LABORATORY FOR %% MASSACHUSETTS

INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

Proving Packet Communications Architectures Correct

Computation Structures Group Memo 143
September 1976 I

Glen Seth Miranker

This research was supported in part by the National Science Foundation under grant
1XCR75-04060.

\—

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSEILTS 02139

The construction of formal models of programming languages has al | owed
pecple to make precise and rigorous statements about the semantics of modelled
tanguages. In addition it has provided the means for presenting rigourous proofs
of properties of prograss such as equivalance and termination. In this paper we
alao Wwish to make a precise and rigourous atatement, nat abou.t propertiea of a
programming |anguage, but about the correctness of a machine archi tecture.
Informally, what we mean by this is simple, Namely, every machine executes an
encoding of soma language uhich ue cal! the base language of the machine. HWe can
ragard prugramé in the base language as encodings of a ciass of (interpreted)
program schemas II. The question then arises as to uhether this machine is
squivalent to the class of schemas Il In the sense that every schema hés an
encoding on the machine and for every such interpreted schema that terminates

.does ‘the machine "compute the right thing". This question becomes more
interasting if one first proposes the echemas and then dasigne a machine which is
suppossd to correctly implement them. In this note we kill give a definition of
what it means [formallyl for a machine architecture to be corrsct. The
definition is particular|y appropriate to a class of machines knoun as packet
communications architectures [2]1. le kill give an example af a proof af a machine
using this definition by proving that the elementary data flow processor (EDFP}
[3]. correctly implements an interesting sub-class of the uell formed data flou
schemas (WFDFS) [1). [t mill be seen that the structure af the proof exploits the
modular construction of these machines.

Let M be an autonomous non-deterministic finite state machine (ANDFSH).

We can completely characterize N by a quadruple <§,,5,°,5, ,®,> uhers

Sw = set of states of N
S,> ¢ 5 are the initial or start states of N

S ¢S are the final state of M
¥, I8 a binary relation on S,

it (s,,83) € ¥,

then we say that M can undergo a transition from s, to sy alternately
ue say ths that (s;,s;) s a iegal transiten.
For convenience we define the function 8yt § + 2* uhere
8.(s) = (s'|{s.9') € @}
[¢# 8,08) » @ and s ¢S,, than s is a dead or error state.
Given two ANDFSM’a A and B we wish to define what it means to say that A simulatas

B. Tosard this end ue define a function ¥

¥: S) » Sp vhere Sy is the stats set of machine A
and Sg i3 the state set of machine B

In general ¥ Will be a many to one function, Armed with this function one is

_tempted to say that A simulates B if:

1. The states of A are in one to one correspondence with the states of B
2. Every !egal tramsition in A has an image which is a legal transition
°r B if a = a' then ¥(a) + ¥(a")
3. ¥ maps the sets 5,° onto Sg° and S,f onta Sg'.
These cqnditions are far too restrictive for twc major reasons.
First the simulating machine A may requira several state transitions
{ateps) to simulate one step of B. So a one to ona correspondence ia impoasible.
Second, we are only interested in simulations of machines M that are functional,

that ia:

for any s, € S,% if 3 sequences (sl 2", (5%,

i) 5y + 8! 4 sy sl L gy
whers

s¢;| € Sy the set of final states of M

and
a; = 522 - 532 -+ . . . !kzz
whers
skzz [S'.f
then
3 i 2
k1 = Sz

We call a sequence of statas as In i) a computation seguence.
Consequently, ue do not cars if the machine doing the simuiation of M can
simulate all computation sequencea of M but only if at least one can be

simulated. This motivates the following definition,

DEFINITION

Let My = < 54.5.°,52', 94> and Mg = <5g,5g" Sg', #g> be tuo ANOFSM’s.
Let §5 be a mapping §;: Sp = 2 unere
3,(s) = {8°|(9,8") € @3} and §g the corresponding function for machine B.

Let ¥ be a many to one function
¥: Sy + Spg
We say that H, simuiates Mg iff:

1. ¥5u(a)) g bgiP(al) V¥ a € S, (ne have used the conventional
abuse of notation, letting a set be an argument to ¥)

2. 328 339,21 + 4 - B €5 3
(a;.“m,., € l.(ai(m,,,] Yi>dl =»

{3 j) E] [?[aj‘i (mg,) € ‘B"(al))]

3. pla) = g = Hpivia)) = 2
4. ¥ IJESB" 3 aeS) 3 ¥ial b
Informal ly we can interpret thase conditions as:

1. If a transition is legal in machine A than the image of the
transitiocn in machina B 18 legai,

2, There are several interpretations for this clause. Most loossly the

condition states that "machine A makes progress". Alternately, My
loops only if Mg loops, that is there is no infinite sequence of states
af machins A that maps into 2 aingle state of machine B.

3. My hangs up only 1f Mg hangs up.

4. The start atates of Mg are covered {(under ¥) by the start states of
Ma-

This definition of simulation has one important shortcoming. The function
¥ is not restricted to be semantics preserving. HWe elaborate on this by uaghof an
example. Suppose wWe had tuo nearly identical machines My and Mg, Suppose that the
only difference was that ua associate with the i'™ final state of Mg the meaning
"if halted in this atate then the output value is i*. On the other hand suppose
at| the final states of M, have the meaning "if halted in thia state the cutput
valus is n*, Then it is easy to define a function ¥ such that one can prave M,
simulates Mg correctiy. Nevertheless in every terminating simulation flg uwill
have an output Wwhich is different from Mg. Thus even though My simulates Mg it

does not "compute the same thing". Wa can capture thls idea formatiy by

-amsociating a semantic function £y with a machine M where:

£yt Sy + "meanings”

"Meanings" is an appropriate value domain that we Wish to associats with the
output states of M. Typically, "meanings" might be the set: integers U strings U
arrays, etc. Let us call an ANDFSH M with an associated semantic function £y a
caiculator and denote it by the pair C =« <&y,H>. Ha say that a calculator Cp =

<Ep,Mp> correctly implements a calculator Cg if

1. My simuiates Mg
and

2. Eals) = »[EglEis))] ¥ s &S

where »r is an injective map from the domain of meanings of Cg ta the
domain of meanings of Cy

3. ¥ seSg Fs'€S5 3 ¥i(s') ae
i.e. the finai states of Cg are covered by the final states of Cy.

Hith this precise definition of correct ikplementation ue are equiped to prove
carrectness of certain machine architectures, ke demonatrate this by the
faliowing example.

We introduce a class of prograsming schemas, the gueued data flow
schemas. This class of schemas is the same as the ciass of data flou schemata
axcept that the |inks are guesues and tha firing rule is different:

1. A tink node rather than holding at most one token, is an unbounded

queue. Tokens are removed from the gueue with a FIFO discipline,

2. An actor of a JOFS may fire iff all of its input links are non-

empty. An actor fires by absorbing one token from each of its input

links, and some finite but indeterminate time later, placss one result
- token on its output link gueus.

3. All actors ot a UDFS are primitive computational functions.

4, The inputs to a OOFS are the set of |inka uhich have no predecessor
actors - L.

5. The outputs of a OOFS are the set of links which have no successor
actors - L,.

E. A OOFS ia said to be initialized i#f
Yiel [Il=1
whare ||| denotes the length of the queus of link |
and
Viegl |JI| -2
7. A GOFS is said to he terminated iff

Viel, |[i}] >8 and no actor ia enablad

and cleanly terminated iff

) and no actor is enabled
La; O be a QDFS. We can model I with a ANDFSM P, Before defining tha
states of P we introduce some notation.
A is the set of actara of 00

L is tha set of linka of II
Y is the domain of valuas of the tokens

va assume for convenience that the actors of Il ares ordered and that we can
refer to the i™ one as a. Similarly we number the finks of I and refer to

the i one as l;e
D, is a function - Dp: A - OPERATORS

where o € OPERATORS is a six-tuple of the form o = <opc,pq,pPa:P3.d;.dg> and

D{a) = o ift p; is the name of tha i" input link of a and d; is the name of
the i™ output link of a, opc € OPC is the name of the functian that &
computes. Thus ue say that a; computes the function fge: ¥V x V" x V' = V .

{V* denates V U {emptyl where V ia the domain of token values and empty ¢
V). _ | :

We assume for convenience that:

1. An actor has at most threes inputs and that its output link has at most
tuo output arcs. We will model an actor uith a branching output link as an
actor having two non-branching output links that receive the same values
when the actor fires.

2. There existe a function NIN: OPC -+ {1,2,3!} where NlN(opc) = i = the
function fu,. takes i non-empty input arguments,

3. p = nil for j > NIN(apcl { we use the reserved word nil to denote an
absent {ink or argumentl

4, There exists a function NOUT: A » (1,21 uhera

NOUT{a) « j = a has j outputs

S. dy = nil for } > NOUT(a]

He define the state of P as a pair <DP,S,> where:

@, is as defined above
and
Spt L Unil -V
whare)
So{1) = <vj,vz, + « » Vo> it the current contenta of the queue
of tink | is (from tail to head]

Yie¥a » « - Voo

= ampty if gqueus | is empty or | = nil

We define a semantic function for P:
€,(S,} is a k-tuple where k = |Li{

and
the i™ element of the k-tuple is Syit;).

1t should be noted that for a given QDFS Il that the only state component of the
corrasponding machine P that is not conatant is 5. WUe will abusa the notation
and refer to S, as the state of P. (For this simple language, O, is constant and
might be better considered a semantic function. Howaver in general D, may not be
conatant, for example in languages uith procedures, and thus has been included ans
-p;ft of the state.} Letting |!| denote ths number of elements in the queue wWith
nama |, we define:

Sp ia an initial atate of P if

V1el IS =1
vigLls,lil] =2

{That is, all the input links have one token on them and all the other
links are empty) '

S, s a finai state if

ViIel, IS,{III > B
(evary output link [e nonempty)
and
1 5>
if
D.la} = <opc,py.pz.Pard;.dz>
then
S,(pﬂ = empty ¥ i < NIN{opcl

i.8., there are no enabled actors
Lastly, we_dafine the transition relation of P, &,
[f S = <D,,S,> is a state of Pruith some 3, € A 3
Dyla) = <opc,py,sPgs 3 di,dp>
and .
for } < NIN(opc) 5,(p} = empty
and S° = <[} 'Sp" is a state of P 2
gp:“] - Sp{” Vig |D|.pg.93.dhd21
Sp {p;} = -liSp(p,]
and
LIS," {d) = 5,0y}
and -
115" () = fm(-lTSp{p,}.-lﬁ,lpzl.-lﬁp(palJ

Then (5,,5,') € &, _
We have used some notation borrowsd from AFL for vector manipulations - I, T. The
action of these operators is simply defined;
iTempty = empty for i e
ilgmpty = empty for i € N
1T¢v vz, « « o V> =y, k> B
-1Teviva, + s s > m v, k> 8
Leviiva, + s o V> = <V, Y3, « 4« Vi k> @
“ldav Vg 0 0 0 M m VY2 o s s V> RO B.
liv. = gmpty
v = empty
where we denocte the k-tuple whose i componsnt is v, by vy,v3, . . . v Also, we
use ";" to signify appending of tuples or scalars toc tupies.

Nou we have completsly specified C,. He nou define anothsr caiculator

which models the feollowing machine:

 FUNCTIQNAL |
UNIT

n channels

INSTRUCTION | ® WRBITRATI
MEMORY . NETWORKO .

k channels

k channelsa

Figure 1
ELEMENTARY PROCESSOR

The alementary processor is 3 collection of four asynchronous modules - the
instruction memory (I1M), the arbitration network (AN}, a'eei of functional units
(FU), and the distribution netuork (ON). Each module is assumed to be connected
{as shoun in figure 1} to tuwo of the uthaf modules by a finite sst of one uay
communications 1inks cailad channels {(arrous on tha channels Indicate the
direction of data flow}. A moadule may place 3 message iﬁto the input end of
charnnel. This message ia cailed a packet, Each channsl is a buffer which connects

tHo modules refsred to gererically as a source and a receiver, and has the

1B

fallouing behaviour. The source examines the chanrel’s status., 1f notﬁing is
queued in the channel it is said to be empty and the source may place a packet in
the channel. A receiver looks at the status of the channel., [f a3 packet is queued
in it, the receiver may remove it thus eeptying the chénnel. Thus a channei is a
buffer of length one which appears as an information sink to the sourca, and an
information source to the recaiver. Packsts ars received in the order in which
they were transmitted and no packets are "lost". A channef buffer will be
assumed to be part of the receiver module for the purposes of state definition.
The main moduie is the instruction memory. 1t consists of n identical
units called cells. Each cell can be refarred to by a name calied a cell address.
This name is simply an integer @ <) <n., Each of the cells is connnected via a
channel to an input of the arbitration netucrk. The atructure a_ncl function of the
cell is simple. It consists of three registera and three unbounded queues, The
contents of these six par-'ta may be taken to ba binary words of some finite length

b for concreteness,

Operation Code Destination 2
{.__4\,__\ "
reg. 1 reg. 2 reg. 3 queue 1 queue 2 queue 3
— '

Destination 1

Figure 2
The firat register contains a word referred 1o as an opcode - it is interpreted
by the functional unit modules. The second and third registers contain gueue

namesa l.e. pairs of birary words uhose first value is a number betueen 9 and n-1

11

specifying a cell, and whose second.value is1, 2, or 2 indicating a particular
queus of th; cell. To load an encoded program the contents of these registers are
set initially by some outside agént. They remain static while the machine “runs".
The three guesues are FIFQ buffera of unbhounded length. They are rufarred to by a
nana of the form (i, j}, wherea i is tha nama of the cell the queue is a part of,
and j € {1,2,3! indicates which gueue. The elements of the gueue are members oOf
asone sat of values B where B contains some auitable sncoding of the set V.

The operation of the ceils is simple. He assume that the EP has been
constructed 30 that the eiements of the set of opcodes OP is in one to one
correspondence With the elements of OPC. For notational convenisnce wue introduce

the function
OMAP: OF + DPC -

He also asaume that for any cell ¢ that its queues g; for) > NIN{DMAP (apcode))
are set to some distinguished state notused. The oparation of the cell may be
described as follous:

~ 7 1. The celil’'s contro! examines its output channel. If it is not empty do
step 1. ' '

2. The cel!'s contral examinas its gueuas that are not in the state
notused. [f any of them are empty do astep 2,

3. Dne value v; ie removed from the head of each queue. Then a string of
birmary words called an operation packet (packet for short) of the form
ic,opcode, v, vy, vg,d,,dal is placed in the output channel where

c is the cell name
opcode is the contents of register one
d; is the contents of register two
d, 18 the contents of register three
and
v, is the first elament of the i™ qusue for i<NIN(DMAP (opcode}}

and empty otherwise.

4, Do step 1.

12

The arbitration netuork receives packets from the 1M and sends
them to the FU. The AN's internal structure is not of intersst, We assuwe its
operation is:

1. Check if an output channel ie empty. If not dao step 1.
2. Check for a non-empty input queue, }f none da atep 2. -

3. Select some non-empty input gueue. Remove the packet,
and place tha packet in an empty output channal.

4, Do step 1.

We assume the AN is bullt so that when an input channel buffer b becomes non-
empty at moat j packets will be placed in the output channel before one is
selected from channel b, for some B § j < =, Furthermore, if any input channel
is non-empty and any output channel is empty, then the AN must chose some packst
to be placed In an empty output chan;el. Thus the arbiter implicit in the AN is
"fair" in that an input packet is certain to be selected in some finite tine. We
ignore any addftional details of the arbitration algerithm, |

: The FU is made up of a set of k identical units called ALU’s. Each ALU

iz a small finite state machine which receives inputs from a channei connectad to

the AN, and sends outputs to the DN using a unique output channel., An ALU
operates as fol lows:

1. Examine output buffer. 1+ not empty do step 1.

2. Examine input queue. |f empty do step 2.

3. Remave packet from input channel. The packet is of the form

{i,opcode, vy, vy, vg,d;, da}

4. Compute some value v = fgooq,(vy,vp,v3)

13

5. Construct the resuli packet {i,v,d;.dg}
6. Place the packet in the odtput buf fer.

‘7. Do step 1.

f apcode is ona of a set of transformationa of the form f,: B x B* x B* + B
uwhere

8 i!s the set of binary words of length b

B* is the set B U lempty!
Ue will take the sets V and B to be identical for convenience. This saves us the
bother of using a mapping function » every time we wish ta relate a value in some
queue of C, (the schema's model} to C, (the machines model). Further we assume’
thats

if opc = OMAP(opcode) then

fo“{x,u.z]_- v iff foproda ¥sYeZ) = ¥

The distribution net is similar in function to the AN. Ue describe its

operation briefly.

1. Examine the input queuss. 1 all are empty do atep 1.

2. Remove ona packet {i,v,d;,dp) from a non-empty input queus. Send
packets conveying copies of the value v to queues d; and dj. It is
assumed that tha destination cells wil! place thes received valus v on
the tail of the specified queue.

3. Do step 1.

ke nou define the ANOFSM M which modeis the EP. A state of M is a

quadruple S, = <SIM,SAN,SFU,SON> where

1. SIM corresponds to the state of the instruction memory. 1t is a function

5IM: | -+ NODES
where] is the seat of cell names
NODES is a set of gix-tuplas
SIM{i} = n = <opcode, §;.4z,43.¢;.dp> where

14

opcode = contents of registar one of call i
q; = contents of guewe {(i,j} j =1,2,3

- d; = contents of register 2 of cell i
d; = contents of register 3 of cell |

2. SAN corresponds to the state of the AN, It is an n-tuple where the ;'
eliement of the tuple is:

i) empty if the queue of the input channe! j is empty

ii) A tuple = <i,opcode,v|,vp,vg,d|,dy> if the queue of the j'“'input
channel contains the packet p = {i,opcode, v, vz, v3,d;,tl.

3. SFU corresponds to the state of the functional unit. It is a k-tuple
where the j™ slement of the tuple ia:

i) empty if the gueue of tha input channel j ie empty

ii) A tuple = <i,opcode,v;,vp,Vv3,d,,dy> if the queue of the jﬂi input
channel contains the packet p = {i,opcode, vy, vp,v3,d;,d2) .

4. SON corresponds to the state of the DN. It is a k-tuple where the j™
element of the tuple is:

i) empty if the queue of the input channel j is empty

it} A tuple = <i,v,d),dp> if the queue of the j'" input channel contains
tha packet p = [i,v,d;,qd;].

~ The transition relation &, is readily defined. We anly consider ths more
interesting cases in detall.
1. State transition corresponding to a cell firing.

It S, = <5IM,5AN,SFU, SON>

Hher e

31 i 3 S{NM(i] = <opcods,q),q2,q3,d;,da>
and

jgil > 8 for i < NIN(OMAP{opcadel)
and

SANLi] = empty
{i.e. i is an snabled cell with an empty output channel}

and 5. = <§5]M°,SAN',SFU,SON>
whers
SNy = SIN" () V=i
SANEj1 = SAN' [j] V ;=i
and
SIN" (i) = <opcode,q;’,q2',a3",d|,ds> uhere
g = -lig; for 1 < j < NIN{(OHAP{opcods))

SAN' [i] = <i.OpCDdﬂ.-lTQI|-ITQz,"].?qa'dl,dzﬂ'

15

(}.e. cell i has transmitted the "appropriate” operation packet)
then
{Sp:i5a’) € ¥,

2. State transition corresponding to 'the AN firing.

If S = <51M,5AN, SFU, SON>
vhera
SAN[il = <i,opcods, 4y, 4z, 9z. dy, do» for some B £ i < m
SFU[J] = gmpty for some B < j < k
(there is a packet queusd on the AN and thera is a free FU)
and
S = <SIM,SAN',SFU*,SDN>
uhere
SAN' [m] = SAN[m] Vma=i
SFU' {m) = SFU([m] ¥Yma=j
SAN' [i] = empty
SFU'[j} = <i,opcode, Q;, Gz. Gy, Y3. o>
(the packet is forwarded to the free FU)
then
{SpysSp’) € ¥

3. Stats transition corresponding to the FU firing.

If S. = «<5IN,SAN,SFU, SON>
whare
SFULj1 = <i,opcode,vy,va,v3,d(,dp> for some 8 £ j < Kk
SONCj]l = empty
{there ig a "full” FU with a free output channet}
- and
Sm’ = <S1M,5AN,SFI* ,SON" >
Where
SFU' [j1 = empty
SON’ [j1 = <i,v,d;,dp>
and
¥V = fmod.(vl.vz,v:;)
{the operation packet is removed and the rasult pa:ket sant to the DN}
then
(Spe S’} € By

4, State transition corrasponding to the ON firing.
This is analogouws to case 2.

The set of initial states of M, S,° is <SIN,SAN,SFU,SON> where

SAN{i) = empty for B < i <n
SFULI] = empty for B £ i <k
SDNI[i] = empty for B €1 <k

The sat of final states S"hau the same restrictiona on SAN, SFU, and SDN and in

addition:

ie

3 i el 3 5IN) = <opcode,q;,qy, 63.d;,dp>
and |q » @ V¥ j £ NIN(OMAF (spcode}}
ti.e, no enabled cells)

Finally we define the semantic functicn for H, €y [t ia a map from the
state set af M onto the domain of meanings. We express it as a Curried function
since it wi!l be most useful in thia form, In the definition of En He will
capture the idea that the semantics of a stats is determined by the contants of
the queues. In order to preserve the correspondence {in the semantic functions)
betusen queues and iirks we note that ue must associate with a queue those values
in the processor pipeiine that ara destined for the queuva and those that
originated at the queue.

Emi Sy + (1 % 11,2,31 + B U. (emptyl] where
E(SpY [T, j) = v = H;CONL, J)iYsZ>
wherea
i} Xav ifImo>S0Nm = <3,v,d;, dp>
and dy = {i,j} for | a1 or 2
= empty otheruise

ii} CON[i,]} = a tuple wuwhich is ths contents of the [i.j)“I queue
= enpty if the (i, j}'" queue ia notused

iit) Yev if Am 3 SANIm] = <m,opcode, vy, vy, ¥a,d|, dg>
and v = v; and d = {i,j} for | « 1 or 2
empty atherdise

ivl 2Z

v if 3 m 3 SFU(nl = <s,o0pcode,v,,vz,v3,d;, dp>
and v = v; and dj = (i,j) for | = §{ or 2
= ampty otheruise
This compietes the definition of C,.

We assume that we have built the models C, and C, so that the value
domains V, and B are the sams, b digit binary mumbers. These sets as formal
quantities are different, and a completely gereral treatment would require a map
»t ¥ =« B uhen ue uish to compare elements in each sat. Ws have intentionally made

YV and B “the same” so that we can avoid using r when comparing elements of ¥ and

8 and not be too abusive of the notation,

17

We now have completed the specification of our ixo models. [n the proof
of thair equivalence ue witl find it useful to define a compiler froﬁ the machine
P toH. A compiler will alloﬁ us to associate any state of P with an initial
state of M. A compiler H from P onto Nl is a pair of one to one functiona:

HA: A = I x NODES
HL: L -1 x {1,2,3)
wherea
HLEI) = (i,]) where i is a cell name and j is a queue name
HA{a} = {i,n)
whera
if Dpla) = <opc, p). P2r P3s O3, d> then
n = <0MAP~'{opc},qy, a2, aq. lidy,rd|}, {idg.rdg)>
uhere
g; = Splp) 1f p = nil
q) = notused otheruise
HL[d}] - “dj.f‘dl)
HL{dz] - “dz.l“dz}

We assume that when a program is "loaded" into ths EP the contents of the itk

cell Is set to correspond to n where 3 i 3 HA(g} = (i,n}. Of course the machine
must be at least as large as the programs loaded i.e. [A} € |I|. We are nou
rfadg to define ¥: S, = 5,. He say that
S, = ¥iG,) ifVIel
Spf1) = w and u = <HsCONTHL (1113 2>
where

it X=v if 3m > S0Nlw] = <n,v,d;,ds>
and HL{() = dy or dp

empty otheruise

iil Y=v if 3i,j 3 SANII] = «i,opcede, v, vz, V3, dy, dz>
and HL{1) = (i,j} and v = v

» ampty otheruise

iii) Z2=v if 3 j,m>5FUIm) = <i,opcode, v|, vp, v3, d;, dp>
and HL{I) = {i,j} and v = v

= empty otherdise
We now prove that i1 simulates P by proving four lemmas. Each |emma will

establish one of the four parts of the definition of simulation.

18

Lemma {. Let 5,, S5, be two successive states in a computation sequence of M
starting from S,° = H(S',D]. Then either
i1 WS, = ¥(5,)

or
1) (¥(5,),9(5.°)) € &p

Proof (by induction on the number of transitions of machine M).

He assume we have a compiler as defined above, and that the machine is
placed in the initial state as dictated by the function H. Then referring to
the state af an ANDFSM existing after the ™ transition as tha ;™" state,

and denoting this as S,), we have:
#15,2) = 5.0

and the lemma holds triviatiy after 8 transitions,
Agsume that the temma holds after | transitions (1>8). Thus

¥i5,) = ¥(5,"" or (wiS), ¥ e 9,

We distinguish four cases for possible successor states of SJ:'

i} Corresponding to a cell tiring.
Then
S = <51, SAN;, SFU,, SON>
where
3 =2SIN()) = <opcoda, 4, qaj» dajs s d2p

SANILj] = empty
and

gzl = 8 for ¥ < i < NINIOMAP (opcode)),
(i.e. cell } is enabled)

and
S,“ - <SInbl,SANk|.SFUk1.SDNb|>
whers
SFUpIk] = SFU|,|[k] for k _>_ 8
SDNT{k] = EUNh]“-] for k 2 2
SIM (k) = SIM,, (k) VK= j
SAN, (k] = SAN,,; [k] ¥k #j
and
Slnmfj] - <j.IJDCOﬁSpq”'.Q2j'.Q3].|d|j.dzi>
Where
g = -ligg i = 1,2,3
and

S5AN, (J) = <j,opcode, Yis V2. vg, dpj dgp

13

where
v, = -quii
Li.e. coll | #ires sending an cperation packet to the AN)
Let 5;° = #(S.7) for any z € N. C!ear!g ke have to exanine

only s {k;) andS"'(k} for
k= HLMEG,0) 0o« 1,2,3

since Vzel,z=k, S'2) =5"@
(i.e. the inverse image (under HL} of | ¢ fkj) are unchanged)

let SJ{kﬂ = V;3¥asvy where vy is the contributian
from the gueue in tha cell i.e. vy = CON{HL(K)), then

sphl{ki] L V“:V!i.=\'5. wherg
\"Zi' = -l-l-VZi
vy' = (=1Tvy)ivgy
by definition of #, and ¥
g0 that V2i"v3i' L] '!"IJ-'VZi]i ['l.TVzi“Vgi - Vaii vy
therefors ¥ (S, = 5, « §,*' s w(5h

sa the lemma holds

11} State change corresponding to the AN furmg. This is analegous
to case i} and is omitted.

i1i)State change corresponding to the FU firing.
Then
S,‘-<SIHhSﬁNhSFUhSDNP uhere 3a j 3

SFU|[]] = <k, opcode, Vis V2 Vo, dlk' ﬂa)

and
SON[}] = empty
(i.e. there is a "fult" FU with an empty cutput channel)
and
Sw>! = <S1M,;. AN, SFUy,;, SNy >
where
SIM i)} = SIM,, (i) for i 2 8
SFULI) = SFU,,Li) Yiwxj
SON; i1 = SON,; [i] Vias]
and
SFU, [j] = empty
5DN|,|[]] " (k,V.d“'dab'
whearsa

¥ * fopende{¥isv2: V3l

{the FUU has absorbed the input and sent its result packet to
the DN}

28

As in case i} we need only consider S;lzl. S,“'{z} for
2z =Ht(s) s = (ki) §=1,2,3

and
z = HUV(dyy), HL ™ idy)

pince ¥ z € L, z ¢ Isy,95,5q,d.) 5,'12' - spm‘ﬂ

Let v, = S;'(s)

(we note that by the definition of ¥, v; » empty for i<
NIN(OMAP {opcode)} since SFULj] = empty. Thie condition on v,
togethar with the definition of H allous us to conclude that the

actor @ which waas mapped to cell k has only non-empty input
linka)

then

S s) = v* = -1l v, by definition of ¥ and &,
similarly, (et w; = SJ(di] then

Sph'(da] LR IR T
but

v a },,“”h[v],vz.vsl = fope(V)evaeva)
= fopet-1TS IHL K, 100, -1718, (HL™ (K, 203, <115 THL I, 31D)
uhere. opc = 110, (&)
But then by definition of &, (EJ.Spkll €e,
Whence (¥{5.),%(5,")) e 4, since

#15,) =5 and ¥ D) =580
so the lemma holds. ’

Notice that the above argument does nat hoid if dy, or doy = (k,n)

for gome n (i.e. an actor i3 its own successor}) since then v,*' =
-llv,. The proof of thia special case is left to the reader.

iv} A state change corresponding to the ON firing. This
is just like case 1) and 20 is omitted.

The proof of the second condition is a bit more briaf.

LEMMA 2. I k>B 2 J 3, S5, « « « B D
(Biitmodn) € BmlBinoar) V126 =
{3 j} 2 [?{akl(lﬂlk}) [Splf(sjl]]

Proaf:

We note that the existence of such a cycle of states implies that M may
"loop" forever. Let us reatrict our attention to the states of M that

21

comprise this loop. Let k be the numwber of states in the loop and call the

i™ atate in the loop s;. Then for the states of the Joop

YV i28 suimack € Sm{Sigmn)

and the hypothesis i9 satisfied for this k and states Z = [glo*!. 1t ia
obvious that any such loop of states of M must include a change SFU {(i.e. a
functional unit must firel. Let S,.° € Z ¢ S, be the state prior to a change

in SFU. Then by lemma 1
1#1S,0),¥(5,2) €&,
therefore
¥ 15,51 € B (¥ (ST}

Ue note that we can chooaa a labeiling of the states of Z mu that z < k.
Whence the lemma folioua immediately with j = z.

The final two lemmas depend heavily on the properties of the compiler H.
LEMMA 3. B,(s] = g » J,(¥is}) = g

Proo#f:

The key to the proof is that H is one to one.
— $§,{s) = @ = there are no packets in the channels

= the image of the state of M is totally
determined by SIN {i.e. the contents of the 1M}

therafore l;(s} = @ » no enabled cells

uhance by the definition of H there are no enabled actors.
Ue conciude that § (¥ {s}) = g.

Finally ue have
LEMMA 4. Vs, €5° 3 s, €5, 3 ¥#(s,) = s,

Proof: Follous trivially from the definition of H.

From these four lemmas we may conclude thats

2

Theorem 1, The machine M correctiy simulates ary properly sized ODOFS (with the

restrictions on the actors as outlined above).

Now we umish to show that the machine ! computas the same thing as P i.,8s,

Cw correctly implements C,. Theorem i proves that the part of the definition

requiring correct implementation ie satiafied. Notice that there is one small
technical difficulty in the proof of the second part. It is that the guantitiens

EwiSp) and £,1S.) are tuples of different lengths in general. We will aay they

are equal! if and only if:
For 8, €S, and s, €5, £,la,l = Eaisy) itf

V ias lel, E,ls){H(})}) = Ep(apl [il
He prove the second part:

LEMMA 5. ¥V s € S, &,ls) =« £, {¥(s]}

_Proaf: (by induction an the number of transitions)

Notice that the iemma proves a stronger property than reguired by the
definition. This is useful in the induction proof since the induction
hypothesis is now stronger,
Atter @ transitions, calling the state of M, s; we have:
Enlny) = Eo ¥ isp))

since

E IS 111 = S (i)
and

Eplag) HLII)) = Splly)

by definition of £,, £, ¥ and H.

Assume that the hypothesis holds after h > 8 transitions. Then just as in
lemma 1 there are four cases ta be considered. Again only the case of an FU

firing is non-trivial and 90 is the only one pressnted here,

case i) State transition corresponding to a cel! firing.

cass ii) State transition corresponding to the AN firing.

23
case iii) State transition cocrresponding to the DN firing.
case iv) Stats transition corresponding to the FU firing (i.a. SFU, SON

changes).

Let S," = <5IM,.5AN,,SFU,,SON,> be the state after the h' transition

then
3 an n 3 SFU,[n} = <i,opcode,v,,vs,vy,d;,da>
and
SON,[n] = empty
and

EylSy) = E ¥ (S M)
aftar the (h+1}% transition S, = § .M gxceptr

SFUp,p [n] = empty
SDNI»I n}l = <i,v. d].dz)
whera

L fﬂp&ﬂﬁ (VI 1 ¥, Vg]

Cleariy then £,(5.™ 1 (HL{1)) = & (#(S, ™) D)
Vi, HLOY ¢ (4,1, (0,20, (i.3), d.q,

For p = ¢i,j) j =1,2,3
En(Su' P} = -1l Hhere Wy = £,(S," p) by definitian of &,

% (S,™1 L (p)) - -11w by definition of ¥, HL and femma 1
therefore letting i = HL-! (py
£, (¥ 1S '“'}l[q] = <Ly «E,{5,™") Ipy}
by definition of &;, and &,

Far dj v j = 1,2
EniSp™' 1 {d) = vi£,1S,M (d) by definition of #, and Ep.
nou
P S, (L)) = vi¥ (SHIHL (g} by definition of ¥ and HL
so that letting i = HLJ(dﬂ

EntSn™!) {d) = £,(#(5,1) (g} by definition ofE,
' and induction assumption.

sa the lemma holds,

Notice that the proof above does mot hold if an actor is its oun
predecessor. The proof of this apecial case iz faft to the reader.

We obsarve that the third requirement for the correctness of an
implementation {(covering of final states) is trivially true. Thus we state

without proof

2%
LEMMA 6. V¥ 8, €5) 3 s,€5, 3 ¥l(s,) =5

Proof: va;oua from the definition of H and final atates,

i
Thus ue have
Theorem 2. The machine M correctly implements any properly sized QOFS P,
Proof: Immediate from theorem 1 and lemmas 5 and B.

|

He notice that for any OOFS P in ite imiial state, no directed cycle in P
has any tokens on its component links. It is uweil known that for such achemas,

the token load of a fink during "execution" is at most one (S}, [B]. Thus ue may

conclude

LEHMA 7. If we only compile OOFS's that are in an initial state onto an
EP, then during the execution of the schema on the EP, the cells queues have

'léhgth of at mest one.
Proof:

Let P be the machine which modeia a OOFS that is in an initial state 5n°'
Let H be placed in a start atate corrasponding 5p°. By theorem 2, M will
correctly simulate a computation of P, More important, by lemma S after any
step of the simuiatiuﬁ { with M in state §.) ‘

EnlSy) = & (¥(S.H)
But the i'" component of 8,[5,” is a tuple whose lsngth bounds the length of
some queue ¢ in 3 cell of the instruction memory af the elamentary
procegsor, by censtruction of C, and &,. Ue may conclude that for any q

Japairpa lal £ €45, (R}

25

{note the length of q is zero if 4§ is notused or q = empty)

But either
EniSy) (P} = E,(¥ (SN LI) for some i

so that .
| En (St (P}] = FE, (¥ (ST TiT]

or p has no image (under HL'Y) in P and hence is notused

so that
| Em(Syl) (p}] = B

but ¥ |; & L, £,(¥{S11 (i) = contents of the i Iink
of the schemas P models, by construction.

therefore by the above observation we may conclude that
|E ¥ IS €1

whence
lal £ 1 for any queus of the 1IN

We conclude that the machine EP correctly executes QDFS's {gtarting from

an initial state)l even if the gquaues of the cells are raplaced by single uord
-registers. Further wWe notice that no component of the EP ever used the first
element of the packets that uere placed intoc the channels uhich was simply the
originating cells name. {Thia component was onlty Introduced to simplify the
rotation!. Consequently, we may sliminate this part of all packets without
affecting the above results. Doing these things we see that tha resulting machine
is simply the elementary data flow processor. Since the class of OOFS’s is at
least as large as the class of WDFS” s composed only of primitive computational

functiona (catl them SimpleWFOFS's) we conclude that:

Theorem 3. The EDFP correctly implements the class of properly sized and

initialized SWFDFS' s,

26

He note ssveral things about the proof. First, though the levei of detail
kas rather high, the proof was straightforward and required no “tricks". Second
the modular strucfure of the machine was sxploited in the proof in several ways.
Most significantly, it aliowed fracturing the definition of S, and #, and the
main |lemmas (one and fivel into several disjoint subcases. | suspect that the
extenaion of this proof technigque to more complicated packet communication
architectures will therefore be straightforward.

This paper uwas inepired by the work of.J. Rumbaugh (3] in uhich he provad
his machine for executing data fiow programs wWas correct. Mowever the approach
torward proof of correctness of an architeciure in this paper diffara from hig in
several important ways. Firet, Rumbaugh rather than using ANDFSM's as the basic
model in his proofs, used a structure he called a nén-dutaruinistic information
structure wodel! INDISM)., The modal has no more pouer than the ANDFSM*s and the
introduction of it is unnecessary. [t leads one into a style of proof that _
appears rather ad-hoc and rather informal as opposed to the more firmly founded
' éigle of automata theory. Second, Rumbaugh fails to restrict his function ¥ to
be semantica preserving in his definition of simalation. He does not axﬁlicittg
address this problem, although the specific way in which he defines his function
¥, it is semantics preserving. Third, the NDISHM Rumbaugh uses to modal his
machine (BM} does not reflect the actual machine's (RM) operation accurately.
There are many components of the RM that contribute to its state that do not
figure in the state definition of the BM. He covers these discrepancies by a
number of lemmas wich prove additional properties of the RM. | believe that his
proof is fundementally correct, though it is always dangerous to fallow 2 proof

strategy which witl ailow you to derive consistent thecrems that prove something

27

other tham what ia desired. Omission cf any one of these ad-hoc lemmas wouid
have left a collection of conaistent statements about the properties of the RM
but would have fallen short of a correctness proof of the BH in an uncbvious
manner. Thare were at least two reasons why thie strategic error was made. Firast,
was the absence of an adequate definition of what it means for a machine to be
carrect (correct simulation clearly being insufficient). Second was the failure
ta keep distinct the properies and behaviour of the actual! machine {the RM} and
the mode! of the machine (the BM).

The lemmas should have besn forma! statements about the behaviour of the
BM and the correspondence betusen the BH and the AN been aa ciose that the reader
sould believe that the praperties held for the real machine. Although it is an
unpleasant thought, one canncot construct a formal, rigourous proof about a real
machine. Any formal proof about some property aof a real machine must necessariiy
deal with a mode! of tha machine. Thus it is imperative that the class of models
chosen ba simple so that credible modeltling can be duna.‘Though the c!aﬁs of
’ ﬁgﬁeis Aumbaugh chose uere simple, he neglacted to construct a model which
accurately reflected the real machine. Hiﬁ proof is consequentiy Iéss farmai and
more ad-hoc then it might have been,

It is hoped that tha proof presented in this paper avoide at lgast some
of the aforementioned pitfélls. However it has several pitfalls of its oun. The
most significant is that the leve! of abstraction achiaved by the models is very
lou. Consaquently, they reflect much of the detailed structure of that uhich is
being modelled. Although the model of the QOFS's is probably acceptable, the
mode! of the EP is rather involved., Hopefully, one can achieve higher levels of
abstraction, otheruwise proofs for complex machines wiil become uruieldy. Oave

Eilis' wark may shed some light on this problam.

28

Currently, work is proceding on a proof of correctness for a more
elaborate data flou machine. The machine has the same gensral structure as
outlined in CSG memo 138 '{7]. Since the machine has much greater capabilities
{procedures, conditionale etc.) the proof is Iungér. It is no more complicated,
but the characterization of the stateas of the machine ies much more involved and
adds many “cases” to the proof. Aside from this, work seems to be proceeding much
along the lines in this psper. Notable improvements inciude better hand!ing of
unused }inks and outpute in the modéls. Aleo greater care wil! be taken in

keeping the properties of the models distinct from that which is being modal led.

23

ACKNOWLEDGEMENTS
1 wish to thank Jack Dennis for challenging me to lock at thies probiem, and for
his continued interest, and Dave Ellis who provided some usefui criticism, 1 alsp

mish to thank Albert Meyer, uwho contributed saveral helpful ideas.

1.

&.

5.

BIBL [GGRAPHY

Dennie, J., Fosseen, J., "Introduction to Data Flow Schemas”. CSG Memo 81, .
Oepartmant of Etec. Eng. and Comp. Sci, MIT, Cambridge, MA.

Dennis, J., HMisunas, 0., “The Design of a Highly Parallal Computer for Signal
Processing Applicationes”, MAC TR1B1. Department of Elec. Eng. and Comp. Sci,
MIT. Cambridge, MA. August 1974

Oennis, J.. Misunas, 0., "A Preiiminary Architecture for a Basiec Data Flow
Processor™ . MAC TR182, Department of Elec. Eng. and Comp. Sei, MIT,
Cambridge, MA. August 1974 :

Fosseen, J., "Representions of Algorithwa by Maximally Parallel Schemata®,
S.M. Thesis, Department of Elec. Eng. and Comp. Sci, MIT, Cambridge, MA.
June 1972

Hack, M., “Analysis of Production Schemata”, HAC TR94, Department of Elec.
Eng. and Comp., Sci. MIT, Cambridge, HA. February 1972

Leung, C., "Formal Properties of Weil-formed Data Flow Schemas”, MAC Technical
Memarandum 66. Department af Elec. Eng. and Comp. Sci, MIT, Cambridge. MA.
June 1372

" Hiranker, 6., "lmplementation Schemes for Data Flouw Procedures", CSG memo 138,

Department of Elec. Eng. and Comp. Sci, MIT, Cambridge, MA. May 1376

Weng, K., "Stream Oriented Computation in Recursive Data Flow Schemas", HAC
Technical Memorandum B3, Department of Elec. Eng. and Comp. Sci, MiT,
Cambr idge, MA. Octocbar 1975

Rumbaugh, J.. "A Paraliel Asynchronous Computar Architecture Far Data Flouw
Programs”, [AC Technical Memarandus 158, Department of Elec. Eng. and Comp.
- Seis MIT, Cambridge, MA. May 1975

