With Procedura Capability

Anticipating mechaniems to be propossd later, soms of the functions of
the relscation box uill be described, It is assumed that every actor in & data
tlou program as represented in the processar has a unigue cell name sxcept for
APPLY actors. Further, during the courss of execution (uhers and how mill be
described later) a cell name may hava a suffix appended to It - these suffixes
uill serva to diltinﬁulsh procedurs activations. At.anu instant during the
exscution of a prograw thers will be & ons to ocne correspondence betusen
suffives and procedure activation. In the following discussion ue will
separate a cell nams from & suffin by a *.". The relocation box’s opsration

ts quite simple. Upon receipt of & feteh packet from the memory control natuork:
ftetch;, a.e¢}

It passas the packet:

[f.tﬂhc .‘) 4

to the packat memory system. MWhen cell & is returned by the packet mMemory
system to the relocation box, ail the names in its destination fields are
changed to have sutthe . (Null suffives are g¢llowable.} The relocation bex
then passes the call back throdgh the nennbg contral netucrk to the
instruction mewory. Finally, it is assumed that with the sole exception of
the relocation box and one special functional unit, no other component of the
data flow processor of figure 2 can distinguish if a cel! name has a auffix
appendad or not. Thai is, 1¢ the distribution netuork for exampie, reéalvu a
packet with a destination cell name %.¢ it sende a resuit packet to call ee
{the dot seperating the name from the suffix is included werely as an aid to

the reader’s eye). The essential idea is that a compiste cell name (}.e. a

cel! name plus an appendad suffix, which ua refsr to as an sxecuidom neame) s
treated everyuhere but the relocation box and the distinguished functional
unit as a single entity - a cat| designation,

To simpiify the discussion, a cell inage will be represented as: -

opcode
Oprregy dastreg,

OpIreg, _dutrunl

ARG tialde . . DEST fieids

oprreg, | destrag,

Cell Representation
Figure 3

Thus we temporarily Ignore the fiued number of ARG and DEST flelds of 3 cell.
The APPLY cell in particular has the format shown in figure &,

operator
TN APPLY

field to hold procedure ——+ P DEST.Q dastination cell namas

entry cell name | empty NI (shoun uith suffixes
- _/ notused | NULL. appended)
registar for operand

An Apply Cell

Figure 4
The iaplementation of a single input-single output AFPLY actor is straight
foruard. When the operand a arrivas, the APPLY becomes enab:led, and tranem!lts
the follouing packet:
(APPLY, P, e, DEST.Q, NULL.Q, MX.L.Q)

which the arbitration natuork routes to the speclal functional unit that
- processes applies and raturns. The functional unit on receipt of an apply
operation pocket creates a unigue suftin ¢ and then outputs tuo packets;

lw, P.e} and (DEST.Q, RAT.e}

Packets Creating & Neu Activation .
Figura 5

(Every packet sant to a cell must aleo contain fleld addrasses, that is
spec|ticatians of which regleter in & cell Is to recelve the valus{s) conveyed
by the packet. These will not be explicitiy represented in the diagrams since
it should ba clear from the context which register of a cell Is supposed to
receive.uhich value. Legving out the field addrese uil! make the diagroms @
bit less detailed aﬁd hance less confusing.} _

The firat packet arriving at ths instruction memory causes the cach-
mechaniam of thc instruction memory to retrieve from the packet wemory system
8 cell with name P.¢. (Since « 18 unigue sutfin, cell P.e can't posaibly have
been in ths instruction memory.} Ous to the action of the refocation box, & -
copy of cell P will be retrieved and all its destinstion tields given the
suffix ». Once the cell P.e is succesafully installed in the instruction
wemory, actor P.s will then recelive its operand a, and buconﬁ enablead.
Whatever computation is specified by P {the first actor of the invoked
procedure) will be carrled cut and the resulting values Will be in packets
‘destined for cells Og.e, Dyoe . . . Dy¢ uhore O, . . . D, are the contents of
tﬁ. destination fialda of P. Clearly Dp.r . . . Oy e uill not be found in

instruction memory and witl be fntchcd. from the packst memory system in the
manner described above for P.s. And so exscution of the ¢™ activation of P
proceeds.

Te return the value .culputed by P ue ansume that all procﬁduru are
complled so that their output valus le to be sent to a csll named RT, which is
@ reserved cell name. That is, rather that having an output link, programs are
compiled to have a {uni formly named) output cell. This convention coupled
With the uay returns (as outlined below! are handlad, allou data flow programs

to be compiled independently of each other, and loaded into the packet mewory

9

system uithout altering any of the return dastination fields. Further, it s

assumed that resident in the packet memory system is a call of the forms

RT:
opcods ———— —E_T .
register to hold return——u» | aapt NULL

value ampty L
to hold destimation of/ notused | NULL
return value

Aeturn Call
Figure 6

that belongs to no procedure {i.e. it is 3 runtime esupport celli), [t Wil be
retrieved by the second packet generated by the functional unit as a result of
the APPLY cell firing (see figure 5) and be rasident in the inatruction mewory
In the form

RT.#:

RET
57.Q NULL. s

smpt MLL.»
! nnttﬁzd NOLL. ¢]

Return Call In IM
Figure 7

Hith thes abuve-mentioned compilsr convention, when ewscution of the
procedure is complete the fol lowing packat mill be sent by the functional
units

i, RT.¢}
{uhere @ is the output value of the ¢ activation of P).

Thus RT.e uill be enabled and create the packst:
{RET, DEST.Q, 7, MAL, NULL.e, MLL.s, NULL. ¢}

Hhich is sent to the approprliate function unit. This FU will then output the

packat:

i, DEST.QL

10

thus sending the rasult of the ¢ activation of P in the correct destination
ceil. It aiso returns ¢ to the list of fres unique suffixes, and outputs the

pachket:
{e, IM

which causes

1. Every cell en-cached in the IM uith a name having a suffix of ¢ |
purged.

2. All store, and fetch packets uwith a name With a ¢ suffix are
destroyed.

These {ast tuo "cleanup" actions are necessary to prevent unecesearily tying
up of pracessor resources. To sss why this (s the case, lst us consider a

specific esxample. Suppose a procedurs terminates and the suffix ¢ ia returned
to the fres pool, but the IN is not cleared. Then in genaral thera uili still

be cells left in the memory with suffix v. [¢ ¢ is reused for another

' procedure activation, then

1. [the new activation is another instance of the eame procedurs as the
ald activation, then a cell left in the IM may be referenced again.
This Is airight provicded the DFL procedure of uhich the cell was
part of |s uell bahaved. For if this is the case, the cel! will ba
in its original atate and hence reusible,

2. It the neu activation is of a different procedure than the pravious
ues of o, the cell must not be used, since in gsneral, it will not
be an appropriate encoding. One cam ensure that the cell is not used
by requiring the sets of names associated with procedure encodings
to ba disjoint. Houever, if the {oid) cell is dispiaced from the IM

to the PMS to make room for another cel), we have juat uasted a PMS
wmemory location,

This procedura appliication schume has ssveral attractions. First It
is simple. Overhead in terms of storage, or extra packets in the system, is

almost zero. Few changes need to be made to the basic data fiew prnccnor,'

and those that are necessary are incorporated in 3 smooth and natural way.

11

Aleo, notice that in this schems the entire procedure is not copled, just the
Piecas of 1t as they become active, This is an impor tant characteristic
aspecially for programs with conditional constructs. For thase programs, the
amount of processing activity is not unlform over all program actors. [n
particular the predicate of a conditional schema I, uill salact I-ith-r the
"true" or "false" subgraph of O. It will never be the cass that both
subgraphs {of a given activation) sxecuts. Thus to Inaci both of them into the
instruction memory is wasteful of instruction wemory space and wmemory control
‘ngtuork bandwidth. Finally, procedures are compiled nﬁ differantiy than

' programs, thus allowing {without racempilation) the use of any data flou

program as a data flow procedure. This will be discussed at greater length In

scct'iun 7.

3. More Elaborate Schemes. .

The primary deficiency of this schems is that it implements a rather
primitivea form fo the APPLY actor - only one Input and one output. [f this
inplementation of procedurs call was incorporated in the data flom processor
with structures outlined in O, Mlsunas' masters thesia then this deficiency
would not be so bad since then multiple input values and multiple output
values could then be encoded aes structures (21]. However, this form of
procedure invocation is undesirabie becauss it |imits the degree of
parallelism achievabla., After all, thers is no inherent reason to raturn all
the outputs of a procedure simul tanecusly. [f o procedure produces k outputs,
to wait for all of them to ba computed, asssmble them into a structure, return

the atructurs to ths call ing routine, disassemble the structure, and than use

12

the reaulting k components, restricts the amount of concurrency achievable in
8 program.” 1t also incurs the overhasd of assembly and dlssassembly of
structures. One would {(ideailyl iike to pass sach of the k gutput values to
its destination in the calling procedure as it is generated.

Similarly, one would Jike to have multi-argument functlons. Passing
an £ component structure uith the 4 argument valuse to a procedure as |ts
components is undesirable. Again thers is a toas of pacalleiion. A particular
subgraph of the data flow procedure may rnﬁuiru only a subast of the £ input .
values to start executim.l Thu-i to Inhibit paseing of any argument valuse to
tha procsdura until all of them are gvailable, seriousty limits the achlaublo
lavel of concurrency. This vieu of the desired operation af the AFPLY actor
(i.e. as scon as an input vailue is available copy the procedurs and begin
anecutlon.. and pass sach of the outputs ta the calling procedurs as soon as .
they are available) is sometimes referrad to a procedure application (which ue
calind the immediate copy rulel, Some workers [25] regard this kind of
behaviour for the APPLY actor as undesirable. They claim that even for multi-
input/mul ti-output actors, one should wait for all inputs, then start the
computation, wait until all the outputs are produced, and then pass them all
simul taneoualy to the successor cells of ths APPLY. This operation of tha
apply actor (which we called the deferred copy ruls} |s known as procedure

call. The “ssmantic” distinction betusen these tuo forms of procedure

. invocation as discusaed in chapter tuwo is rather strikjng.

_ Firat we consider single input/multiple output procedures with
immediate copy. Inatead of having a single "floating" RETurn cell in the
packet memory system, thers are] return actors with names ATy through RT. in

the packet memory system again belonglng to no routine, (] is assumed to be

13

the maximum number of return values supported by the compiler. Nots that the
limit on J is not due to the processor, but g compiler limitation,) Again 1t
te assumed that every k output procedure Il is compiled to send its cutput
values to cells named RTg . . . AT, which are not included as part of the
procedurs aa'it is storad in the packet memory system:

I

Procedure uith Iapticit Return Structurs
Figure 8 .

The format of each return actor ie precisely as in figure 8. The

APPLY actor is a bit differant, housver:

. _APPLY
procedures 1™ cell name —— [P OEST, .0 |
OEST, .10

. empty
ragister to hoid arg./” natused | UeSi,.0

otused | DESTy .0

Muftiple Output Appty Cell
Figure 9

(Extending the scheme for APPLY In immediate copy procedure invocation
where the number of destinations k is too large to fit in a cell, 1a
straightforhar-d and its details obscure the mamential features of the msthod.

Conseguentiy it is omitted. The curious reader who Hishes to develop this

14

extension 1s asked to conslder using an APPLYContinued cell which the apply
.. functionalunit fetches after executing an "obess® APPLY to complete setup af
the return mechanism. In the follouing discussion we witl ignore the
limitations on the nusber of inputs and outputs of APPLY actors Imposed by the
fixed number of ARG and DEST registera. The APPLY, upon receipt of a (the

input value}, becomes enabled and outputs the packet:
{MY. P' .. mI-| ESTO-Q' [ESTIUQ. ESTz.Q. LI T) EsTh_luu’

analogous to the previously described schess. The apply funtlional unit
creates {k+l) packets nous

{.. P"l an blfOI‘O and IESTOIQ' RTOI'I. mn.u. RTII" ‘aaa mrkou' HT‘-'O'}

Figurae 18
The first packet above initiates procedure exscution as describad In the
) single input/single output apply. Each of the other packets (in & manner

entirely analagous to the single output schems) causes the call_

RTP'S

RET
-EST]; u “.I_La r

supt NOCCC v |
[note tused | NOLL. ¢

Figure 11

(for the (j+1}* packet sent by the apply funetional unit) to be loaded inte
tha instruction memory,

When the ™ output value %; |s computed it witl (by compiler
convention) be sent to cell RT,. In preciseiy the the some Hay as in the

single output schems, then the O™ ectivation of DEST, will receive 8 as

15

required. Houever, the apply functional unit may not free the activation name:
* Bince In general activation « is not tinlshed,
To allou freeing of activation nanes we [ntroduce a neu cell type

FREE. Consider the examplia below:

| FREE |-
ampty [NULL,s

empty | NOLL.&] -
empty | NL.+

Multiple Dutput Return Mechinism
' Figura 12

FREE should not be avaiiabls te the programmer. [t is 2 "runtime" support
actor which allous proper activation nams maintenance. This new actor has
been introduced {just Iike RETurn actors) as a convenisnt way of shouing hou a
procedurs call and return is implemented. It is mot an addition to BL, but
merely a way of presenting the details of the cali-raturn mechanism that
preserves a one t0 ana correspondance bstueen cells and actors.

The FREE cef! is enabled when all the cutput values of the i
activation of Il is finished since thses are ths values that comprise |te
arguments. It cutputs a packet:

[FREEI aol nll nzo ey “.l.L.'r. 'M.I.L.l'.. . M‘.Ln‘l

16

- vhich is foutad to tha functional unit that handles APPLY-RETurn. Upon receipt
of this packet the functional unit fress the ectivation name ¢ and outputs the
e, IN} packet as bafore. The reader should notice that unlike the RETurn
cells, the FREE cell is explicltly included as part of the procedure
application wechinism. This save us the trouble of dat-rnlni‘ng at runtime the
number of values the FREE cel | must receive before bscoming enabled. [t -aﬁ be
objected that eince the RETurn ceils are not part of the procedure that the
RETurn actors have no way to "know" uhat the nams of the FREE cell is.
Consequently, they cannot send result vélues to It. Thia is indeed a bug in
the above schems. The fix s rather simple houever. Briefly, ws simply send
fwo destination names to the RETurn actors at runtime - the name of the cell
that is to receive a result of the pracedure call, and the name of the FREE
cell. Rather than describe this ailteration in greater detail we wil! present a
more¢ olaborate procedure Iupluentétlon schans which explicitly addresses thia
prob|em. ‘

e a'rs final ly ready to attack impiementation of the Immediate copy
rule for multiples input-multiple output APPLY. fh- naive approach {in tha
context of the pﬁuvlnua discussion} is simply to have | apply cells for & }
input APPLY actor sach receiving one argument valuet

' APt

APPLY

. Pi
regiater to hold arg, .———y empty
Inotuud

APPLY Cell for Multiple Input APPLY
Figure 13

4

Atl fiside are as In figure 9 except P, is the j™ input link of procedure P.
The compiler is assumsd to write "code” to send the j™ argument value to cell

AP;. This wethod hae several liabitities. One is agsthetic - a single data

17

flou program actor maps .into saveral cells. (] believe this to be unavaidable
with the current view of cell operation. Presently, in order to keep the
awount of state information required for correct cell operation, a cell is
only enabled when all of its input values are presant - not just some subset
of them.) The other im that it does not u;:r-k. For each cell AP, the functional
unit Will assign a nen activation name. This condition will guarantes
incorrect operation for all but the most cnnfrived-progran. Even (f this
could somenou be patched, there is glso no mechanism for correctly returning
output values asince mach cali AP would cause a new set of RETurn cells to be
fetched.

To circumvent thasa difficulties, we need to guarantes that for each
set of input values to a particular APPLY only the first argument value causes
generation of a packet which causes the functional unit to create a new
activation name. Furthermore, ue must make certaln that the other argument
values that are sent to the APPLY actor are all paesed to the mame pracod'ur-e
activation as the first. Finally, we must be sure only one return mechanism is
set up, To do this we introduce a new actor which we call SEQ (for sequence)

it has £ inputs and £ outpute;

o SEQ
ampty EESEL

empty DEST,, |

ha SEQ Cell
Figura 14

Its operation is simple. Upon receipt af any one of its inputé. say on input

arc }, it produces an output value uhich is a dniqun suffix name. This value

18

is then passed cut on each of SEQ"s output arcs. No further action is taken
until tokens arrive on inputs 8,2, . . . J-1,j+1, . . . 2-1. When this atate
occurs, ons token on each of the input arce | (i » j) |s absorbed and no
output token is produced. The actor (and cell) then return to the initial
state anc the sbove action is repeated. For exawp!s: |

JeleRololehc¥e
elelefereleke)

Notice that while the times at which outputs are produced are qulte unusual

=0==

SEN Actor Firing ﬂule
Figure 15

compared to the other data flow actors, only one output is produced for each
set of £ input values. Again as with the FREE actor, SEQ is introduced as a
notational convenience to help axplain {in terms of data flow actors) hew the
activation name schems is maintained and to provide a more direct
corraspondence betueen data flow program actors and celis. 1t should not be
regarded as pert of the data flow tanguage. Hence it is not available to the
programmer and its effect is completely transparent. The compilter which must
necessarily be aware of the details of implementation makee use of them

houever. We implement an £ input k output immediate copy APPLY as:

13

— |

Procedure Call Mechanism
Figure 16

The £ input APPLY actor nou iaps into £ APPLY cells of the form in figure 13
except that they have NULL destination field, and the third argument field i»
used to hold a suffix name. SEQ and FREE actors are added to malintain
activation names, and RET actors to handle return values. Houever, at the
"'_suurce" tevel all the user is auare of is that he is .uaing a single actor, an
£ Input/k output imeadiate copy APPLY. To see how this all works, let us
suppase that the Q™ activation of some procedure produces the ii* argument o
for an application of II, whers Il has £ inputs and k outputs. For
concreteness, ue depict the case of 4 « 2, k = 3 in the figures.

The compiler uill have gansrated code so that the actor that produces

the value o has as Its destinations the calis AP; and S0. Thus the packets:

28
(e, AP.O} and le, S0.0
Figure 17

Will ba produced. These will cause the following tuo cells to be fetched into

the inatructlon. meROryt

N’pn! m.a' '- —
— APPLY SE0
P, MULL.QD empty APp.(
onp iy ROCL. ompty AFDT
o NOCL. O empty AFW!EIT
Figure 18

wherse we have depicted the cealle corresponding to celfs AP, and SO just before
the argument packets of figure 17 have been daliversd. 50 is nou enabied and
will genarate the packet:

iSEQ,. . . & . . ., AP.0Q, AP).0Q, APR.O}
_ Hhich ia routed to the appiy functional unit. This functional unit nutput'- the

packstsy
tr, APp.0J, s, AP,.O}, and le, APA.OI,

Figure 18
The packeti
fe, AP0}
uwill enable the cell AP.0, and as @ result it will cutput the packst:
{APPLY, P, @ ¢, NULL.0O, NULL.Q, NULL.Q}

which is then routed to ths apply functional unit. It then outputs the packst:

21

[.| PI. ‘]'

and axecution from the ™ entry cell {«™ activation) procedes as dascribed in

the singie input cass. The other packets of figure 19 i.e. 3
{e, AP.QI j=i , J <2

each cause cachs faults, thus bringing in celis:

N’I.Ut

APPLY
P NOLL.Q

ampt N.I.L.u- j’i'jsl
amp!g__ NULL.U

Flgure 28

Hhen their arguments acrive, execution will proceed in the manner described
tor AP.

The returning of valuss from the ¢ activation of R is handled In a
iiniiar fashion as that described in the pravious ssction on single
input/multiple output (immediate copy) APPLY. In this case It is the APRET
call that causes the RET cell to he fetched into the instruction memory. The
(2 + 1™ packet output (see figure 13) ratrieves the cafh

APR, 03

APRET

to hold activation name enply TEST- 1]
_ "FE'"'""UEBT%JT

notused Uests.

pe—————

Figure 21
Notice that the APRET ce!l has as a (constant) operand, the name of the FREE

cefi, When 1t is anablad it producas the output packast

(APRET, ¢, FR, MLL, DESTy.D, DEST,.Q, DEST,.Q}

22

Thia packst in turn causas the FU to output packets:

‘To-n. RTo."l N iFFI.G. Rtn-'l » 'stllpu. .Rflol]' » {ana. RTpCl .

stc.

Thus the RETurn cells receive as parameters the names of beth of their
destination. Otheruise, returning of values, and "deatroying" an activation

procedes precissly as in the previous scheme.

4. Relocation Box Revisited

To sinplify the previous discussion we have purposely ovarsimpiified
part of the operation of the machine. We had said that the r_olocﬁtion hox upon
receipt of a fetch packet would aluays pass the packet to the PMS Wwith the
suffix stripped off tha cell name. This is incorrect, .lf tha machine really
operated in this fashion, then tha it could never retrieve cells that had been
Idisplaced from the IM into the PNS. There are & nuwber of selutions to this
pfubfn. Houever palection among them is imposaible without a more detailed
modei of the implementation of the packet !!Il:ll"u- system and the cache
mechaniam. Thus a full discussion is beyond tha scope of this nota. The
particular solution described lﬁre uas chosen for its simplicity, and should
not be thought of as an “"optimai® solution,

Upon receipt of 3 packat
(fotch, e.¢,)]

the relocation box first checks if # is a valid activation name. If it ia
not, the RB signals a runtime error, otheruise it issuas twe fetch requasts to
the PMS, One is for a cell uith name &, and the other ia for 8 cetl ulth name

w.v. The PMS uilt respond in one of several ways.

23

1. It the PMS returns nothing for either request, than the RB signale an
arror,

2. If the PMS returns something for w.s, and nothing for «, then the RB
eignals an error

3. 1t the PMS returns something for both, then the cell image raturned In
responss to the request w«.¢, is passed back to the M unal terred,

4, If the PMS raturns something for the request e, and nothing for the
reguest w.¢, then the ce!l image raturned in response to the request

« is passad back to the IM with its destination fields alterred as
praviously discussed,

The solution though simple, halves the sffective memory banduidth.

5. Names and Loading

One of the attractions of this implementation scheme for APPLY je that
it does auay with the nesd for an elaborate tinking loader for data flow
programs. Consider for example, a data flow program consisting of several
procedures each of uhich has been compiled by itself. Cne may assume for the ‘
purposes of discussion that the cell nawes {and hence the contents of tha‘
destination fields of a cell) correspond in sola'direct uway to the memory
locations of the packet Mewory system (PMS). Thus whan loading the component
parts of the program (i.e. the procedures} into the PMS tuo things must be
done. Assume for concreteness that a procedure is compiled into a | inear bl,o‘clz
of calls numberad from B and that cel! numbars are cell names, When loading a
procedure, a number equal to the cel! number into which tha first call of the
procedurs Las loaded must be added to all destination fields af al! cells that
refer to calis that are part ﬁf the procedure. Then all external refersnces
in a procedurs - that is entrance call names in APPLY cells - must be set to

the correct valus. Thia valus depands of course on the locatlon into which the

referenced procedure Is loaded. Notics however, that return names need not be

24

relocated since they are "constructsd® at runtime. Thus no correcting of the
destination addresses of an APRET cel| need be done. Indesd, the RETurn cells
Which actually transfer return values to the invoking procsdure are not even
port of the invoked procedure. Thus the two tasks of Inading - fixing (hy
adding an offset} of internal references is sasy, and fixing of extarnal
refersncas is greatly simplified. Only half of the job must be done bafore
execution, since the entry but not the return points must be ra'locatad.

The naming scheme provides a solution to establishing the "ldent]ty"
of distinct activations amenable to ufﬂclant. harduara implsmgntation. Since @
cell of an activation is uniquely Identified by its name (assigned in the
original compllation} and s mingle sutfix, nawmes are bounded in size (ue
assume of course that suffixes and simple names are of fixed maximum |ength).
This Is quite different from the naming acheme in the data flow interpretar |

presented by Arvind and Gostelow [2]. In their scheme the ful! name aof an

__i_nttanca of an actor 1T (during exscution) coneists of tha original name plus

k appanded suffixes, whera k is the activation level of 1T, Thus names while
aluays finite may be arvitrarily long, This posas some serious (har-duar_.}
implementation issues that are ensent in the present modef. All that is
required is an enlarging of the data paths of the processor that carry names.
(To handle 1009 simul tanecus activations requires only 19 additional bits.) Of

course ons must aiso construct a relocation box.

6. One Last Change

Creation and returning to the "fres pool® of activation namas (i.e.
suffines) is probably not an appropriate activity for a FU. The primary rsason
Is that one would {ike to have muitiple FU's for processing of APPLY, RET,

FREE, and SEQ, packets. Coordinating the creation ond returning of suffisxss to

2

the fraa pooi alnng saveral autonomous, fsynchronously operating mddlu
(FU's} iw 2 mesey task. [t alsp introduces an overhead since the FU's
coordination must take place through exchange of messagas {packeta) it we are
to kesp the overaiil machins structure conaistent. Cansequently, ue prapose the
following wodification to the scheme described above. We introduce an
additional data psth fros each FU that procasess applies etc., ta the

‘relocation bax snd from the relocation box to the thase FU's. Thus tha machine

itructure F'T)

FUNCT I ONAL
UNIT

L

FUNCTIONAL

UNIT

.
»
DISTRIBUTIDN
NETWORK

INSTRUCTION
HEMORY

nc CELLS

\

ARBI TRATION
NETHURK

T~

COMMAND
NETUWORK

h J

CONTROL
NETWORK

RELOCATION
BOX

PACKET
MEMORY

SYSTEN

Final Hachine Structure Supporting Procedures

Figure 22

27

“UWhen.a functional unit needs a neu suffix rather than generating it

Internatly; it now send the packet:
INEMSUFFIX, }) where j inm the nawe of the FU originating the request

to the relocation box. The RE respands by generating & new suffix nawe and
sending the neu name (as a packet over the new data path) to the requesting
FU. When the FU ulshes to free @ suffix ¢ it sends the packet:

- IFREESUFFIX, #}

to the RB which then raturns ¢ to the pool of free suffix names. Thus in the
new machine, aali.grl.unt and fresing of activation names takes placs at a
central location, hence avolding the probiess of maintaining & distributed
list of free suffix names. The cholce of uaing fha relocation box to perform
thase functiona is esomewhat arbltrary, the main Idea being te centrallze

_ activation name management, uhere It is dons 1s not critical. Note that s'lnplu
| latting each appiy FU manage its :ﬁ-m activation names cannot work aven i f a
FU's pool of nanus'cuntalna_no ¢lements in common with any of the others. The
prablem (s that an addltl_oml mechanisa must ba provided to guarantee that a
packet:

{FREE, #)

Is routed to the functional unlt that creatsd e. Becauss of this complication

the above scheme i» infirior to the central name allocator.

7. Procedurs Variables and Acknowledge Signals

It should be observed that the naming echeme for establishing unique

activations in no uay is dapandent gn the fact that the nsms of procedure in

28

ﬁn apply cell that is to be invoked is constant. {its placement in an operand
ﬂol& of the APPLY cell ude intentional.} Conssguently, without adding amy
additional mechanisms to the schemes propossd, procedure variables can be
handled. One merely has to compila tha APPLY calls uith empty entries whers
tha entrance cal! names for the Invoked procedurs was. Of course nou some |
other acter of the pragram must send a cali name corresponding to an entrance
polnt of a procedure ta the appropriate APPLY cell in order for it to become
anabled.

One simple way to do this ie to have sach APPLY cell of the call
mechanism recelve the nase of the procedurs it is to Invoka, rather than &
node name of a particular antry paint. Hhen the i™ one is enabled it passes

to the FU a packet of the form
{APPLY;, P, o, &, NULL.Q, NULL.Q, NULL.Q}

~ The FU "knows" from the opcode and the first two arguments, that procenl'ng of

this packet is supposed to send the jth argument to the o« activation af

procedura P, The FU can aither

1. Look up in a table aat up at iﬁadlng time tha name of the call that is
the it entry point of procedure P,
o 2. Hith a suitable co'npl lar convantion, computs the name of the cell

given i and P.

Though elther spproach wuorks, tha former has tuo advantages., Firet, since the

call structure is set up at compile time, the number of inputs and outputs to

the apply wechanism is knoun. This information could be incorporatsd in the

sncoding of the APFLY cells and also in the tahle. This would allow the FU to

do a runtime chack to see if the named prma@ra has the appropriate number of

input and outputs. Second, using a table altous the FUU to check if P Is a

dafined proceduras.

29

Finally, to be fully general, we must extend the procedurs Invocation
schems 8o that the call mechaniew is incorporabls in data flos (object}
programs which explicitly acknouledge “absorption” of tokens IB]. For any date
flon procedurs, the RETurn actora ars aluays enabled. It a successor of a
{scurce} APPLY actor sends acknoulecge signals to the APPLY, the destination
of an acknouledge signai is the SEQ cell of the call mechanism. This
guarantees that the SEQ cell can only initiate a new procedure instance if al{
the acknouledged outputs from the old procedura instance have been |
acknosledged. Of courss the SEO cell must be enabled in the initial
confliguration of tha program. Similarly, it the (source) APPLY actor must
acknowledge an input token, it is the FREE cali of the call mechanigm that
sands the acknouledge signals. This guarantses that the predecessora of the
.call machaniom uill be enabled to send new argument values only after the
previous prn.cadu-a instaﬁcs has been terminated, Otherwise the cal! mechanism

is unal terred.

8. Correctness

There are a number of important things going on under the surface of
this briet dluﬁuslon. First, thers is the guestion of race condi tions. That
in, ia thers soms timing of argument arrivais (for a given procedure
invocation) - that cause more than one activation to be created. The anausr of
course is no, provided that SEQ is impiementad correctly and that the schems
containing the APPLY ie wafe. (That is no input to the APPLY receives ite
second token before all the inputs recsive thelr first.} The second question
Is a bit deeper - does the twplementation work correctly if the APPLY s part
of a subachema uhich is the body of a loop? We infarmally argus that this is

the case. LUe assume that the reader is convinced that the implementation

38

correctly achisves the affect of replacing the apply node which invokes P uith
a copy of the graph for P provided that an activation ¢ initiated by an APPLY
terminates before the values for the (¢ + 1)* arriva.

Me will meke no claims for cyclic schemata in gensrat. For al though In
the single input-single output case, succesive arrival; of argument values
Qill each create a new procsdure activation, sach activation will attempt to
return its output value(s) to the same destination node. Thus in general we
have an unsafe condition the point of conflict being the destination noda.
Houever, for the special case of loops of the syntactie type allowed in BL -~ @
subset of OFL defined in (19] - we can garantee correct behaviour. To see
this, recall that such loops are safe. That is, In the petri net model of a
schema of this class, regardiess of the sequence of tramsition firinge no
place wllii carry é token load of greatar than aone. In the data flou schema,
this means that sven if an actor uere to fire uithout first choqking if its
output |link uere empty no fink would carry mors than one d&ta token. This
property of safety holds ragardless of the exsgution times of the actors.

Let O be a singla input APPLY actor in the body of soms loop of & BL
program. Supposs (1's input had no data dependsnce on ary of its output _
value{s}, Then data values would arrive at Q. in some fihite time indepandent
of r - the execution time of Q. Then by letting ¢ + « we can queue up any
number of tokens on A's input arc as we like - clearly an unsafe condition.
Thus *s input must be data dependent on 1ts outputis) since we know that BL
programe are safa. Consaquantly, each activation ¢ initiated by 0. will finieh
halfora the (A + 11" starte. Re-examining the avove implementation for single
input apply we ses that this condition is sufficient to guarantee correct

operation.

3

For muitiple input -muitipile output immediate copy (MIMIC), the above
argument falis. This Is dua to the fact that an input te an APPLY may be
dependent on only 3 subset of the outputs of the APPLY, To sneurs the corrsct
behaviour of the implementation of this form of the APPLY actor it is

sufficient to show that when such an actor Is incorporated In a WFDFS:

D ¥ i, IR - N <2 8<£1,j < rumber aof input tinks of O

where &4, is the i™ input Iink of G

and T2 : {irput linke} -+ 2°
and T4} = ruwber of tokens that have arrived on the input link &

Intultively this means that al! the Input values for a given activation ¢ of @
procedure arrive before any of the Input values for the (¢ + 11", This I8
sufficient to ensura the correct (and safe) functioning of the SEQ actor and
consequently of the whole implementation of MIMIC. The claim is that this
r-tstr_-iction on acceptabls token sequences ia in fact satiafied for the input

- i_inka of an APPLY actor & in any BL program. The ideas in the proof are
fairly siupie. Unfortunately, presentation of 4 rigorous proof gete bogged
down in the datails pf precisely describing manipulations of program grapha. A
detailed proof [} can be found In [19].

9. Cunqluoim

He have prassnted here saveral schames of increasing capébi ity for
implewenting procadure application in a large clase of data flow processore.
All of the schames implemented the immediata copy rule - that is a data flon
program with an apply actor is semantically equivalent to ane where the APPLY
has besn replaced by the &owau graph aof the procedure it invokes. This

effect can only be achievad at runtine since recursive procedures and

32

procedure varlabies are allowad. The schewss presented were efficient in the
senea that the overhead in tarms of the numwber of packets required to set up
and terminats an activation was small, In addition only the pieces of the
invoked procedurs that uere active uere bruuqht into tha instruction memory,
This helps economiza the use of Instruction memory space, especlaliy in the
.case of data flow procedures uith conditional components.

The key to the correct operation of the a call mechanism is that there
Is at moat one cutstanding pracedurs activcation per call mechaniam.
Consequently the state information that wust be kept (s.g. uhich arguments
have been passed, the name of the invoked procedurs, the activation name stc.)
is Bounded. Thus rather than needing extsrnal tables, potential ly of unbounded
%ize, or some ather mechanism to keep track of procedure catle, we can rely on

the actors of the call mechanism themsalves to hold this information,

3

Acknowledgements

1 would I'iko to thank Jack Osnnis for his continued intersst and help. 1

Hould afso like to thank Dave Ellis, Cl=mant Leung and Ken leng for their
ussful suggestions,

34

BIBLIOGRAPHY

1. Amerasinghe, S. N. The Hendleing of Procedure Variebles in o Base Languege:
- S.M. Thasis, Department ot Electrical Engineering and Computer
Science, MIT, Cambrlidge, MA. Saptember 1972.

2. Arvind, and Gostelow. K. A New Interpreier for Data Flow and Its Implicatlons for
Computer Architeeture. UCI Technical Report #72. Department of Information
and Computer Science, Univeraity of California - lrvines lrvine, CA.
October 1375.

3. Dannis, J. B., and Fosseen, J. B. [Inircedutien to Date Flow Schemas. CSG
Memo 81, Department of Electrical Enginsaring and Computer Science. MIT,
Cambridge, MA, September 1973.

4, Oennin, J. B., and Misunas, 0. P. The Design of o Highly Parallel Computer fer
Signal Processing Applications. MAC TR181, Department of Electrical
Enginearing and Computer Science, NIT, Cambridps, MA. August 1974,

S. Dennis, J. B, and Misunas., D. P. A Preliminary Architecinre for a Basic Data Flow
Processor. MAC TR182, Department of Electrical Engineering and Computer
Science, MIT, Camtridge, MA. August 1974.

Bl D.ﬂnis. Jl Bt- ﬂl!uﬂat. DO Pl' and L!ungn C- K' HH“H’ Pm"" Processor
Based on the Data Flow Concept. MAC TAL34, Department of Electrical
Engineering and Computer Scienca, MIT, Cambridge, MA, August 1974,

7. Dennis, J. B. "First Version of a Data FLow Procedure Language® . Lecinre
Notes in Computer Sciance, 19, G. Goos and J. Hartmanis, Editors, Springer-
Verlag, Meu York, NY, 197%.

8. Dennis, J. B. "Design and Specification of a Camson Dase Language”.
Procesdings of the Symposium on Computers and Automaia, Polytechnigue Prass of
the Palytechnnic Inatitute of Brookliyn, 1971.

9. Flynn, M. “Some Computer Organizations and Their Effectivensss”. IEEE
Transactions on Computers, September 1972.

1@. Fomseen, J. B. Repressations of Algorithms by Meximelly Parollel Schemata" .
S.M. Thesis, Department of Eiectrical Engineering and Computer
Science, MIT, Camoridge. MA, June 1972. . :

11. Fuller, R, "Associative Parallsl Processing®. Precsedings AFIPS Spring
Joint Computer Conferencs, 1967.

12. Hack, M. Anclyds of Production Schamata. MAC TRSS, Depar tment of .
Electircal Engineering and Computer Science, MIT. Cambr idge, MA, February
1972.

13, Hewitt, C. Viewing Conirol Structurss as Pattorns of Passing Mostages. Morking
Paper 32, MIT, Al Laboratory, Cambridge. MA, August 1376,

14,

15,

16,
17.
18,

18.

a1,

22.

23.

2&.

35

Karp, R. H. and R. E. Miller "Properties of a Mode! for Parallasl
Computations: Determinacy. Tarmination, Queueing". SIAM Journal of
fAppliid Mathomaetics, 14, Movember 196E.

Keller, R. M. "Look-Ahead Processors". ACM Computing Surveys, val 7,
numbar 4, QDecember 137S.

Kasinski, P. R. "A Data Floy Language for Operating Systems
Programming". Preceedings of ACM SIGPLAN-SIGOPS Interface Meoting, SIGPLAN
Notlces, 8,9, September 1973. '

Leung. C. K. Formal Properties of Wall-Formed Data Fiow Schemas. HAC
Technical Memorandum 66, Department of Electrical Engineering and
Computer Science, HIT, Cambr-idge, M. June 1972.

Miranker, G. S. An Approech For Proving packet Communications Architectures
» CSG note-27, Department of Elactrical Enginesring and Computer
Science, MIT., Cambridge, MA, Septenber 1976.

Miranker. G. S. Design and Corvecinass of & Data Flew Procedurs Mechaniym.
SM Thesis Department of Electrical Engineering and Computer Science.
MIT, Cambrldgs, HA, January 1976.

"i'l.lﬂa'. D. P. HCOMMCWM“CMMfWMF‘.. Cuumﬂion- S.1,
Thesis Department of Elactrical Engineering and Computer Sclaence, MIT,
Canbrldg.. MA, July 1378,

Misurae, 0. P. “Procadure Representation in a Data Flow Processor”.,
Proceedings of the 1975 Sagamore Computer Conference on Parailel Precessing, August
1975.

Rodriguez, J. E. A Graph Model for Poratiel Computation. TR-E4, Projact
MAC. MIT, Cambridgs MA, September 1989. :

Rumbaugh, J. A Parullel Asynchronons Compuier Architocture For Daia Flosw
Programs. MAC Technical Memorandus 158, Department of Electrical
Engineering and Computer Science, MIT, Cambridge. MA, May 1575.

Thurber, K., and Wald, L. "Associative and Parallel Processors”. Computing
Surveys. vol. 7 rnumber 4, Dscewber 1975. .

Weng, K. Stream Oriontod Computation in Recursive Data Flow Schemas. MAC
Technical Memorandus 68, Department of Electrical Enginesring and
Computer Science, MIT, Cambridge, MA, October 1975S. .

