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1. Introduction
| D
Every program performs some lask correctly. What is of interest to computer scientisls is
whether 1 program performs its intended task. To determine this, a precise and independent
description of the desired program behavior is needed. Such a description Is called a program

Tpecification.

Several kinds of program specifications may be usefully distinguished. In construeting

software, the first phase consists of an analysis of the requirements for the software. The result of
this phase is a requirements specification. A requirements specif ication Is an informal description of
intended system behavior; it is often very large, running into hundreds of pages. The requirements
specification details both the tasks that the system should perform, and some constraints on the
speed and rmﬁmutlllntim with which these tasks should be accomplished. .
| After the requirements mlfm phase, there are one or more design phases, which define a
system structure meeting the requirements specification. Llargelpr'ognms Are not constructed as
single monolithic entities, but u‘a fumber of interconnected subprograms or modules. Most often
these modules are organized in a hierarchical fashion, with modules higher in the hierarchy
implemented in terms of (by means of calls on) modules lower in the hierarchy. The resuit of a
design phase is the identification of moduies, and a graph structure showing which modules are to
be used in implementing which other modules. Later design phases are often used to elaborate the
~ Structure of moduléa that were considered only as indivisible “black boxes” in earlier design phases.
A commen problem in system construction is that the kind of behavior expected by a user
of & module may not be the same as what the module provides. This problem can be avoided, or
at least greatly reduced, if the design phuse provides tpecifications of the module. The module
specification serves to document tﬁe Intended module behavior and to communicate this behavior



to the implementor of tlln module and to prognmnm. who will use that moduie in implementing
other modules. Two kinds of module specifications are of interest: Junceisonal specifications, which
describe the effect of the module on it external environment, and performance specifications, which |
describe constraints on the speed and resource utilization of the maduile.

In this paper, we survey existing tachniques for providing formal functional specifications
for program modules. We believe these techniques can form a basis for the functional part of
requirements :pedflauon; this is discussed further in Section 4. The techniques \;re discuss are not
_applmbhmwfm:pe:lflaﬂms Some work hubemduieinthnm(ueﬁﬂform
ra:u;t work), but much remains to be done.

| lntherummduofﬂmm-edluuthcldeolfmwfhmm
Section 2 contmins a discussion of module specification techniques for sequential programs. In
Section 3, we review recent work on specifying paraliel programs. Section ¢ svaluates formal
specification techniques and discusses expected future developments.

1.1 Advantages of Formal Specifications

Program specifications can have various degrees of formality. At the informal end of the
spectrum, the specifications can be expressed in some convenient combination of English, diagrams,
and a variety of standard mathematical notations. Sometimes specifications are required in a
prescribed format, where the order of the sections and the information to be found In each section
are given, but the contents of the sections can be in any language. These kinds of specifications
are in common use today.

The ISDOS system [50) is a step up from this The intesface specifications l‘ﬁr the
modules of the proposed software system are expressed in a precisely defined formalism, which is
- parsed by machine, and checked for various completeness and consistency properties. The
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specifications for the functionai behavior of the moduies, however, are informal, unconstrained;
and unchecked, - _

A specification is formal if it is written wntirely in & language with an explicitly and
precisely defined syntax and semantica Examples of suitable formal languages are first order
predicate calculus and a programming language for which the semantics has been defined by one
of the known techniques (for example, the part of PASCAL that has been axiomatized (27.
However, a program should not be its own specification, because this eliminates the redundancy
nesded to make verification meaningful. An independent description of detired behavior is atways
required.

There are advantages In using formal, rather than infermal specifications. Formal

Specifications can be studied mathematically while informal specifications cannot, For example, a

’ correct program can be proved to meet its specifications, or two alternative sets of specifications can

be proved equivalent. Formal specifications can also be meaningfully processed by a computer.
Certain Forms of Inconsistency or incompleteness in the specification can be detected automatically
(18] . Since this processing can be done in advance of implementation, it should prove to be a
valuable aid to program design. In addition, formal specifications can sometimes be realized
automatically (for a recent survey see (31, akhough the resuking implementation may not be as
efficient as one designed by a programmer.

Even in cases where these mathematical tools will not be used, formal specifications are
advantageous. When specifications are used a3 a communications medium among programmers
during system design and implementation, it is essential that the programmers reading a
specification all agree on what that specification means. This Is more likely when the specification
is formal, for two reasons. First, there s only ane way to interpret a formal specification, because

of the well defined and unambiguous semantics of the specification language. Second, the
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formality of the Wnguage encourages greater rigor in the definitions. It is easy to hide
incompletely designed program behavior under vague informal descriptions. Rigorous informal
specifications are proﬁably Just as difficult to construct as formal ones; informal specifications
Appear easler 1o construct becausa they are usually incomplete,

_ Specifications are a useful component of program documentation. A well written
specification will be easier to understand than a program becauss it s written In a language chosen
for case of expression, rather than for efficiency of implementation. lﬁ addition, specifications are
hslpful during program maintenance and madification: if the implementation of a module is
changed, but the specification is still valid, then the modules using that module need not be
changed. Again, formal specifications should be provided, 5o that the meaning of the specification
is well defined.

Forma) and informal specifications can complement ane another nicely.  Informal
specifications have the virtue that the main points of the behavior can be mmmnnicat‘ed in an
understandable and effective manner: unfortunately, often details of the behavior are not specified.
Formal specifications contain all the details, but there may be insufficient emphasis of the main
polnts. Therefore, we recommend that formal specifications always be accompanied by informal
specifications as comments. In this way, the reader can get the idea of the specificaition quickly aqd

easily, but also has sufficient information to understand fully what is meant.
2. Specifications for Sequential Programs

Specifications are ciosely related to modularization. If a module implements a clean
abstraction, then & will have a simple specification. Conversely, If a module performs an
arbitrarily chosen set of actions, sharing logical interdependencies with other modules, then the

specification is likely to be at least as complicated as the implementation, and hence virtually



useless. |

There afe two kinds of abstractions that have proved to be particularly useful in program
construction:  procedural abstractions and data sbatractions. A procedural abstraction performs a
nupplngfmamofmputmmlmofwtputum The domain and nnéeota
procedural abstraction consist of data abstractions, and the behavior of the procedural abstraction
s defined in terms of the behavior of these data abstractions. A data abstraction provides a set of
data values and a set of operations to manipulate the values. ARkhough each operation can be
thought of as a procedural abstraction, it u-mon convenient for implementation and specification
to treat the data abstraction as a unit.

In the following sections we present an overview of some existing formal techniques for
specilying procedural abstractions and data abstractions, assuming that m are dealing with
sequential programs only. Then we consider some of the problems with existing techniques.

24 Procedural Abstractions

A procedural abstraction can be viewed a3 a mapping from its inputs to its outputs.
Procedural abstractions are implemented as procedures or subroutines; common examples are a
squarerootroutlne.;nrtpuhggindamnpﬂu.

Some procedures exhibit nﬁl‘unctinml behavior (compute different resukts for the same
inputs on different occasions). This is becausa they have implicit inputs (for example, global
variables théy read) or outputs (global variables they chahge). If all of the logical inputs and
outputs are considered, then any procedure can be described a5 a mapping from inputs to

_outpuu.' For example, a random number generator may have a xate variable calied the seed, which

1. This approach works provided the procedure does not depend ‘on some parallet activity (eg.,
input from a tarminal, tive real time clock). Paralletism is discussed in Section 8. -
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it uses to compute the output value, and which it updates in preparation for producing the next
value, so that the seed is both an implicit input and an implicit output. Such a random number

generator can be described as a function of type (seed —> send X value).

The specification of a procedural abstraction has two parts: the interface specification
and the behavioral specification. The interface specification consists of the name of the module,
and the types and sources or destinations of the inputs and outputs. (Typical sourcul for input and
output are !‘mﬁul parameters of the procedure or global variables) The interface information is
syntactic in nature, and must be given in the declarations of most high level languages, at least for
the explicit inputs and outputs.

There are two main techniques for specifying the behavior of procedural abstractions that
meet the criterion of formality: inputioutput apecifications and operational specifications. In either
case, the module is treated a: a biack box, and the specification describes the relationship between

the inputs and outputs of the module,
2.1.1 Input/Output Bpecifisations

The inputfoutput approach describes the refationship between the inputs and the outputs
by giving a pair of constraints. Provided that the actual input satisfies the input constraints, the
output is guaranteed to satisf'y the output constraints.

Early work on formal 1O specifications was done by Naur [37), Flopd {13]. and Hoare [281
Their work was motivated largely by a desire to provs that programs have certain properties
(eg. 'correctness™). They attached assertions to various points in a program, and sought to prove
that the assertions were true whenever control reachad the associated points in the program. The
assertions were expressed in the ordinary notation of mathematical logic, since this is a natural

fanguage in which to do proofs.



Each pair of assertions acts as a specification for the program fragment between them.
Hoare introduced the notation P[prﬁgmn text}Q, for expressing /O specifications, where the
assertions P and Q are sentences of mathematical logic. Axsertions are written in terms of program
variables, logical variables, and the names of procedures, A program variable in an assertion
stands for the value of the variable at the instant when control reaches the point in the program
associated with the assertion. The logical variables have static vajues and are implicitly universally
quantified. A procedure name in an assertion denotes the function computed by the associated
procedure: the arguments of the function are the parameters of the procedure, and the resulk is the
return value of the procedure. Assertions should refer only to procedures that are funciional and
have no side effects. In the case of nonfunctional procedures or procedures with side effects, the
specification technique should establish standard notational methods for referring to the functions
that compute the uuqmﬁ and the side effects of a procedure (eg., see [24]),

A small but nontrivial example of an /O specification for a well known functional
abm. the greatest common divisor, is given in Figure L The interface specification tells us
that ged has no side effects, since the return value is the only output. The input assertion states
that both inputs must be positive. The output assertion states that both inputs must be evenlly
divisible by the output, and that the output must be the greatest such number, in the sense th_at it

must be divisible by any common divisor of thc'lnputl.' Note the use of the abbreviation,

Figure 1. 1/0 Specifications for ged.
Interface: ged (Integer, integer) returns integer
Behavior: X>08y>0 (gedix,y)} divides (ged (x, y), x) & divides (ged (x, y). 1
& Vi: integer [ divides (i, x) & divides (i, y)
==> divides (I, ged (x, y)) ]

Abbreviations: divides (x, y) » 3i: integer [y =x + 13



divides(x, y), to enhance the readability of the specification. An important part of constructing

specifications is_the identification of appropriate abbreviations; such abbmianms play a role in '
specification construction amalogous to the role played by procedural and datm abstractions in

program construction. '

Hoare's notation P{program textjQ specifies only partial correctness: it states hiow the
program behaves, provided that it terminates. Note that such a specification i3 satisfied by an

infinite loop. The definition was formulated in this uf because it is often convenient to use
| different techniques for showing partial correctness and termination. Proof techniques based on
I/O constraints that specify total correctness have :lw been developed [I0,11,35) In these
formalisms, whenever the input constraints are met the program is gusrantesd to terminate in a
state satisfying the output constraints. The specification of an abstraction necessarily includes the .
termination requirmmu,z regardiess of whether the proofs are done separately or together.

One of the main benefits obtainable from specifications of modules is that proofs of
program propsrties can be decomposed using such specifications: to prove lom&hlng about the
resuk of a procedure call, one need only refer to the specifications, and not to the code
implementing the function. Hoare [24) has studied some of the issuss involyed in proofs of
programs containing procedure calls. His discussion is complicated by the possibility that data may
be shared between different parametsrs of a procedure. If a function designed under the
Assumption that two input objects are independent is passed actual input ob jects that are identical
or share subcomponents, then quite startling and unexpected behavior may resul, especially if the
function changes the input objects. These complications do not apply to parameters that are passed
by vaiue {copied).

2. If the program is not intended to terminate, then this must be explicitly stated.
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2.1.2 Operational Specifications

The uu;uom of an inputjoutput specification describe properties of program states; the
computation that transforms a legal input state into 3 legal output state is not described explicitly.
In an operational specification, the transformation 1s described explicitly by giving a program that
computes the intended function. An ml specification differs from an implementation
because, for the purposes of ipecification, simplicity i+ important and efficiency is not The |
specification language should be chosen to make the specification a1 simple as possible. Note that
it is not fecessary to have an implementation for the specification language (it may be convenient
for testing purposes), akthough the specification llangluge must have a precisely defined meaning.
In [36] McCarthy gives some early examples of operational definitions of functional abstractions.
McCarthy's formal language is very simple, using only recursion and conditional expressions,

An operational specification for the greatest common divisor funiction is given in Figure 2.
The specification uses the integer operation min, which returns the lesser of its two argumm'ts and
the integer operation mod, which returns the resuk of reducing its first argument medulo the
second argument. The function search-from starts with the largest number that has a chance of
being a common factor of x and 9, min(x,9), and tries afl possibilities, biggest first, untid it finds a

common diviser. The algorithm will always terminate, since the inputs are positive, and since 1 is a

Figure 2. Operational Specification for ged.
Intcrfaco: | god (integer, integer) returns integer

Behavior: god (y) =if x SOvys0 then error (Cunexpected input™)
els® search-from (x, y, min (x, y))

Abbrevistionss search-from (x, 7,00 = # mod (x, 2) = 0 & mod (y,2)=0
t z
®i8@ search-from (x, y, z - I)



divisor of any number. This function does Indesd satisfy the /O specifications gﬁen above,
akhough it is not easy to prove that it does because the notions of ‘greatest” used by the two
specifications are different. |

A proof that a procedure correctly implements the abstraction defined by an operational
specification is really a proof of the equivalence of two programs. Methods have been developed
for doing such proofs when the two programs are recursive [35, 16)

There is a hazard of inadvertently giving incomplete specifications for both the I/O
constraint and the operational specification techniques. For the I/O constraint method, it is possible
to make the output mlulninl:; o strong, 30 that for some inputs there is no output value
satisfying them., For the npmuﬁ:l technique, it is possible to write incomplete conditionais or
nonterminating recursions. Such specifications are misieading, and shoukd not be written on
purpose even if they specify the desired behavior. If incomplete specifications are desired, then the
canditions under which the output is not defined, or in which an error occurs, shouid be explicitly
identified. .

2.2 Data Absirnctions

Admabm:uonmumurantbmadmtypc.oraflm.nyornhudah:tnctdau
types. Anlbsﬂtﬂﬁatatypeha_ﬂtofd:kcﬂapabhmlydpuﬂmhrklndlnfbehavlor.whlch
correspond 1o a finite set of allowable aperations on objects of the type [SL AN other operations
on the data type must be reatized using the ones in the finite set The meaning of an abstract data
type is completely characterized by the behavior of the operations; this is guaranteed .by Hmiting
amwehe@mmﬁmwpummmmamm Nate that the data
representation mybechmgedfruly.pmﬂdadonlytlmthcbehﬂioroftheopenuomh
preserved. All data types can be cast into this framework. . For a discussion and a mukitude of



examples, ses [26]

Common examples of data abstractions are fixed point numbers, arrays, and databases.
Data types may be prﬁvldad by the programming language, or they may be defined by the
programemer. Some programming languages (such as Aiphard (381, CLU [38) and Simula6? [8])
provide. support for user-defined data types, and user-defined types can be simutated in any
programming language by appropriate coding conventions.

A data an also has an interface spacification and a behavioral specification. The
interface specification consists of the name of the type, and the names and types of the associated
operations. In the following, we discuss two methods of specifying the behavior of an abstract data
type: axiomatically and via an abstract model,

2.2.1 Axiomatic Bpeoifioations

Axiomatic specifications define the behavior of an abstract data type by giving axioms
relating the operations. There are a variety of axiomatic approaches. One of the best developed
methods is based on data aigebras; using the recently developed theory of heterogeneous algebras
(4], this approach was developed by Zilles (32,54} Goguen et al 014], and Guttag (18]

All objects of an abstract data type must have been produced by some sequence of the
constructor operations of that type. Other operations of the type, called inquiry operations, yield
results of different types and provide the only way to extract information from an object of the
Itypc. A mmplm! set of axioms has to define the values of the inquiry operations for any ob ject of
the abstract data type |

Let us consider the array data abstraction as an example. This abstraction corresponds to
a family of data types, parameterized by the type ¢ of the nrray elements. Arrays are considered to
be objects that can be created, changed, and interrogated. There are five array operators. The



ulxopmmm;mmy;pamwdmmrythemm upper bounds of this
array. The store operation changes an array by replacing one of its elements, while the ferch
operation retrieves an -element. The top and botrom operations yield the upper and lower bounds of
the array. Note that we consider an assignment to an array element to be equivalent to an
operation on the array, which changes the state of the array as a whole. For uniformity, we use
functional notation, introducing the operations stere and Jeich In more conventional notation,
store(x, I, a) would be written as oif] := x, and fetcAll, o) as ali]

Figure 3 shows a specification for arrays. The spacification has two parts, specifying the

Figura 3. Axiomatic Specification for the Type Array (1]

Interface:

alioc {integer, intager) returns array [t}

store (x: t, v: integer, a: array i)  changesa

fetch (integer, array [:]) returmns ¢

bottom (array (1) returns integer ‘
- 'top (array It returns integer
Axioms:

1. alloc (i}, i2) = if il > i2 them error ("bad array size”
2. 'uom(x,n..)-unmmmw,m(.mmm('smxmubmm

3. fetch (I, alloc (12, i8) = If il ci2Vv il > then error ("index out of bounds™
' sise UNDEFINED

4. fetch (il, storea (x, i2, a)) = if il = i2 then x else ferch (il, 2)
5 bottom (atloc (i, 12)) = il

€. bottom (storea (x, i, a) « bottom (a)

7. top (alloc (1L, i2)) = 12

8. top {storea (x, |, a)) = top (a)
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~ Interface and the behavior of the data abstraction. In addition to the types of the inputs and

outputs of the operations, the interface specification tells us that the operations alloc, fetch, top, and
bottom return vahies, bﬁt have no side effects, while the operation sfore returns no value, but
changes the state of its third argument, labelled "a°. The axioms in Figure $ should be interpreted
as describing the reiationship between the operations and the state of an array. The
transformation on the third argument of siore is denoted by sfores. The axioms apply only if the
arguments of the operations satisly the type nunmhﬁ given in the interface specification. The
axioms are numbered for ease of refersnce.

Amord'lng to the lait four axioms, the arguments to alloc specify the bounds of a new
array, and the siore operation does not change the bounds. Thus arrays have fixed sizes, since
there are no other operations that change arrays.

According to the first axiom, arrays must have at least me.elu-nem, and an attempt to
Create an empty array will cause a runtime error. According to the second and third axioms, any
mem;t w-enmim or modify an element outside the bounds will aiso cause an error.

~ Axiom 4 says that the stere operation updates the indicated element of the array and has
no effect on the rest of the elements. Axiom 3 says that all of the elements of a new array are
undefined; this means that the axioms do not constrain the behavior of the lmplemumtlon in this
case.

The interested reader may want to compare this axiomatization to the one given by Hoare
(261 which presents a cleaner and more abstract view of arrays in which all array elements have
defined values. We believe that the arrays described by Hoare are better than the ones we define.

We chose to define the behavior as abave because It corresponds more closely to that provided by

comman programming languages.



-5
2.2.2 Abstract Model Approach

In the-abatraet model approach, the objects of the data type are represented in terms of
Other data abstractions with known properties established by formal (probably axiomatic)
specifications given in advance, Then the operations of the type being defined can be specified in
terms of the operations of the known abstractions selected as the representation. The operations
are specified using the methods for spécifying procedural abstractions. Often it is most convenient
to give I/O specifications for some of the operations, and operational specifications for the rest

This approach is analogous to the operational method for procedural abstractions, where a
function is specified by giving a particular algorithm for computing it. It must be emphasized
here again that clarity and simplicity are Important for specifications, while efficiency is not. It is

 often convenient to choase representations that use ob jects of standard mathematical domains, such

as sets and sequences, which are not supported by most programming languages. Careful choice of
representation can greatly simplify the specifications of the operations. ‘

o As an example, we will give an abstract model representation for the array data
abstraction described above, The representation will use tuples and sequences.

A tuple is a set of named elements, which may be of different types. Tuples are like
mathematical Carteslan products, except that the components are referenced by named selectors
rather than by numerical indices. Tuples are similar to records in the programming language
PASCAL [52], except that they are static {(cannot be updated). For example,

tuple{a: integer, b: real]
denom-mple:ype.withtwompmmuwhuenhmﬂm'a'md‘b'.mdwhuetypu are
integer and real. |

{a: 8, b 41)



is an element of this type. If x denotes this element, then

xa=3 ~and _x.b-f.l. .
Sequences contain zaro or more elements, all of which must have the same type; the

elements are numbered from | to n. Sequences cannot be updated. Sequence operations include:

< _ Denotes the empty sequence.

length(s) Returns the number of elefhents in s.

5 If 1 S 1 S length(s), then the ith element of s.

addfirst(x, 5) Creates a new sequence with x as the first element, foliowed by

the elements of s in order.

butfirst(s) I Ie;'lgth(s) > {, returns a new sequence containing all but the
first element of 3 in their original order.

An abatract model apeclﬂuuon for armys is shown in Figure 4. The “low™ and “high"
components of the reprémudm are the bounds of the array, while the “elements” component
contains information about the array elements with defined values; each such element is
rcprumted 33 & pair consisting of a value and its index in the array. If the bounds are legal, the
alloc operation returns an array without any defined elements. The top and bottom operations
return the appropriate components of the representation. The 1tore operation simply adds the new
lﬁdex-value pair to the front of the elements sequence, without bothering to remove any okl
elements. The fetch operation searches the elemenis sequence from the front, finding the most
recently stared value, if there is one. Note that the definition of fetcA does not state what happens

when an attempt is made to fetch an undefined element.

It is important not to read too much into abstract model specifications for data

abstractions, or into operational specifications for procedural abstractions. The implementation
must have the same behavior as the specifications, but it is not constrained to using the same

representations and algorithms for realizing that behavior. For example, an implementation of
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Figure 4. Abstract Modal Specification for the Type Array {t]

interface:
alloc (integar, integer) returnse array 1]
store (x: t, v: integer, a: array (1D changes a
fetch (intager, array 1) returns t
bottom (array [t) returns integer
top (array (1)) returns integer
Representstion: -

array {t] = tuple [ low: integer,
high: integer, :
clements: ssquance (tuple (index: integer, valve: tI) ]

Operations:
alloc (il 12) = If i1 S 12 then {low: il, high: 12, elements: <}
olss srror ("bad array size”)
bottom {a) = aiow
top (a) = a.high
storea (x, 1, a) = if alow < { € ahigh ]
- then [ low: alow, .
high: a.high, - _
elements: addrirst ({index: i, value: x), a.clements) }
slse srror ("index out of bounds”)

Fetch (i, a) = if adow £ i < ahigh then getval (aslements, i)
else error ("index out of bounds™)

getvai (elements, i) = If length (elements) - 0 then UNDEFINED
else if elements;.index = i then slements,.value

else getval (butfirs: {elements), i)

Rrrays is not constrained to retain the okd array values. Indeed, the strategies used for the
spe:maunnmmmmﬁm:mum-m;mwmmmdum

always go together.
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2.23.3 Comparison of Axiomatic and Abstract Model Techniques

It is not clear which of the abstract model and axiomatic approaches is better. Abstract
modei specifications are probably easier for programemers to construct and understand, since they
are more like programs; however, they tend to supply detailed information that Is not really part of
the abstraction. | '

Procfs of program properties can be given using either specification techniques. Proofs of
implementations are probably equally difficult in the two approaches, sithough this is still a matter
of research. A prouf in the axiomatic approach must show that the axioms are satisfied by the
operations of the implementation S} in the absract model approach, & homomorphism is
constructed from (an algebra derived from) the implementation to (the algebra described by} the
abatract model [25, 53)

The axiomatic technique is well suited to proofs of programs using the data abstraction:
the axioms, and theorems derived from them, can be used directly in the proof. For abmet' model
specifications, however, it i3 probably better to prove a set of theorems from the specifications and
then use the mm in proofs rather than use the specifications directly.

The complexity of a specification in either approach depends on the complexity of the
abstraction. In general, the more potential error conditions an abstraction has, the more
complicated is its behavior. For exampie, the array definitions in Figure 3 and Figure 4 are
complicated by the fact that array elements can have undefined values. A3 was mentioned earlier,
we believe that this is a deficiency of the array abstraction. In our experience of writing
specifications we have found that slight changes in an abstraction often result in both a simpler
specification and a better abstraction; this is another reazon why specifications can be a useful aid
in design,



The specification mimlque proposed by Parnas [36), in which a module is viewed a3 a
state machine, can be formalized using either the axiomatic or the abstract model approach.
Formalization -mlng axioms is being investigated by Parnas [4i]l Formalization via the abstract
model approach is appropriate for the specification technique in use at SRI {47], in which “hidden”
functions are added to the state machine when needed to define the behavior completely; this

formalization is being studied at SRI and at MIT [44}
2.3.4 Problems for Further Research

There are & number of issues concerning procedural and data abstractions that are not
sufficienly well understood. One such iasuse is how to specify the behavior of & program when an
error is detected during execution. Models for error handling are needed both for programming
languages (see I5]) and for specification techniques. In the absence of such a model, the behavior
of a program in the presence of errors is often left unspecified, and winds up being determined by
what is easiest to implement at each instaifation. At best, as in the examples above, the e'rrors are
named, and the conditions under which they occur are specified. Parnas im described one model
for program behavior in the presence of errors [35, 40], but his model is informal and incomplete.
- Ancther model that appears to be promising is described In [48)

Side effects are alio not well understood. A side effect Is said to have occurred when the
value of some variable, x, changes, but no explicic nisignment to x has been made. Since all
changes to values must occur through variabies, there must be some other variable, 9, which refers
ta the value of x. Two common ways in which variables come to share the same values are
through a call by reference, or through pointers.

Hoare [24] discusses some of the issues introduced by sharing via the call by reference

mechanism. It is not hard to describe the effects of procedures that change their arguments. The
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.dll‘f‘iculty lies in dﬁcﬂbing the effects of sharing that may occur at some times and not at others.
For instance, it is possible to cause two parameters passed by reference to share the same variable
by invoking a procedure with that variable for both arguments. The behavior in such a case may
be dl!‘f'ermt than if the inputs were distinct. Specifications and proofs must treat such cases
separately. A3 the number of variables that may be sharing a value increases, the number of ways
the sharing may happen increases drastically, making the enumeration impotsibly tedlous.
Furthermore, these special cases are often Uninteresting. We belleve that linguistic methods for
Umiting sharing are desirable (eg, [30]) but abio that more convenient notations for describing
shared data are needed.

An additional construct that is useful in sequential programs is the controi abstraction, a
Program unit that produces a sequence of vaiues, one at a time, for use in a generaiized for
statement (see [33] and [40) for discussions of control abstractions). Some work has been done on
specification and verification of control abstractions [49), but more is needed. Control abstractions
introduce a kind of quasi-parailelism between the program producing the values and the body of
the far loop; it may be that specification techniques for parallel progrmn, discussed below, are
appropriate here.

3. Specifications of Paralle} Programs

A sequentinl computation has a single site of execution activity, where the instructions of a
Program are executed one after another by a process. Sequential programs are executed by only
one process at a time. In a paraliel computation there may be many sites of activity, with a separate
process executing instructions at each sie. A parallel program i3 executed by an arbitrary (and
possibly variable) number of processes, where mare than one process may be actively executing

instructions at the same time,
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if & process can run without communicating with other processes, then the program
executed by that process can be viewed as a sequential pmgnm,. and the techniques used in the
 preceding section can be used to specify its behavier. This is often the case In a time sharing
system, where the jobs belonging to different users do not interact, Howerver, for many useful and
innéruung applications, processes must cooperate to perform some pint task. In this section, we
discuss specification techniques for describing the behavior of parallel programs in which
concurrent processes interact.

Concurrent processes can interact either by explicitly passing each other messages via a
queue or I/O stream, or by ;Iunglng the state of a shared data object We will assume that
processes interact by changing shared data. However, our discussion apphies abo to situations
Where processes interact by passing messages, since the 1O stream can be treated a3 & shared data
0b ject.

Interacting processes generally have to be synchronized to keep them from interfering with
each other. For example, a process performing a computation sequence that changes the state of a
shared object an interfere with unocbu' process in the middle of a computation sequence that
depends on the sate of the same object. Computation sequences that change or depend on the
state of a shared object are known as critical sections with respect to that object. Whenever a
process is in a critical ui:tlon, all other processes have to be prevented from performing some
subset of the possible .upen'tions on the associated shared object in order to prevent destructive
interference.

New techniques are necessary for specifying the behavior of cooperating parallel programs
because it is necessary to express new kinds of Information. In a sequential program, the values
passed in as parameters (or free variables) are the same as the values that get operated on, so that
the behavior of & procedure can be viewed as a function from the inputs to the outputs. When
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there is concurrent activity, some other process may change the states of some of the input ob jects
between the time of the call and the time the procedure actually gets executeld. as well a3 several
times during the execution. Sometimes this kind of behavior i desired, and sometimes it is not.

For exampie, consider the specification of an operation, dequeue, that dequeues an element
from a FIFO queye. If the input queue is not empty, dequeus should remove and return the oldest
element on the queve. This behavior is desired for both sequential and paraflel programs. The
desired behivlon for empty queues are different, however. In a sequential program, some sort of
error condition is desired, because there is no oldest element, and never will be. In a paraliel
program, the desired behavior is that dequeus should wait untid the queue is no longer empty
(presumably some other process will eventuaily place an element in the queue).

Note that the value returned by a dequens operation is not determined solely by the input
Values it receives. The vaiue depends also on the inputs to Jubsequent sngueue operations, and on
the history of previous emgqusue and deguese operations (indudlnlg the number of previous degusues

' opentiom abso waiting for values).

Thus we see that a procedure cannot always be viewed a3 an indivisible operation in a
parallel programming environment. In the queus example, we have to consider two suboperstions,
the request to retrieve an ob ject from the Gueue, and the actual retrieval. Another example is the
readers/writers problem [7], where thres suboperations are considered for readers: attempting to
read, actually reading, and end of read.

Just as for sequential programs, careful modularization Is needed tu make the
specifications manageable. The hard problem in paraliel programming is to synchronize the
processes carrectly, which must be done whenever processes share data. If data abstractions are
used properly, the operations of the abstract data type can be made to coincide with the critical

sections associated with ob jects of that type, and hence processes need to be synchronized only when
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they perform these operations. Thus the specification of a data abstraction can include a local and
complete specification of the synchronization requirements for all processes using the data
‘ab'macti_m. Much current resexrch is concerned with defining linguistic mechanisms to support the
use of data abstractions in parallel programming (eg., mnnllms [5, 28, 291 serializers [22D.
Languages where interprocess interactions are lmited solely to messages passed via shared message
buffers are also being investigated (eg. Gypsy (1.

Specification techniques for parafiel programs are not as well understood as are techniques
for sequential programs. However, some techniques are emerging that appear to be promising.
These techniques differ in the way information about the activities of comcurrent processes is
represented. Two approaches are discussed below.

3.1 The State Variable Approach

Onewarmspeurymebelmiorofapnmlhlpmgnmuwdmibethemtesofthe
machine before and after the program is executed. Owicki has foliowed this approach. In [38] she
extended Hoare’s /O constraint technique to parallel programs, by adopting his notation and
giving proof rules for a language wltﬁ primitives for paraliel execution and synchromization.
Owicki's work, like Hoare’s, is geared toward proofs of program properties. The work reported in
(387 deais with arbitrary program fragments, and hence can also be used to specify the operations
of a data abstraction. Owicki is currently working on appiytng her techniques to the problem of
specifying and verifying the behavior of data abstractions shared by concurrent processes.

Owicki found that her axiomatization s incomplete without a rule of inference which says
that a program has a property if It can be shown that the program, when augmented by adding
.auxllinry variables, has that property. The auxiliary variables are used to encode information

about the interactions between procensss in the state of the program. For example, an auxiliary
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variable may be used to record the number of processes that are currently perforn'ling a given
operation on a given shared data object Auxiliary variables may be introduced into a program
only as the targets of ansignment statsments. Their vakes may not be used by the program,
although they may be used in assertions about the program. Consequently, the auxiliary variables
can be rumved from a program without affecting the outcome of the compution, and any
.propcrty of a program that can be proved by introducing auxiliary variabies must akso hold for
the original pmgnm

An example of a specification using Owicki’s technique is shown. In Figure 5. The
program fragments labeled Sy, ..., S, (separated by the delimiters “cobegin®, "//", and "coend”)
are all identical except for the auxiliary variables. Each program fragment is executed by a
separate process, and each contains a critical section,. We wish to specify that the critical sections
are mutually exclusive: no two distinct processes may be executing a critical section at the same
time. In order to express this property formally, we introduce an array of auxiliary variables called
ICS, which Is indexed by the subscripts of the process Iabels 8, All of the components of /nCS

Figure 5. State Varisble Specification of Mutuel Exclusicn

Incs =0,
cebegin Sy: -
BN
S; while true do
<hon critical section>
InCS(1) 3= §;
«Critical section>»
InCS(1) sm 0
mon crlucul section>»

H H
Sy -

coend;
Invariant: ¥ i,j [ (1SI1Sn & IS jSn & ~i=}) =e> ~{InCS{iet & InCS(j=i) )
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are initially zero. Just before process S, enters its critical section, /nCS (1) is set to one, and just
after process si_luvu its critical section, InCS (1) is set t0 zero. These are the only places in the
program where /nCS is mentioned. Therefors we know that IaCS (i) = | whenever process S is in
its critical section. The invariant assertion says that no two distinct components of /nCS have the
value one, which impliies that no two processes are in their critical sections at the same time, as we
require. The invariant is asserted to hold at all points in the program between the cobegin and
the coend satements. This example i adapted from [38] where Owicki proves that the
appropriate invariant hold: for a2 program with a similar structure and | a particular
synchronization scheme, thus establishing that the mutual exclusion requirement is met.

Robinson and Holt [46] have considered the problem of specifying the synchronization
constraints associated with shared data as a part of the specification uf the data abstraction. For
each operation, they introduce an abstract program consisting of a sequence of suboperations.
Some of the suboperations update “state functions”, which are generally used to count the number
of processes currently active in a given section of code {cf. Owicki’s auxiliary nrlabie‘u). The
synchronization conatraints are expreased by invariant assertions involving the state functions
before and after cuﬁln suboperations of the abstract program. Just those program atates that do
not violate the invariant are legal. Suboperations that would result in an illegal program state
have to be suspended until it is safe for them to proceed.

Robinson and Hok point out that a proof of correctness of an implementation must
include a proof that the implementation preserves the invariants. They alko discuss a way of
verifying the correctness of the specification. This involves constructing the state machine that has
those state transitions ailowed by the invariant. This sate machine can be checkeil automatically

for various properties, such as freedom from deadiock; it may also be presented to the user for

review. Methods for determining properties of specifications are even more important for paraliel
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than for sequential programs, becauss it is especially difficult to determine that the Specified
behavior does intdeed correspond to the user's expectations when there are Interacting concurrent

processes involved.
3.2 The Bvent Approach

The earliest event oriented specifications for concurrent programs are path expressions
[5. 20, 121 Path expressions are tied to data abstractions; the execution of a suboperation of an
operation -of‘ the data type is taken to be an event. Path expressions are constraints on the order in
which events aan happen. Habermann gave informal descriptions of several versions of path
expressions, which he intended as synchronization primitives for a high level programming
language; for one version [8] an algorithm for implementing path expressions using Dijkstra’s P
and V operations [9] was presented. Lauer and Campbeii [M] gave a formal definition of a
slightly different version, using the Petri net formatism [21, 42X this kind of path expressign is a
reéuh: expression (as in automata theory), which generates a set of strings corresponding to all of
the legal sequences of events. Finally, Flon and Habermann 12] discussed proofs of correctness of.
parallel programs speciﬁo:d by path expressions, connecting a new kind of path expression with
invariant assertions. |

A more formal and abstract view is ken by Greif [i7) This wark is based on the
assumption that it is not possible to define a global notion of time, or a total ordering on events,
that all observers can agree upon. Rather, a local view is taken; two events are ordered only if
some communication has taken place that aliows the ordering between the events to be deduced,
much as in the relativity theory of physics. Time is described as a partial ardering, 3o that there
may be pairs of events that are not ordersd with respect to ane another, and hence can be

“simultaneous” or “concurrent™. An event is supposed to be instantaneous and indivisible. Events
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are usually defined as the beginning or the end of some step in the computation.

Greif describes a computation as a partially ordered set of events: some events are known
to come before certain other events The partial order can be viewed as & history of the
computation. Mmtumhwdwuhmbmpmnthu the set of events in a
compatation can be partitioned into dis joint subsets (one for each process).

Synchronization constraints are expressed a3 axioms constraining the Iegal' partial orders,
admitting some computations but not others. For exampie, Figure 8 shows the ulom for mutual
exclusion. S; and Sy denote the sets of events WIng to two distinct invoaations of the
critical section (posibly by different processes)’ The axiom says that the computations S and So
may not overlap in time: either every event of S, must happen before any event of S, does.'or vice
verss. The notation "x < y* means that the event x occurs strictly before the event 7. Note that the
axiom is independent of the number of processes involved, so that it can be used even In situations
where the number of processes is variable. .

- = Greifl’s formalism is powerful enough to handie real concurrency, with multiple pmcesum
that may be in widely scattered locations. The formalism can be used to state requirements
concerning priorities and various other fine points of scheduling, such as the absence of deadlock
and starvation. It can not describe performance properties, such & throughput, because only the
order of events is discussed, and not the actual elapsed time between two ordered events.

Figure 6. Event Axiom Specificstion for Mutusi Exclusion

(Yeje 5 Yeg € Syleceg)) v (Ve €5 Vey e Sgleg<;1)

3. ARhough we have not done 30 here, the sets §; and 8y can be defined formally using Greif's
techniques.



4. Future Research Direotions

We believe that the use of formal specifications can enhance the refiability and decrease
the cost of software, and that research in this area should be supported and encouraged. In the
remainder of this section, we discuss f‘umrﬁ research directions that we believe have promise.

In Sections 2 and 3, we discussed current work in specification techniques. Considerable
glll;ls have been made in understanding and defining specifications, but much remains to be done.
In the area of sequential programs, useful specification methods have been invented for both
functional and data abstractions. The main work that nesds to be done is to establish proof
techniques associated with the various methods, to extend the methods to those aspects of program
behavior not yet covered (eg., errors, side effects and comtrol sbstractions), and to develop
specifications languages that make the techniques easy to use.

In the area of parailel programs, specification methods need cmﬁdmble development. It
is-not-even clear what the important aspects of the behavior of a parzllel program are'. The
concepls need to be developed before they can be precisely defined. For example, the input/output
behavior of & module is BMH treated separately from other aspects, such as the priority and the
degree of concurrency. However, these aspects are not compietely independent, and It is not yet
known how to describe the relationship between them in a useful way. Once standard concepts
dealing wilh'orderlngs and synchronization are developed, standard notations for these concepts
should be introduced, with the result that specifications can be given at a higher level

As specification languages come into existence, they shoukd be used to specify programs so
that the techniques can be evaluated. We have only timited experience with specification of
programs of reasonabie aize (48, 451 The study of specifications should focus on well-modularized
Programs conaisting of modules supporting datx and functional abstractions. The utility of



specifications in program construction should also be evaluated.

The :podﬂcmon methods discussed in this paper are suitable for describing a program
design, or at jeast those parts resulting in modules supporting data or functional abstractions. To
the extent that an entire system can be considered to be an abutraction, or a group of abstractions,
the techniques ought to be useful for describing system behavior, akthough the difficulty of
describing very high level abstractions Is formidable (consider the complexity of a specification of
3 programming language processor). Attempts to specify real applications will be valuable in
determining the applicability of the techniques tm describing entire system behavior.

The use of specifications during program design will be enhanced if tools exist for
increasing the level of confidence that a set of specifications does indesd capture the lntendui
cancepts and behavior. For instance, properties and implications of a specification can be derived,
and reviewed by the user (18] A catalog of pmpuﬂu that are useful gauges of behavior and a set
of methods for extracting thess properties from a specification are needed as a prellmi:nry step
towards building an automated facility to assist the user in evaluating a proposed specification or
system design. |

Far specifications to contribute most effectively to the programming process, computer
support of specifications is desirable We expect that ultimately there will be systems that support
program development in an integrated fashion. Such systems will be organized around a data base
containing informmation about abstractions (see [33] for a description of such a system), For each
abstraction, the data base will include specifications, source code and object code of
tmplementations, and the known properties of the abstraction (eg. that a particular implementation

has been verified). Many programs will run on the dats base, including specification and

programming language processors, and verifiers.
Veryﬂuhworkhubemdmlnthluuoﬂmlrequumm:pulrmumu. In one



study that has bmdmc[ﬂlpropaﬂaufthewsym behavior were specified using a
model. The specifications resukting from the sysem design must be checked to see If they satisfy
these propertiss, which we envision as & set of interdependent constraints the user expects the
System to satisfy, We speculate that the techniques uud in formally specifying a system cluign can

bec_uﬂedmwmthhpmmththebunﬁtthumrucumdlnwulumﬁumgtlu'

requirements can be caught early. |
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